Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau
Abstract
1. Introduction
2. Methods
2.1. Overview of the Study Area
2.2. Plot Layout
2.3. Sample Collection and Processing
2.4. Data Analysis and a Comparison with Prior Studies
3. Results
3.1. Soil Nutrients and pH at Different Elevations in Alpine Shrubland
3.2. Variation in Soil Chemical Properties Across Depth Intervals Along an Elevational Gradient
3.3. Correlation Among Soil Chemical Properties
3.4. Principal Component Analysis
3.5. The Relationship Between Soil Chemical Properties and Vegetation Cover
3.6. A Comparison with Prior Studies in the Qilian Mountains
4. Discussion
Soil Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Ramady, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Fári, M. Soil quality and plant nutrition. In Sustainable Agriculture Reviews 14: Agroecology and Global Change; Springer: Cham, Switzerland, 2014; pp. 345–447. [Google Scholar]
- Puyang, X.H.; Wang, Y.L.; Zhao, Z.J.; Huang, J.; Yang, Y. Coupling relationships between vegetation and soil in different vegetation restoration models in the loess region of northern Shaanxi Province. Acta Pratacult. Sin. 2021, 30, 13–24. [Google Scholar]
- Guo, N.A.; Degen, A.A.; Deng, B.; Shi, F.; Bai, Y.; Zhang, T.; Long, R.; Shang, Z. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agric. Ecosyst. Environ. 2019, 284, 106593. [Google Scholar] [CrossRef]
- Pornaro, C.; Schneider, M.K.; Leinauer, B.; Macolino, S. Above-and belowground patterns in a subalpine grassland-shrub mosaic. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2017, 151, 493–503. [Google Scholar] [CrossRef]
- Laorden-Camacho, L.; Grigulis, K.; Tello-García, E.; Lyonnard, B.; Colace, M.P.; Gallet, C.; Tappeiner, U.; Leitinger, G.; Lavorel, S. Shrub encroachment modifies soil properties through plant resource economics traits. Plant Soil 2025, 1–22. [Google Scholar] [CrossRef]
- Grau, O.; Saravesi, K.; Ninot, J.M.; Geml, J.; Markkola, A.; Ahonen, S.H.; Penuelas, J. Encroachment of shrubs into subalpine grasslands in the Pyrenees modifies the structure of soil fungal communities and soil properties. FEMS Microbiol. Ecol. 2019, 95, fiz028. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Huang, L.; Shao, M. Patterns and driving factors of soil nutrient stoichiometry under three land use types in the alpine region of Tibet, China. J. Soils Sediments 2024, 24, 901–913. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Y.; Yang, Q.; Yuan, H. Disaster and prevention strategies of shrubbery in the Qilian Mountain Nature Reserve. Res. Soil Water Conserv. 2005, 12, 107–110. [Google Scholar]
- Wang, X. The role of shrubbery in the Qilian Mountain region and its development strategies. Gansu For. Sci. Technol. 2005, 30, 32–35. [Google Scholar]
- Zhang, P.; Liu, X.; Zhang, X. Study on the hydro-ecological function of shrubbery in the forest-grassland composite watershed of Qilian Mountains. Arid. Zone Geogr. 2013, 36, 922–929. [Google Scholar]
- Wang, Z.; Wu, J.; Niu, B.; He, Y.; Zu, J.; Li, M.; Zhang, X. Vegetation expansion on the Tibetan Plateau and its relationship with climate change. Remote Sens. 2020, 12, 4150. [Google Scholar] [CrossRef]
- Anniwaer, N.; Li, X.; Wang, K.; Xu, H.; Hong, S. Shifts in the trends of vegetation greenness and photosynthesis in different parts of Tibetan Plateau over the past two decades. Agric. For. Meteorol. 2024, 345, 109851. [Google Scholar] [CrossRef]
- Lu, L.; Shen, X.; Cao, R. Elevational movement of vegetation greenness on the Tibetan Plateau: Evidence from the Landsat Satellite Observations during the Last Three Decades. Atmosphere 2021, 12, 161. [Google Scholar] [CrossRef]
- Ma, J. Study on the Ecological Stoichiometry Characteristics of Typical Shrub Communities in the Middle Section of the Northern Foothills of the Qilian Mountains; Gansu Agricultural University: Lanzhou, China, 2021. [Google Scholar]
- Zhao, W.; Jing, W.; Zhao, Y. Stoichiometric characteristics of nitrogen and phosphorus in plants and soils in typical shrubbery in the Dayankou watershed of the Qilian Mountains. Soils 2017, 49, 572–594. [Google Scholar]
- Liu, X.; Zhang, X.; Zhao, W. Comprehensive evaluation of the hydrological function of subalpine shrubbery in the Xishui forest area of the Qilian Mountains. Arid. Zone Geogr. 2016, 39, 86–94. [Google Scholar]
- Zhang, L.; Zhao, W.; He, Z. Characteristics of precipitation and its impact on runoff in a typical small watershed in the Qilian Mountains. J. Glaciol. Geocryol. 2008, 30, 776–777. [Google Scholar]
- Baranova, A.; Schickhoff, U. Mountain Pastures of Qilian Shan Under Continuous Grazing: Main Environmental Gradients, Vegetation Composition and Soil Properties. In Mountain Landscapes in Transition: Effects of Land Use and Climate Change; Sustainable Development Goals Series, Part F2672; Springer: Cham, Switzerland, 2022; pp. 555–574. [Google Scholar] [CrossRef]
- Yu, S.; Liu, X.; Chen, X.; Sun, M.; Cao, Y.; Hu, J.; Yang, L.; Hu, J. Effects of shrub encroachment on grassland community and soil nutrients among three typical shrubby grasslands in the alpine subhumid region of the Qinghai-Tibet Plateau, China. Front. Ecol. Evol. 2022, 10, 1068200. [Google Scholar] [CrossRef]
- Ding, L.; Wang, P.; Zhang, W.; Zhang, Y.; Li, S.; Wei, X.; Chen, X.; Zhang, Y.; Yang, F. Shrub encroachment shapes soil nutrient concentration, stoichiometry and carbon storage in an abandoned subalpine grassland. Sustainability 2019, 11, 1732. [Google Scholar] [CrossRef]
- Zhao, J.; Adu, B.; Wang, J.; Fan, Y. Assessing Shrub Patch Characteristics and Soil Nutrient Distribution Patterns of Four Typical Alpine Shrub Plants in the Eastern Qilian Mountains. Sustainability 2024, 16, 1547. [Google Scholar] [CrossRef]
- Ma, J.; Feng, Q.; Li, G.; Liu, W.; Chen, P.; Li, N.; Qian, W.; Teng, Y.; Li, X.; Li, J. Evaluation of Soil Fertility in Alpine Shrub Communities of the Qilian Mountains, Northwest China. Diversity 2025, 17, 175. [Google Scholar] [CrossRef]
- Ren, X.; Xu, E.; Smith, C.K.; Vrahnakis, M.; Jing, W.; Zhao, W.; Wang, R.; Jia, X.; Yan, C.; Liu, R. Changes in Surface Runoff and Temporal Dispersion in a Restored Montane Watershed on the Qinghai–Tibetan Plateau. Land 2024, 13, 583. [Google Scholar] [CrossRef]
- Chinese Society of Soil Science. Soil Agricultural Chemistry Analysis Methods; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Zhang, W.; Xu, B. Forest Soil Analysis Methods; Standards Press of China: Beijing, China, 1999. [Google Scholar]
- Smith, B.F.L.; Bain, D.C. A sodium hydroxide fusion method for the determination of total phosphate in soils. Commun. Soil Sci. Plant Anal. 1982, 13, 185–190. [Google Scholar] [CrossRef]
- Ma, J.; Liu, X.; Li, G. Evaluation of soil fertility quality of Qinghai spruce forest in the middle section of Qilian Mountains. Arid. Zone Geogr. 2019, 42, 1368–1377. [Google Scholar]
- Zhao, W.; Lei, L.; Liu, X.; Jin, M.; Zhang, X.; Jing, W. Study on the physical and chemical properties of soil in Picea crassifolia forests in the eastern section of the Qilian Mountains. Bull. Soil Water Conserv. 2011, 31, 72–75. [Google Scholar]
- Liu, X.; Zhao, W.; Zhang, X.; Jing, W.; Fan, L. Characteristics of soil nutrient and pH changes in Qinghai spruce forest in the Pailugou watershed of Qilian Mountains. Arid. Zone Res. 2013, 30, 1013–1020. [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Drewnik, M.; Musielok, Ł.; Stolarczyk, M.; Mitka, J.; Gus, M. Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. CATENA 2016, 147, 167–176. [Google Scholar] [CrossRef]
- Fan, Q.; Yang, Y.; Geng, Y.; Wu, Y.; Niu, Z. Biochemical composition and function of subalpine shrubland and meadow soil microbiomes in the Qilian Mountains, Qinghai–Tibetan plateau, China. PeerJ 2022, 10, e13188. [Google Scholar] [CrossRef]
- Huo, H.; Feng, Q.; Su, Y. Shrub communities and environmental variables responsible for species distribution patterns in an alpine zone of the Qilian Mountains, northwest China. J. Mt. Sci. 2015, 12, 166–176. [Google Scholar] [CrossRef]
- Broadbent, A.A.; Bahn, M.; Pritchard, W.J.; Newbold, L.K.; Goodall, T.; Guinta, A.; Snell, H.S.; Cordero, I.; Michas, A.; Grant, H.K.; et al. Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecol. Lett. 2022, 25, 52–64. [Google Scholar] [CrossRef]
- Bühlmann, T.; Körner, C.; Hiltbrunner, E. Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation. Ecosystems 2016, 19, 968–985. [Google Scholar] [CrossRef]
- Cannone, N.; Guglielmin, M.; Casiraghi, C.; Malfasi, F. Salix shrub encroachment along a 1000 m elevation gradient triggers a major ecosystem change in the European Alps. Ecography 2022, 2022. [Google Scholar] [CrossRef]
- Zhang, D. Characteristics of soil fertility and the relationship between fertility factors in the alpine grassland of the Qilian Mountains. Acta Pratacult. Sin. 2002, 11, 76–79. [Google Scholar]
- Lü, S.; Li, X.; Li, W. Analysis of soil nutrient characteristics at different elevations in the Niubeiliang Nature Reserve. J. Northwest AF Univ. 2013, 41, 161–168. [Google Scholar]
- Jiang, H.; Li, M.; Wang, Q. Study on soil nutrient status under different vegetation in the eastern section of the Qilian Mountains. Res. Soil Water Conserv. 2011, 18, 166–170. [Google Scholar]
- Song, X.; Shang, Z.; Li, X. Characteristics of soil phosphorus and its influencing factors at different elevational gradients on the west slope of Helan Mountain. Pratacult. Sci. 2015, 32, 1054–1060. [Google Scholar]
- Aziz, M.A.; Zargar, M.Y.; Masoodi, N.A.; Khan, M.A. Leaf litter decomposition and nutrient release in Salix spp under temperate conditions of Kashmir valley (India). J. Hortic. For. Biotechnol. 2011, 15, 179–189. [Google Scholar]
- He, J.L.; Li, X.G. Potentilla fruticosa has a greater capacity to translocate phosphorus from the lower to upper soils than herbaceous grasses in an alpine meadow. Agric. Ecosyst. Environ. 2016, 228, 19–29. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, B.; Yang, Z.; Gao, C.; Zhang, Y.; Zhang, L. Nutritional characteristics of Caragana jubata shrub and distribution patterns of soil nutrients in Luya Mountain. Chin. J. Appl. Ecol. 2006, 17, 2287–2291. [Google Scholar]
- Li, P.; Krüsi, B.; Li, S.; Cai, X.; Yu, F. Facilitation associated with three contrasting shrub species in heavily grazed pastures on the eastern Tibetan Plateau. Community Ecol. 2011, 12, 1–8. [Google Scholar] [CrossRef]
- Rhode, D.; Madsen, D.B.; Jeffrey Brantingham, P.; Dargye, T. Yaks, yak dung, and prehistoric human habitation of the Tibetan Plateau. Dev. Quat. Sci. 2007, 9, 205–224. [Google Scholar] [CrossRef]
- Baranova, A.; Schickhoff, U.; Wang, S.; Jin, M. Mountain pastures of Qilian Shan: Plant communities, grazing impact and degradation status. Hacquetia 2016, 15, 21–35. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Wang, W.; Zhou, H.; Xue, Y.; Xu, J.; Xue, P.; Yan, H. Effects of Different Grazing Disturbances on the Plant Diversity and Ecological Functions of Alpine Grassland Ecosystem on the Qinghai-Tibetan Plateau. Front. Plant Sci. 2021, 12, 765070. [Google Scholar] [CrossRef]
Plot ID | Vegetation | Elevation Above Sea Level (m) | Aspect (°) | Slope Gradient (%) | Stem Count | Mean Height (m) |
---|---|---|---|---|---|---|
GM1 GM2 GM3 | Potentilla fruticosa | 3700 | 5 | 36 | 62 | 0.56 |
Salix gilashanica | 123 | 0.48 | ||||
Caragana jubata | 165 | 0.36 | ||||
Spiraea alpina | 42 | 0.50 | ||||
GM4 GM5 GM6 | Potentilla fruticosa | 3600 | 330 | 37 | 65 | 0.54 |
Salix gilashanica | 120 | 0.46 | ||||
Caragana jubata | 88 | 0.27 | ||||
Spiraea alpina | 29 | 0.52 | ||||
GM7 GM8 GM9 | Potentilla fruticosa | 3500 | 50 | 35 | 43 | 0.64 |
Salix gilashanica | 28 | 0.85 | ||||
Caragana jubata | 60 | 0.35 | ||||
Spiraea alpina | 17 | 0.44 | ||||
GM10 GM11 GM12 | Potentilla fruticosa | 3400 | 35 | 29 | 58 | 0.53 |
Salix gilashanica | 42 | 1.10 | ||||
Caragana jubata | 107 | 0.56 | ||||
Spiraea alpina | 28 | 0.95 | ||||
GM13 GM14 GM15 | Potentilla fruticosa | 3300 | 350 | 34 | 68 | 0.58 |
Salix gilashanica | 48 | 1.05 | ||||
Caragana jubata | 81 | 0.59 | ||||
Spiraea alpina | 28 | 0.76 |
Soil Property | SOM | pH | TN | TP | TK | AP | AK |
---|---|---|---|---|---|---|---|
p-value (elevation) | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | 0.9 | 0.9 |
p-value (depth) | 0.5 | 0.5 | 0.2 | 0.6 | 0.9 | 0.09 | ≤0.01 |
Elevation (m) | SOM (g kg−1) | pH | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|
3700 | 183 ± 2.55 a | 7.3 ± 0.04 ac | 7.1 ± 0.19 a | 0.7 ± 0.00 a | 18.1 ± 0.29 a | 12.1 ± 1.31 a | 92.0 ± 17.8 a |
3600 | 172 ± 3.00 bc | 7.4 ± 0.04 a | 6.9 ± 0.06 ab | 0.6 ± 0.02 a | 19.7 ± 0.25 b | 11.7 ± 0.53 a | 97.8 ± 4.95 a |
3500 | 185 ± 2.63 a | 7.1 ± 0.04 bc | 7.2 ± 0.33 a | 0.6 ± 0.01 b | 18.2 ± 0.15 a | 12.7 ± 1.96 a | 98.6 ± 2.95 a |
3400 | 179 ± 0.36 ab | 7.4 ± 0.11 a | 6.1 ± 0.13 bc | 0.5 ± 0.00 c | 18.1 ± 0.25 a | 11.9 ± 1.09 a | 95.9 ± 4.18 a |
3300 | 165 ± 2.94 c | 7.8 ± 0.07 d | 5.6 ± 0.61 c | 0.6 ± 0.02 b | 18.4 ± 0.44 a | 11.1 ± 0.81 a | 94.8 ± 5.55 a |
Soil Depth/cm | SOM (g kg−1) | pH | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|
0–10 | 182 ± 3.81 a | 7.3 ± 0.11 a | 7.1 ± 0.34 a | 0.6 ± 0.02 a | 18.5 ± 0.53 a | 13.6 ± 1.23 a | 115 ± 6.48 a |
10–20 | 176 ± 4.12 a | 7.4 ± 0.12 a | 6.7 ± 0.23 a | 0.6 ± 0.02 a | 18.5 ± 0.33 a | 12.5 ± 0.67 a | 96.7 ± 1.00 ab |
20–30 | 175 ± 3.77 a | 7.5 ± 0.11 a | 6.5 ± 0.22 a | 0.6 ± 0.02 a | 18.3 ± 0.42 a | 10.3 ± 0.79 a | 86.2 ± 4.87 b |
30–40 | 175 ± 3.88 a | 7.5 ± 0.15 a | 6.0 ± 0.59 a | 0.6 ± 0.03 a | 18.6 ± 0.28 a | 11.2 ± 0.86 a | 85.1 ± 5.59 b |
Mean | 177 ± 1.92 | 7.4 ± 0.06 | 6.6 ± 0.19 | 0.60 ± 0.01 | 18.5 ± 0.19 | 11.9 ± 0.51 | 95.8 ± 3.59 |
SOM | pH | TN | TP | TK | AP | AK | |
---|---|---|---|---|---|---|---|
SOM | 1.000 | ||||||
pH | −0.774 ** | 1.000 | |||||
TN | 0.732 ** | −0.762 ** | 1.000 | ||||
TP | 0.142 | −0.269 | 0.406 | 1.000 | |||
TK | −0.395 | 0.123 | −0.159 | 0.282 | 1.000 | ||
AP | 0.465 * | −0.268 | 0.511 * | −0.057 | −0.163 | 1.000 | |
AK | 0.334 | −0.250 | 0.332 | −0.189 | 0.124 | 0.539 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ren, X.; Xu, E.; Evans, A.M.; Jing, W.; Wang, R.; Jia, X.; Bi, M.; Amoah, I.D.; Pohlmann, M.; et al. Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau. Soil Syst. 2025, 9, 95. https://doi.org/10.3390/soilsystems9030095
Zhang J, Ren X, Xu E, Evans AM, Jing W, Wang R, Jia X, Bi M, Amoah ID, Pohlmann M, et al. Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau. Soil Systems. 2025; 9(3):95. https://doi.org/10.3390/soilsystems9030095
Chicago/Turabian StyleZhang, Juan, Xiaofeng Ren, Erwen Xu, Alexander Myrick Evans, Wenmao Jing, Rongxin Wang, Xin Jia, Minhui Bi, Isaac Dennis Amoah, Michael Pohlmann, and et al. 2025. "Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau" Soil Systems 9, no. 3: 95. https://doi.org/10.3390/soilsystems9030095
APA StyleZhang, J., Ren, X., Xu, E., Evans, A. M., Jing, W., Wang, R., Jia, X., Bi, M., Amoah, I. D., Pohlmann, M., Mecha, C., & Smith, C. K. (2025). Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau. Soil Systems, 9(3), 95. https://doi.org/10.3390/soilsystems9030095