Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data
Abstract
1. Introduction
2. Materials and Methods
2.1. An Overview of the Study Area
2.2. Experimental Design
2.3. UAV Multispectral Remote Sensing Data Acquisition
2.3.1. Multispectral Remote Sensing Image Acquisition
2.3.2. Multispectral Remote Sensing Image Processing
2.3.3. Removal of Soil Background Noise
2.4. Ground Data Acquisition and Processing
2.5. Spectral Index Selection and Calculation
2.6. Soil Moisture Content Inversion Model Construction
2.7. Data Analysis
2.7.1. Pearson Correlation Analysis
2.7.2. Soil Moisture Content Inversion and Accuracy Evaluation
3. Results
3.1. Analysis of Correlations Between Spectral Reflectance and Spectral Index and Soil Moisture Content
3.2. Soil Moisture Content Inversion Model Based on Spectral Reflectance
3.3. Spectral Index-Based Soil Moisture Content Inversion Model
3.4. Comprehensive Evaluation of the Model
4. Discussion
4.1. The Effects of the Input Variables on the Accuracy of Soil Moisture Content Inversion
4.2. The Influence of Soil Background on the Accuracy of Soil Moisture Content Inversion
4.3. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Q.; Liao, K.H.; Lai, X.M.; Liu, Y.; Lv, L.G. Research progress on multi-scale soil moisture monitoring and simulation in basins. Prog. Geogr. 2019, 38, 1150–1158. [Google Scholar] [CrossRef]
- Xue, M.; Wei, B.; Li, J.; Chen, C.H.; Huang, M.H.; Zou, L.X. Research on soil moisture prediction method based on improved BP neural network and support vector machine. Chin. J. Soil Sci. 2021, 52, 793–800. [Google Scholar] [CrossRef]
- Xu, C.H. Modelling Research on Soil Water Content Diagnosis Based on Thermal Infrared Remote Sensing from UAV. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2020. [Google Scholar]
- Zhang, Y.; Yang, X.; Tian, F. Study on Soil Moisture Status of Soybean and Corn across the Whole Growth Period Based on UAV Multimodal Remote Sensing. Remote Sens. 2024, 16, 3166. [Google Scholar] [CrossRef]
- Li, Z.J.; Chen, G.F.; Zhi, J.W.; Xiang, Y.Z.; Li, D.M.; Zhang, F.C.; Chen, J.Y. Modelling soybean soil water content estimation by integrating UAV spectral information and texture features. J. Agric. Mach. 2024, 55, 347–357. [Google Scholar] [CrossRef]
- Shi, H.; Liu, Z.; Li, S.; Jin, M.; Tang, Z.; Sun, T.; Liu, X.; Li, Z.; Zhang, F.; Xiang, Y. Monitoring Soybean Soil Moisture Content Based on UAV Multispectral and Thermal-Infrared Remote-Sensing Information Fusion. Plants 2024, 13, 2417. [Google Scholar] [CrossRef]
- Fu, P.F.; Yang, X.J.; Su, Z.C.; Qu, Y.P.; Ma, M.M. Prediction of soil moisture content based on ensemble learning: A case study of western Liaoning Province. Soils 2023, 55, 671–681. [Google Scholar] [CrossRef]
- Yang, W.J.; Li, F.H.; Kang, D.K.; Duan, W.C.; Zhao, W.J. Research on multispectral soil water content inversion model based on the screening of sensitive variables. Water Sav. Irrig. 2025, 45–54. [Google Scholar] [CrossRef]
- Li, X.; Yan, J.; Huang, C.; Ma, W.; Guo, Z.; Li, J.; Yao, X.; Da, Q.; Cheng, K.; Yang, H. Estimation of Silage Maize Plant Moisture Content Based on UAV Multispectral Data and Ensemble Learning Methods. Agriculture 2025, 15, 746. [Google Scholar] [CrossRef]
- Liu, Z.F.; Lei, H.C.; Sheng, H.Y. Remote sensing inversion of soil nutrients in cultivated land of Huangshui River Basin based on XGBoost model. J. Arid Land Geogr. 2023, 46, 1643–1653. [Google Scholar] [CrossRef]
- Li, P.X.; Liu, Z.Q.; Yang, J.; Sun, W.D.; Li, M.Y.; Ren, Y.X. Retrieval of soil moisture from polarimetric SAR data using random forest regression. J. Wuhan Univ. (Inf. Sci. Ed.) 2019, 44, 405–412. [Google Scholar]
- Gao, Y.R. Modelling of Soil Water Content in Bare Soil by UAV Remote Sensing Inversion Under Different Loamy Soil Environments. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2023. [Google Scholar]
- Liu, Q. Research on Soil Water Content Monitoring Model of Summer Maize Root Zone Based on UAV Remote Sensing. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2023. [Google Scholar]
- Vahidi, M.; Shaffan, S.; Frame, W.H. Precision Soil Moisture Monitoring Through Drone-Based Hyperspectral Imaging and PCA-Driven Machine Learning. Sensors 2025, 25, 782. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Zhang, X.F.; Guo, Y.; Yang, X.Z.; Zhang, H.L.; Liu, T.; Wei, P.P.; Wang, L.G. Inversion of soil water content in the early root zone of maize based on soil background rejection. J. Irrig. Drain. 2025, 1–9. [Google Scholar] [CrossRef]
- Almeida-Naunay, A.F.; Tarquis, A.M.; Lopez-Herrera, J.; Pérez-Martín, E.; Pancorbo, J.L.; Raya-Sereno, M.D.; Quemada, M. Optimization of soil background removal to improve the prediction of wheat traits with UAV imagery. Comput. Electron. Agric. 2023, 205, 107559. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J.Y.; Zhou, Y.C.; Cui, W.X.; Yang, N. Inversion of soil water content in the root zone of maize by thermal infrared remote sensing from unmanned aerial vehicle. Water Sav. Irrig. 2021, 3, 12–18. [Google Scholar]
- Zhang, Z.T.; Zhou, Y.C.; Yang, S. Remote sensing inversion method of soil water content in the root zone of winter wheat without soil background. J. Agric. Mach. 2021, 52, 197–207. [Google Scholar]
- Da, Q.; Yan, J.; Li, G.; Guo, Z.; Li, H.; Wang, W.; Li, J.; Ma, W.; Li, X.; Cheng, K. Inversion of Soil Moisture Content in Silage Corn Root Zones Based on UAV Remote Sensing. Agriculture 2025, 15, 331. [Google Scholar] [CrossRef]
- Wang, J.E.; Xiao, Y.; Wang, Z.H.; Zhang, C.J.; Wang, Y.; Bai, X.Q.; Yu, G.D.; Zhang, Z.T. Study on the effect of removing soil background on soil water content in the root zone of inverted maize. Water Sav. Irrig. 2021, 12, 81–86+93. [Google Scholar]
- Dhanya, V.G.; Subeesh, A.; Kushwaha, N.L.; Vishwakarma, D.K.; Kumar, T.N.; Ritika, G.; Singh, A.N. Deep learning based computer vision approaches for smart agricultural applications. Artif. Intell. Agric. 2022, 6, 211–229. [Google Scholar] [CrossRef]
- Cetin, N.; Kavuncuoglu, E.; Buzpinar, M.A.; Gunaydin, S.; Kaplan, S. Performance comparison of deep and transfer learning models for smart soil texture classification. Comput. Electron. Agric. 2025, 237, 110722. [Google Scholar] [CrossRef]
- Xu, J.Y.; Shi, X.L.; Li, X.; Zhang, Y. Analysis of research status on mixed sowing of alfalfa in China. Mod. Agric. Res. 2024, 30, 107–111. [Google Scholar]
- He, Y.L.; Yang, Z.Z.; Yang, X.X.; Zhang, C.P.; Wu, Z.F.; Chen, X.J.; Wang, Z.L.; Dong, Q.M. Comprehensive evaluation of production performance and nutritional quality of 12 Medicago sativa varieties in Jiuquan irrigation district of Gansu. Pratacultural Sci. 1–14.
- Niu, Y.X.; Zhang, L.Y.; Han, W.T. Winter wheat cover extraction method based on UAV remote sensing and vegetation index. J. Agric. Mach. 2018, 49, 212–221. [Google Scholar] [CrossRef]
- Tian, Z.K.; Fu, Y.Y.; Liu, S.H.; Liu, F. A rapid classification method for crops based on low-altitude remote sensing by UAV. Trans. Chin. Soc. Agric. Eng. 2013, 29, 109–116+295. [Google Scholar]
- Houborg, R.; Fisher, J.B.; Skidmore, A.K. Advances in remote sensing of vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 1–6. [Google Scholar] [CrossRef]
- Yang, W.P.; Li, C.Z.; Yang, H.; Yang, G.J.; Feng, H.K.; Han, L.; Niu, Q.L.; Han, D. Monitoring of maize canopy temperature based on UAV thermal infrared and digital images. Trans. Chin. Soc. Agric. Eng. 2018, 34, 68–75+301. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.P.; Zhang, L.P.; Deng, M.X.; Qin, Z.H.; Zhao, S.H.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. Interdiscip. J. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Wang, Y.F. Research on Soil Water Content Inversion Model Based on UAV Multispectral Remote Sensing. Master’s Thesis, Lanzhou University of Science and Technology, Lanzhou, China, 2023. [Google Scholar]
- Birth, G.S.; Mcvey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Zhang, C.C.; Wang, R.; Hou, J.T.; Jiang, M.L.; Zhu, X.X. Inversion of soil water content based on multispectral remote sensing by unmanned aerial vehicle with feature variable screening. China Rural Water Hydropower 2024, 5, 147–154. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Fruits, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Tan, C.X.; Xu, C.H.; Chen, S.B.; Han, W.T.; Li, Y. Research on soil water content in the root zone of maize based on multi-spectral remote sensing by unmanned aerial vehicle. J. Agric. Mach. 2019, 50, 246–257. [Google Scholar]
- Hao, J.Y. Research on Soil Water Content Detection Based on UAV Multispectral Imagery. Master’s Thesis, Shandong Agricultural University, Shandong, China, 2023. [Google Scholar]
- Ali, M.; Prasad, R.; Xiang, Y.; Yaseen, Z.M. Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. J. Hydrol. 2020, 584, 124647. [Google Scholar] [CrossRef]
- Dou, J.L.; Li, D.; Song, J.; Wang, Q.W.; Shen, T. A microstrip antenna size optimisation method based on KNN and ANN algorithms. J. Terahertz Sci. Electron. Inf. 2025, 23, 61–65. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Li, J.; Wang, J.; Xu, H.; Liu, T.; Wang, J. Estimating Maize Leaf Water Content Using Machine Learning with Diverse Multispectral Image Features. Plants 2025, 14, 973. [Google Scholar] [CrossRef]
- Yang, L.N.; Yao, K.X.; He, Y.; Xi, L.P.; Liu, W.C.; Zhao, J.L. Research on road condition sensing method based on SmoteEnn_XGBoost model. Intell. Comput. Appl. 2021, 11, 137–142+147. [Google Scholar]
- Kasim, N.; Sawut, R.; Shi, Q.; Maihemuti, B. Estimation of Soil Organic Matter Content Based on Optimized Spectral Index. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 155–163. [Google Scholar] [CrossRef]
- Jin, Y.H.; Wu, X.M.; Zhen, W.C.; Cui, X.T.; Chen, L.; Qie, Z.H. Unmanned aerial vehicle multispectral remote sensing inversion of soil water content based on the optimisation of spectral information window scale at sampling points. J. Agric. Mach. 2024, 55, 316–327. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Wang, H.F.; Han, W.T.; Bian, J.; Chen, S.B.; Cui, T. Research on soil water content inversion based on multi-spectral remote sensing by UAV. J. Agric. Mach. 2018, 49, 173–181. [Google Scholar] [CrossRef]
- Yang, J.B.; Wang, B.; Huang, J.L.; Zhang, Z.T.; Zou, Y.C.; Jiang, W.H. UAV multispectral remote sensing to monitor soil water content in root zone of winter wheat during nodulation. Water Sav. Irrig. 2019, 10, 6–10. [Google Scholar]
- Wang, Z.G.; Huang, Z.Q.; He, C.L. Hyperspectral inversion study of water content in sand ginger black soil based on integrated learning. J. Agric. Resour. Environ. 2023, 40, 1426–1434. [Google Scholar] [CrossRef]
- Li, X.S.; Jia, Z.F.; He, J.Y.; Gao, W.; Pan, S.J.; Niu, Z.J.; Zhang, D.Y. A time-series inversion method of soil moisture in the root domain of kiwifruit based on BiLSTM. J. Agric. Eng. 2025, 41, 112–119. [Google Scholar] [CrossRef]
- Zang, J.; Deng, J.T.; Ni, G.W.; Niu, Z.J.; Pan, S.J.; Han, W.T. Study on the influencing factors of soil moisture inversion in kiwifruit root zone based on vegetation index. J. Agric. Mach. 2022, 53, 223–230. [Google Scholar] [CrossRef]
- Mao, Z.H.; Deng, L.; Sun, J.; Zhang, A.W.; Chen, X.Y.; Zhao, Y. Application of UAV multispectral remote sensing in maize canopy chlorophyll prediction. Spectrosc. Spectr. Anal. 2018, 38, 2923–2931. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Cinat, P.; Di Gennaro, S.F.; Berton, A.; Matese, A. Comparison of unsupervised algorithms for vineyard canopy segmentation from UAV multispectral images. Remote Sens. 2019, 11, 1023–1046. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating soil moisture content under maize coverage using UAV multimodal data by machine learning algorithms. J. Hydrol. 2023, 617, 129086. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, N.; Guo, L.; Jin, H.; Jin, X.; Jiang, S.; Wu, Z.; Lv, M.; Chen, F.; Liu, Q.; et al. Enhancing precision of root-zone soil moisture content prediction in a kiwifruit orchard using UAV multi-spectral image features and ensemble learning. Comput. Electron. Agric. 2024, 221, 108943. [Google Scholar] [CrossRef]
Index | Numeric Value | Unit |
---|---|---|
dry bulk density | 1.35 | g cm−3 |
field capacity | 24.1 | % |
PH | 8.11 | |
organic matter | 6.15 | g kg−1 |
total nitrogen | 1.58 | g kg−1 |
total phosphorus | 1.36 | g kg−1 |
total potassium | 34.16 | g kg−1 |
fast-acting nitrogen | 74.22 | mg kg−1 |
fast-acting phosphorus | 32.99 | mg kg−1 |
fast-acting potassium | 147.80 | mg kg−1 |
precipitation | 276 | mm |
average daily temperature | 18.8 | °C |
Spectral Band | Center Wavelength (nm) | Bandwidth (nm) | Reflectance of Diffuse Reflector (%) |
---|---|---|---|
Blue | 450 | 35 | 60 |
Green | 555 | 25 | 60 |
Red | 660 | 20 | 60 |
Red edge 1 | 720 | 10 | 60 |
Red edge 2 | 750 | 15 | 60 |
NIR | 840 | 35 | 60 |
Spectral Indices | Acronyms | Formulation | Reference |
---|---|---|---|
Normalized difference vegetation index | NDVI | (NIR − R)/(NIR + R) | [30] |
Ratio vegetation index | RVI | NIR/R | [31] |
Difference vegetation index | DVI | NIR − R | [32] |
Green index | GI | G/R | [33] |
Simple ratio pigment index | SRPI | B/R | [34] |
Red-to-green ratio index | RGRI | R/G | [35] |
Model | Soil Background | Modeling Set | Validation Set | |||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |||
Spectral reflectance | KNN | unremoved | 0.783 | 0.017 | 0.013 | 0.770 | 0.023 | 0.019 |
removed | 0.714 | 0.022 | 0.014 | 0.692 | 0.021 | 0.015 | ||
RFR | unremoved | 0.768 | 0.019 | 0.014 | 0.762 | 0.021 | 0.021 | |
removed | 0.829 | 0.015 | 0.010 | 0.710 | 0.027 | 0.017 | ||
RR | unremoved | 0.463 | 0.033 | 0.026 | 0.465 | 0.020 | 0.016 | |
removed | 0.422 | 0.034 | 0.025 | 0.442 | 0.021 | 0.017 | ||
XG-Boost | unremoved | 0.884 | 0.014 | 0.014 | 0.812 | 0.017 | 0.013 | |
removed | 0.867 | 0.015 | 0.015 | 0.803 | 0.018 | 0.018 | ||
Spectral index | KNN | unremoved | 0.606 | 0.028 | 0.017 | 0.535 | 0.021 | 0.017 |
removed | 0.446 | 0.033 | 0.022 | 0.463 | 0.024 | 0.023 | ||
RFR | unremoved | 0.772 | 0.020 | 0.017 | 0.632 | 0.020 | 0.018 | |
removed | 0.737 | 0.020 | 0.018 | 0.628 | 0.026 | 0.021 | ||
RR | unremoved | 0.255 | 0.039 | 0.031 | 0.366 | 0.021 | 0.018 | |
removed | 0.253 | 0.039 | 0.025 | 0.351 | 0.024 | 0.022 | ||
XG-Boost | unremoved | 0.613 | 0.026 | 0.013 | 0.503 | 0.027 | 0.016 | |
removed | 0.568 | 0.023 | 0.017 | 0.460 | 0.037 | 0.025 |
Model | Soil Background | p-Value | |
---|---|---|---|
Spectral reflectance | KNN | unremoved | 0.00002 |
removed | 0.0002 | ||
RFR | unremoved | 0.00003 | |
removed | 0.00002 | ||
RR | unremoved | 0.002 | |
removed | 0.00003 | ||
XG-Boost | unremoved | 0.000001 | |
removed | 0.000001 | ||
Spectral index | KNN | unremoved | 0.00009 |
removed | 0.0005 | ||
RFR | unremoved | 0.00002 | |
removed | 0.000002 | ||
RR | unremoved | 0.00002 | |
removed | 0.000008 | ||
XG-Boost | unremoved | 0.000003 | |
removed | 0.000001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Jiang, Y.; Yu, W.; Qi, G.; Kang, Y.; Yin, M.; Ma, Y.; Wang, Y.; Zhu, J.; Wang, Y.; et al. Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data. Soil Syst. 2025, 9, 98. https://doi.org/10.3390/soilsystems9030098
Chen J, Jiang Y, Yu W, Qi G, Kang Y, Yin M, Ma Y, Wang Y, Zhu J, Wang Y, et al. Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data. Soil Systems. 2025; 9(3):98. https://doi.org/10.3390/soilsystems9030098
Chicago/Turabian StyleChen, Jinxi, Yuanbo Jiang, Wenjing Yu, Guangping Qi, Yanxia Kang, Minhua Yin, Yanlin Ma, Yayu Wang, Jiapeng Zhu, Yanbiao Wang, and et al. 2025. "Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data" Soil Systems 9, no. 3: 98. https://doi.org/10.3390/soilsystems9030098
APA StyleChen, J., Jiang, Y., Yu, W., Qi, G., Kang, Y., Yin, M., Ma, Y., Wang, Y., Zhu, J., Wang, Y., & Li, B. (2025). Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data. Soil Systems, 9(3), 98. https://doi.org/10.3390/soilsystems9030098