Next Issue
Volume 8, September
Previous Issue
Volume 8, March
 
 

Ceramics, Volume 8, Issue 2 (June 2025) – 50 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 4058 KiB  
Article
Effect of NiO and ZnO Sintering Aids on Sinterability and Electrochemical Performance of BCZY Electrolyte
by Saheli Biswas, Sareh Vafakhah, Gurpreet Kaur, Aaron Seeber and Sarbjit Giddey
Ceramics 2025, 8(2), 78; https://doi.org/10.3390/ceramics8020078 - 19 Jun 2025
Abstract
Proton-conducting ceramics have gained significant attention in various applications. Yttrium-doped barium cerium zirconate (BaCexZr1−x−yYyO3–δ) is the state-of-the-art proton-conducting electrolyte but poses a major challenge because of its high sintering temperature. Sintering aids have been found [...] Read more.
Proton-conducting ceramics have gained significant attention in various applications. Yttrium-doped barium cerium zirconate (BaCexZr1−x−yYyO3–δ) is the state-of-the-art proton-conducting electrolyte but poses a major challenge because of its high sintering temperature. Sintering aids have been found to substantially reduce the sintering temperature of BaCexZr1−x−yYyO3–δ. This work evaluates, for the first time, the impact of NiO and ZnO addition in three different loadings (1, 3, 5 mol%), via wet mechanical mixing, on the sintering and electrical properties of a low cerium-containing composition, BaCe0.2Zr0.7Y0.1O3–δ (BCZY). The sintering temperature remarkably dropped from 1600 °C (for pure BCZY) to 1350 °C (for NiOBCZY and ZnOBCZY) while achieving > 95% densification. In general, ZnO gave higher densification than NiO, the highest being 99% for 5 mol% ZnOBCZY. Dilatometric studies revealed that ZnOBCZY attained complete shrinkage at temperatures lower than NiOBCZY. Up to 650 °C, ZnO showed higher conductivity compared to NiO for the same loading, mostly due to a higher extent of Zn incorporation inside the BCZY lattice as seen from the BCZY peak shift to a lower Bragg’s angle in X-ray diffractograms, and the bigger grain sizes of ZnO samples compared to NiO captured in scanning electron microscopy. At any temperature, the variation in conductivity as a function of sintering aid concentration followed the orders 1 mol% > 3 mol% > 5 mol (for ZnO) and 1 mol% < 3 mol%~5 mol% (for NiO). This difference in conductivity trends has been attributed to the fact that Zn fully dissolves into the BCZY matrix, unlike NiO which mostly accumulates at the grain boundaries. At 600 °C, 1 mol% ZnOBCZY showed the highest conductivity of 5.02 mS/cm, which is, by far, higher than what has been reported in the literature for a Ce/Zr molar ratio <1. This makes ZnO a better sintering aid than NiO (in the range of 1 to 5 mol% addition) in terms of higher densification at a sintering temperature as low as 1350 °C, and higher conductivity. Full article
Show Figures

Graphical abstract

13 pages, 3918 KiB  
Article
Fayalite-Based Geopolymer Foam
by Aleksandar Nikolov, Mihail Tarassov, Ivan Rostovsky, Miryana Raykovska, Ivan Georgiev and Kinga Korniejenko
Ceramics 2025, 8(2), 77; https://doi.org/10.3390/ceramics8020077 - 19 Jun 2025
Abstract
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water [...] Read more.
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water to solid ratio, followed by testing their physical and mechanical properties. The phase composition and microstructure of the obtained geopolymer foams were examined using powder XRD, Micro-CT and SEM. The geopolymer foams at optimal water to solid ratio (0.15) demonstrated 73.2% relative porosity, 0.92 g/cm3 apparent density and 1.3 MPa compressive strength. The use of an air-entraining admixture improved compressive strength to 2.8 MPa but lowered the relative porosity to 64.5%. Real-size lightweight panel (300 × 300 × 30 mm) specimens were prepared to measure thermal conductivity coefficient (0.243 W/mK) and evaluate size effect and the reaction to direct fire. This study demonstrates the successful preparation of geopolymer foam products containing 81% fayalite slag, highlighting its potential as a lightweight, insulating and fire-resistant material for sustainable construction applications. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

18 pages, 2726 KiB  
Article
Decarbonisation of Earthenware Ceramic Production Using Bivalve Shell Waste
by Inês Silveirinha Vilarinho, Miguel Ferreira, Claúdia Miranda, José Silva, Sofia Batista, Maria Clara Gonçalves and Maria Paula Seabra
Ceramics 2025, 8(2), 76; https://doi.org/10.3390/ceramics8020076 - 19 Jun 2025
Abstract
To mitigate CO2 emissions from raw material decomposition and reduce the consumption of natural resources, this study investigated the use of mussel and oyster shell waste as secondary raw materials in earthenware production. Mineralogical, chemical and thermal analyses confirmed their suitability as [...] Read more.
To mitigate CO2 emissions from raw material decomposition and reduce the consumption of natural resources, this study investigated the use of mussel and oyster shell waste as secondary raw materials in earthenware production. Mineralogical, chemical and thermal analyses confirmed their suitability as sources of bio-calcite. Specimens incorporating various replacement levels (0–100%) showed no significant differences in key properties. Plates produced with mussel-derived bio-calcite in a pilot plant exhibited comparable properties to standard ceramics, demonstrating their industrial viability. CO2 emissions were reduced by 14% and 10% in mussel and oyster shell-based ceramics, respectively, potentially saving up to 53 kgCO2eq/t under the European Emissions Trading System, if the shells are classified as by-products. These findings demonstrated that bivalve shell waste can effectively replace mineral calcite in earthenware products, reducing CO2 emissions and virgin raw material consumption, diverting waste from landfills and promoting sustainability in the ceramic industry. Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
Show Figures

Figure 1

9 pages, 15356 KiB  
Article
Fabrication and Properties of ITTO Segments for Cylindrical Targets by Pressureless Oxygen Atmosphere Sintering Method
by Jiwen Xu, Fangzhou Wu, Yuan Yao, Ling Yang, Guisheng Zhu and Huarui Xu
Ceramics 2025, 8(2), 75; https://doi.org/10.3390/ceramics8020075 - 18 Jun 2025
Viewed by 35
Abstract
Cylindrical targets have a high utilization rate, but are difficult to manufacture. A large hollow ITTO segment with thin walls was prepared by cold isostatic pressure and two-stage sintering. The fabrication process yielded a segment with an outer diameter of 153 mm, an [...] Read more.
Cylindrical targets have a high utilization rate, but are difficult to manufacture. A large hollow ITTO segment with thin walls was prepared by cold isostatic pressure and two-stage sintering. The fabrication process yielded a segment with an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 700 mm, indicating a length to thickness ratio of up to 78. The dense and uniform green bodies ensure the achievement of high density and uniformity of the sintered body throughout its volume. The segment exhibited a high relative density of about 99.5% and a low resistivity of below 3.4 × 10−4 Ω·cm. The density and resistivity illustrate a minimal inhomogeneity along the length of the segment. The segment exhibits a cubic bixbyite phase and is characterized by densely packed fine grains with an average size of several microns. Therefore, these results establish a substantial foundation for the large-scale production of cylindrical ITTO segments. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

11 pages, 2677 KiB  
Article
Zirconium Nanostructures Obtained from Anodic Synthesis By-Products and Their Potential Use in PVA-Based Coatings
by Benjamín Valdez-Salas, Jorge Salvador-Carlos, Ernesto Alonso Beltrán-Partida, Jhonathan Castillo-Sáenz, Jimena Chairez-González and Mario Curiel-Álvarez
Ceramics 2025, 8(2), 74; https://doi.org/10.3390/ceramics8020074 - 18 Jun 2025
Viewed by 172
Abstract
Nanostructures obtained as a by-product of the electrochemical synthesis of ZrO2 nanotube membranes have scarcely received any attention despite their enormous potential. This is mainly due to their size properties, morphology, and composition. In the present work, these nanostructures are characterized, and [...] Read more.
Nanostructures obtained as a by-product of the electrochemical synthesis of ZrO2 nanotube membranes have scarcely received any attention despite their enormous potential. This is mainly due to their size properties, morphology, and composition. In the present work, these nanostructures are characterized, and their potential application as an additive in PVA-based coatings is analyzed. The characterization was performed by X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The results showed that the nanostructures consist of tubular fragments generated during the formation of the ZrO2 membrane, with a dimension of 626.74 nm in width, a length of 1906.39 nm, and a clear cubic structure. The ZrO2-PVA coating, which is prepared by using the spin coating technique, presented a uniform and homogenous particle distribution, which was later confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The optical transparency and thermal resistance were evaluated through UV-Vis spectroscopy and thermogravimetric analysis, showing that the incorporation of ZrO2 as an additive improved its UV absorption properties and thermal stability during the pyrolysis stage. The results suggest that the ZrO2 nanostructures enhance the thermal and protective properties of the PVA-based coatings by acting as physical barriers and stabilizers within the polymer matrix. Full article
Show Figures

Graphical abstract

15 pages, 2406 KiB  
Article
First Test and Characterizations on Urban Glass Waste with Waste-Derived Carbon Fiber Treated to Realize Foam Glass for Possible Construction Applications
by Zakim Hussain, Seyed Mostafa Nouri, Matteo Sambucci and Marco Valente
Ceramics 2025, 8(2), 73; https://doi.org/10.3390/ceramics8020073 - 17 Jun 2025
Viewed by 37
Abstract
Urban glass waste is a significant by-product of residential areas, while scrap carbon fiber is a prevalent industrial by-product. This study explores an innovative approach to valorize these materials by producing foam glass (FG) for versatile applications, particularly in construction. A key challenge [...] Read more.
Urban glass waste is a significant by-product of residential areas, while scrap carbon fiber is a prevalent industrial by-product. This study explores an innovative approach to valorize these materials by producing foam glass (FG) for versatile applications, particularly in construction. A key challenge in FG production is enhancing its properties to meet increasingly stringent application-specific standards. The properties of FG are intrinsically linked to its porous structure, which depends on factors such as the foaming process. The oxidation of carbon fibers at high temperatures can induce a foaming effect, creating a porous matrix in the glass. This research investigates the effect of powdered recycled carbon fiber (PRCF)—an alternative method for recovering waste carbon fiber as a foaming agent for FG. PRCF was added at concentrations of 0.5%, 1%, and 1.5% by mass relative to powdered waste glass. Increasing PRCF content enhanced foaming and improved porosity, with total porosity rising from 47.18% at 0.5% PRCF to 65.54% at 1.5% PRCF, accompanied by a 50% reduction in compressive strength and a 68% decrease in thermal conductivity. The results demonstrate the feasibility of large-scale FG production with enhanced properties, achieved without substantial additional investment and by recovering two waste materials. This process supports sustainable development by promoting waste valorization and advancing circular economy principles. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

37 pages, 8780 KiB  
Article
Sustainable Self-Healing Geopolymer Concrete Incorporating Recycled Plastic, Brick Waste, and Bacillus sphaericus
by Tamer I. Ahmed, Ahmed S. Rashed and Dina E. Tobbala
Ceramics 2025, 8(2), 72; https://doi.org/10.3390/ceramics8020072 - 17 Jun 2025
Cited by 1 | Viewed by 121
Abstract
This research aims to develop self-healing geopolymer concrete (SHG) to address the limitations of conventional repair methods, including reduced thermal conductivity and density, while promoting sustainable construction. The incorporation of the self-healing method (SHM), crushed brick (CB), and minced water bottles (F-PET) resulted [...] Read more.
This research aims to develop self-healing geopolymer concrete (SHG) to address the limitations of conventional repair methods, including reduced thermal conductivity and density, while promoting sustainable construction. The incorporation of the self-healing method (SHM), crushed brick (CB), and minced water bottles (F-PET) resulted in reduced thermal conductivity, maintenance costs, and environmental impact. This study investigated the effects of varying amounts of CB, F-PET, and SHM on several properties, including flowability, setting times, densities, ductility index (DI), and mechanical strengths, across 13 different mixtures. Additionally, water absorption (WA%), residual weight loss (WL%), and relative dynamic modulus of elasticity (RDME%) were assessed following freeze–thaw cycles, alongside SEM analysis and thermal transport measurements of the SHG mixtures. The inclusion of up to 50% CB enhanced density and thermal conductivity but negatively affected other properties. In contrast, incorporating 25% F-PET led to modest improvements in mechanical, thermal, and durability properties; however, it did not reduce density and thermal conductivity as effectively as CB. Among the three mixtures containing both CB and F-PET, the formulation with 37.5% CB and 12.5% F-PET exhibited the lowest density (1650 kg/m3) and thermal conductivity (1.083 W/m·K). The self-healing capacity of SHM was demonstrated through its ability to close cracks, facilitated by the deposition of CaCO3 under combined durability conditions. Incorporating 2%, 3%, and 4% SHM into the 37.5% CB and 12.5% F-PET mixture significantly improved key properties, including strength, water absorption, freeze–thaw resistance, SEM characteristics, density, and thermal conductivity. The addition of 4% SHM enhanced the mechanical performance of the geopolymer concrete (GVC) after 28 days, resulting in increases of 27% in compressive strength, 40.5% in tensile strength, 81% in flexural strength, and 61.6% in ductility index. Further, the inclusion of SHM improved density, reduced WA% and WL%, and enhanced RDME% after 300 freeze–thaw cycles. Specifically, thermal conductivity decreased from 1.8 W/m·K to 0.88 W/m·K, and density reduced from 2480 kg/m3 to 1760 kg/m3. Meanwhile, WA%, WL%, and RDME% improved from 3%, 4.5%, and 45% to 2%, 2.5%, and 50%, respectively. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire)
by Kouakou Modeste Koffi, Philippe Colomban, Christophe Petit and Kouakou Siméon Kouassi
Ceramics 2025, 8(2), 71; https://doi.org/10.3390/ceramics8020071 - 11 Jun 2025
Viewed by 602
Abstract
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a [...] Read more.
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a soda–potash–lime flux (three compositional groups). The remaining beads are typical lead-based glass. The Raman spectra of the alumina-rich beads are quite complex due to their glass–ceramic nature, combining features similar to the vitreous phase of porcelain glaze with the presence of various crystalline phases (quartz, wollastonite, calcium phosphate, calcite). Organic residues are also observed. Colors are primarily produced by transition metal ions, although some specific pigments have also been identified. These characteristics suggest that the alumina-rich beads were manufactured by pressing followed by sintering, as described in patents by Richard Prosser (1840, UK) and Jean Félix Bapterosse (1844, France). A comparison is made with beads from scrap piles at the site of the former Bapterosse factory in Briare, France. This process represents one of the earliest examples of replacing traditional glassmaking with a ceramic process to enhance productivity and reduce costs. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

11 pages, 1806 KiB  
Article
Enhanced Electrical Property and Thermal Stability in Lead-Free BNT–BT–BF Ceramics
by Kangle Zhou, Enxiang Hou, Yanfeng Qu, Yan Mu and Junjun Wang
Ceramics 2025, 8(2), 70; https://doi.org/10.3390/ceramics8020070 - 7 Jun 2025
Viewed by 584
Abstract
The synergistic combination of outstanding electrical properties and exceptional thermal stability holds significant implications for advancing piezoelectric ceramic applications. In this work, lead-free ((1−x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (x = 0.08, 0.10, 0.12)) ceramics were synthesized using a [...] Read more.
The synergistic combination of outstanding electrical properties and exceptional thermal stability holds significant implications for advancing piezoelectric ceramic applications. In this work, lead-free ((1−x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (x = 0.08, 0.10, 0.12)) ceramics were synthesized using a conventional solid-state method, with systematic investigation of phase evolution, microstructural characteristics, and their coupled effects on electromechanical performance and thermal stability. Rietveld refinement analysis revealed a rhombohedral–tetragonal (R–T) phase coexistence, where the tetragonal phase fraction maximized at x = 0.10. This structural optimization enabled the simultaneous enhancement of piezoelectricity and thermal resilience. The x = 0.10 composition achieved recorded values of d33 = 132 pC/N, g33 = 26.11 × 10−3 Vm/N, and a depolarization temperature Td = 105 °C. These findings establish BiFeO3 doping as a dual-functional strategy for developing high-performance lead-free ceramics. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

5 pages, 183 KiB  
Editorial
Innovative Manufacturing Processes of Silicate Materials
by Maurice Gonon, Sandra Abdelouhab and Gisèle Laure Lecomte-Nana
Ceramics 2025, 8(2), 69; https://doi.org/10.3390/ceramics8020069 - 6 Jun 2025
Viewed by 335
Abstract
Silicate ceramic materials are likely the oldest manufactured materials in human history [...] Full article
(This article belongs to the Special Issue Innovative Manufacturing Processes of Silicate Materials)
23 pages, 2360 KiB  
Article
Synergistic Effects of Furfurylated Natural Fibers and Nanoclays on the Properties of Fiber–Cement Composites
by Thamires Alves da Silveira, Felipe Vahl Ribeiro, Cristian Conceição Gomes, Arthur Behenck Aramburu, Sandro Campos Amico, André Luiz Missio and Rafael de Avila Delucis
Ceramics 2025, 8(2), 68; https://doi.org/10.3390/ceramics8020068 - 3 Jun 2025
Viewed by 353
Abstract
Fiber–cement composites have been increasingly studied for sustainable construction applications, but durability issues—particularly fiber degradation in alkaline environments—remain a challenge. This study aimed to evaluate the individual and combined effects of furfurylated sisal fibers and nanoclay additions on the physical and mechanical performance [...] Read more.
Fiber–cement composites have been increasingly studied for sustainable construction applications, but durability issues—particularly fiber degradation in alkaline environments—remain a challenge. This study aimed to evaluate the individual and combined effects of furfurylated sisal fibers and nanoclay additions on the physical and mechanical performance of autoclaved fiber–cement composites, seeking to enhance fiber durability and matrix compatibility. All the composites were formulated with CPV-ARI cement and partially replaced with agricultural limestone to reduce the environmental impact and production costs. Sisal fibers (2 wt.%) were chemically modified using furfuryl alcohol, and nanoclays—both hydrophilic and surface-functionalized—were incorporated at 1% and 5% of cement weight. The composites were characterized for physical properties (density, water absorption, and apparent porosity) and mechanical performance (flexural and compressive strength, toughness, and modulus). Furfurylation significantly improved fiber–matrix interaction, leading to higher flexural strength and up to 100% gain in toughness. Nanoclay additions reduced porosity and increased stiffness, particularly at 5%, though excessive content showed diminishing returns. The combination of furfurylated fibers and functionalized nanoclay provided the best results in maintaining a compact microstructure, reducing water absorption, and improving mechanical resilience. Optical microscopy confirmed improved fiber dispersion and interfacial bonding in composites containing furfurylated fibers and functionalized nanoclay. These findings highlight the effectiveness of integrating surface-treated natural fibers with pozzolanic additives to enhance the performance and longevity of fiber–cement composites. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

15 pages, 5573 KiB  
Article
Surface Transformation of Ultrahigh-Temperature ZrB2–HfB2–SiC–CCNT Ceramics Under Exposure to Subsonic N2-CH4 Plasma Flow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Ceramics 2025, 8(2), 67; https://doi.org/10.3390/ceramics8020067 - 2 Jun 2025
Viewed by 468
Abstract
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N [...] Read more.
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N2-plasma flow with the addition of 5 mol% methane, simulating aerodynamic heating in the atmosphere of Titan. As in the case of pure nitrogen flow, it was found that silicon carbide is removed from the surface. Zirconium and hafnium diborides are partially transformed into a Zr-Hf-B-C-N solid solution in the experiment conducted. XRD, Raman spectroscopy, and SEM-EDX analysis show that the presence of C2 in the N2-CH4 plasma flow leads to surface carbonization (formation of a graphite- and diamond-like coating with a high proportion of amorphous carbon), resulting in significant changes in the microstructure and emissivity, potentially affecting the catalytic properties of the surface. Full article
Show Figures

Figure 1

10 pages, 1905 KiB  
Article
Optimizing Sintering Conditions for Y2O3 Ceramics: A Study of Atmosphere-Dependent Microstructural Evolution and Optical Performance
by Xueer Wang, Dongliang Xing, Ying Wang, Jun Wang, Jie Ma, Peng Liu, Jian Zhang and Dingyuan Tang
Ceramics 2025, 8(2), 66; https://doi.org/10.3390/ceramics8020066 - 1 Jun 2025
Viewed by 330
Abstract
This paper systematically investigated the influence of sintering atmospheres, vacuum, and oxygen, on the microstructure and optical properties of Y2O3 ceramics. Compared with vacuum sintering, sintering in flowing oxygen atmosphere can effectively inhibit the grain growth of Y2O [...] Read more.
This paper systematically investigated the influence of sintering atmospheres, vacuum, and oxygen, on the microstructure and optical properties of Y2O3 ceramics. Compared with vacuum sintering, sintering in flowing oxygen atmosphere can effectively inhibit the grain growth of Y2O3 ceramics at the final stage of sintering and improve the uniformity of microstructure. After hot isostatic pressing, the samples pre-sintered at oxygen atmosphere showed good in-line transmittance from a visible-to-mid-infrared wavelength range (0.4–6.0 μm) except in the range of 2.8–4.1 μm. Spectral analysis showed that an obvious broadband absorption peak (2.8–4.1 μm) of characteristic hydroxyl groups is detected in the above samples. However, before densification, a low-temperature heat treatment at 600 °C under vacuum can effectively diminish the hydroxyl groups in Y2O3 ceramics. However, laser experiments in the ~1 μm wavelength range showed that although the Yb:Y2O3 ceramic carrying hydroxyl had obvious absorption in the 2.8–4.1 μm range, it had little effect on its laser oscillation in the ~1 μm wavelength. Yb:Y2O3 ceramics pre-sintered in an oxygen atmosphere at 1460 °C followed by hot isostatic pressing at 1440 °C achieved 12.85 W continuous laser output at room temperature, with a laser slope efficiency of 84.4%. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Graphical abstract

14 pages, 926 KiB  
Article
Comparison of Apical Microleakage in Bioceramic and Resin-Based Endodontic Sealers with Conventional and Bioceramic Surface-Impregnated Gutta-Percha Points
by Lucia Somolová, Yuliya Morozova, Iva Voborná, Matej Rosa, Barbora Novotná, Pavel Holík and Kateřina Langová
Ceramics 2025, 8(2), 65; https://doi.org/10.3390/ceramics8020065 - 26 May 2025
Viewed by 570
Abstract
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated [...] Read more.
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated and divided into three groups (A, B, and C) of 30 samples based on the endodontic sealer/type of gutta-percha points/obturation method used. One tooth sample was used for the negative and positive controls (each). Group A: BCB sealer BioRoot RCS (Septodont, Saint-Maur-des-Fossés, France)/bioceramic-impregnated gutta-percha TotalFill BC points (FKG Dentaire, La Chaux-de-Fonds, Switzerland)/cold hydraulic single-cone. Group B: BioRoot RCS (Septodont, France)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, Charlotte, NC, USA)/cold hydraulic single-cone. Group C: RB sealer AdSeal (Meta Biomed, Cheongju, Republic of Korea)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, USA)/warm vertical condensation. A dye penetration method was applied, and the length of apicocoronal penetration was measured using a surgical microscope. The data were statistically analyzed to evaluate differences at the 0.05 significance level. A significant difference was found between groups A and C, p = 0.0003, and groups B and C, p = 0.003. The data analysis proved that the BCB sealer using the cold hydraulic single-cone method ensured a substantially better seal than the RB sealer using the warm vertical condensation method. The choice of the type of gutta-percha points (bioceramic-coated or regular) appeared to be unimportant. No statistical significance was found between groups A and B, which indicates that using bioceramic-coated gutta-percha points does not bring any considerable benefit in view of a no-gap root canal obturation. Full article
Show Figures

Graphical abstract

37 pages, 4026 KiB  
Review
MXenes: Properties, Applications, and Potential in 3D Printing
by Donato Luca Palladino and Francesco Baino
Ceramics 2025, 8(2), 64; https://doi.org/10.3390/ceramics8020064 - 23 May 2025
Viewed by 676
Abstract
MXenes, a class of two-dimensional materials with appealing properties such as electrical conductivity, mechanical strength, and chemical stability, is rapidly gaining attention for potential applications in various fields, including energy storage, water treatment, biomedicine, and electromagnetic shielding. One of the most exciting developments [...] Read more.
MXenes, a class of two-dimensional materials with appealing properties such as electrical conductivity, mechanical strength, and chemical stability, is rapidly gaining attention for potential applications in various fields, including energy storage, water treatment, biomedicine, and electromagnetic shielding. One of the most exciting developments is their integration with 3D printing technologies, which allows for precise control over material structure and composition. This combination has significantly expanded the scope of MXenes, particularly in electrochemical storage systems like supercapacitors and batteries, where 3D-printed MXene-based materials have demonstrated superior performance. This review article provides a detailed analysis of the synthesis, properties, and applications of MXenes, with a particular focus on their role in additive manufacturing. While the synergy between MXenes and 3D printing offers numerous advantages, challenges such as large-scale production, material stability, and refining processing techniques remain significant hurdles; all these issues are discussed in the present work. Future research directions are also highlighted that aim to enhance scalability, reduce costs, and explore new composite formulations to optimize the performance of MXenes across various applications. Full article
Show Figures

Figure 1

12 pages, 2404 KiB  
Systematic Review
Are Implant-Supported Monolithic Zirconia Single Crowns a Viable Alternative to Metal-Ceramics? A Systematic Review and Meta-Analysis
by Liandra Constantina da Mota Fonseca, Daniele Sorgatto Faé, Beatriz Neves Fernandes, Izabela da Costa, Jean Soares Miranda and Cleidiel Aparecido Araujo Lemos
Ceramics 2025, 8(2), 63; https://doi.org/10.3390/ceramics8020063 - 22 May 2025
Viewed by 349
Abstract
This study aimed to evaluate prosthetic complications, implant survival rates, and marginal bone loss in implant-supported monolithic restorations compared to metal-ceramic restorations. The study was registered in PROSPERO (CRD420251022336) and conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. [...] Read more.
This study aimed to evaluate prosthetic complications, implant survival rates, and marginal bone loss in implant-supported monolithic restorations compared to metal-ceramic restorations. The study was registered in PROSPERO (CRD420251022336) and conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. A systematic search was conducted in the electronic databases MEDLINE/PubMed, Web of Science, Scopus, Embase, and ProQuest for articles published up to December 2024. The inclusion criteria comprised studies evaluating only randomized clinical trials that evaluated implant-supported monolithic restorations directly compared to metal-ceramic restorations, considering any type of ceramic material and regardless of the fixation system (screw-retained or cemented), with a minimum follow-up of one year. A meta-analysis was performed using RevMan 5.4 software, and the risk of bias and certainty of evidence were assessed using the RoB 2.0 and GRADE tools, respectively. A total of six studies were included, all of which exclusively evaluated monolithic zirconia single crowns over follow-up periods ranging from 1 to 3 years. None of the included studies evaluated fixed partial dentures or restorative materials other than monolithic zirconia. In total, 267 patients (mean age range: 18–57 years) were analyzed, with a total of 174 implant-supported monolithic zirconia crowns and 165 metal-ceramic single crowns in the posterior region (premolars and molars). The meta-analysis revealed that implant-supported monolithic zirconia single crowns exhibited significantly fewer prosthetic complications compared to metal-ceramic single crowns (p < 0.0001; Risk Ratio [RR]: 0.26; Confidence Interval [CI]: 0.14–0.47). However, no statistically significant differences were observed between implant-supported monolithic zirconia and metal-ceramic single crowns regarding implant survival rates (p = 0.36; RR: 1.66; CI: 0.56–4.94) or marginal bone loss (p = 0.15; Mean Difference [MD]: −0.05; CI: −0.11–0.02). The risk of bias assessment indicated that four studies had a low risk of bias. However, the certainty of evidence was classified as low for prosthetic complications and implant survival rates and very low for marginal bone loss. Within the limitations of this review, it can be concluded that implant-supported monolithic zirconia single crowns can be considered a favorable treatment option as they show comparable implant survival and bone stability to metal-ceramic crowns, with a potential reduction in short-term prosthetic complications such as screw loosening and ceramic chipping. However, due to the limited number of studies included and low certainty of evidence, further long-term research is still needed to confirm their clinical performance over time. Full article
Show Figures

Figure 1

19 pages, 2246 KiB  
Review
Diatomaceous Biosilica: A Multifunctional Resource for Biomedicine and Sustainable Applications
by Letícia Guerreiro da Trindade, Monize Bürck, Eduarda Lemos de Souza, Letícia Zanchet, Marcelo Assis and Anna Rafaela Cavalcante Braga
Ceramics 2025, 8(2), 62; https://doi.org/10.3390/ceramics8020062 - 22 May 2025
Viewed by 670
Abstract
Diatomaceous biosilica has emerged as a functional material with unique properties, driving innovations in energy storage, therapeutic systems, and environmental catalysis. This article critically reviews recent advances in using natural biosilica in lithium-ion battery anodes, emphasizing how its hierarchical morphology and high porosity [...] Read more.
Diatomaceous biosilica has emerged as a functional material with unique properties, driving innovations in energy storage, therapeutic systems, and environmental catalysis. This article critically reviews recent advances in using natural biosilica in lithium-ion battery anodes, emphasizing how its hierarchical morphology and high porosity contribute to ion insertion and transport efficiency. Its surface chemistry enables controlled drug release and tissue regeneration in biomedical applications. Its synergy with metal catalysts enhances pollutant degradation in photocatalytic systems, especially via surface biofunctionalization. By linking these areas, this review highlights the potential of diatom biosilica as a viable and sustainable alternative to synthetic materials, promoting technological solutions aligned with circular economy and materials engineering. Full article
Show Figures

Figure 1

19 pages, 7410 KiB  
Article
Novel Catalysts Based on Synthetic Mesoporous Silicates of the MCM-41 Type and Hydroxyapatite for Desulfurization of Model Fuel
by Nadezhda O. Donskaya, Margarita A. Goldberg, Alexander S. Fomin, Anna O. Koptelova, Polina D. Domashkina, Ekaterina A. Eseva, Olga S. Antonova, Anatoliy A. Konovalov, Alexander V. Leonov, Egor A. Kudryavtsev, Fadis F. Murzakhanov, Marat R. Gafurov, Argam V. Akopyan, Sergey M. Barinov and Vladimir S. Komlev
Ceramics 2025, 8(2), 61; https://doi.org/10.3390/ceramics8020061 - 21 May 2025
Viewed by 467
Abstract
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous [...] Read more.
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous silicate and an HA phase with low crystallinity. The presence of aluminum and iron in the structure of the powders resulted in further amorphization. The obtained samples showed high specific surface areas (SSAs), ranging from 162.3 to 186.6 m2/g for MCM-41-HA and from 112.6 to 127.2 m2/g for AlMCM-HA. The hysteresis loops were found to be of type H3, indicating the formation of slit-like pores in the intercrystalline space, as confirmed by transmission electron microscopy, which revealed the presence of lamellar and flake-like particles. Catalytic activity tests showed that the conversion of dibenzothiophene depended on the iron concentration in the material and the acidity of the support. To further improve the catalytic activity of the materials, they were impregnated with molybdenum compounds. Active molybdenum peroxo complexes formed under these conditions enabled 100% conversion of dibenzothiophene. To our knowledge, this is the first study on the influence of MCM-41-HA- or AlMCM-HA-based materials on dibenzothiophene conversion via oxidative desulfurization using hydrogen peroxide as an oxidant. Full article
Show Figures

Graphical abstract

27 pages, 5266 KiB  
Article
Development and Characterization of Pyrolyzed Sodium Alginate–Montmorillonite Composite for Efficient Adsorption of Emerging Pharmaceuticals: Experimental and Theoretical Insights
by Ibrahim Allaoui, Rachid Et-Tanteny, Imane Barhdadi, Mohammad Elmourabit, Brahim Arfoy, Youssef Draoui, Mohamed Hadri and Khalid Draoui
Ceramics 2025, 8(2), 60; https://doi.org/10.3390/ceramics8020060 - 21 May 2025
Viewed by 297
Abstract
The present study aims to prepare a composite via pyrolysis, based on sodium alginate (SA) and a natural clay collected from the eastern region of Morocco, specifically the OUJDA area (C.O.R), for use in the disposal process of emerging pharmaceuticals. The strategy of [...] Read more.
The present study aims to prepare a composite via pyrolysis, based on sodium alginate (SA) and a natural clay collected from the eastern region of Morocco, specifically the OUJDA area (C.O.R), for use in the disposal process of emerging pharmaceuticals. The strategy of rapid microwave heating followed by nitrogen calcination at 500 °C was successfully applied to produce the pyrolyzed carbonaceous materials. The removal of paracetamol (PCT) by adsorption on the carbonaceous clay (ca-C.O.R) composite was investigated to determine the effect of operating parameters (initial contaminant concentration, contact time, pH, and temperature) on the efficiency of PCT removal. The nanocomposite was analyzed using various techniques, including the nitrogen gas adsorption–desorption isothermal curve, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Three models were used to describe the kinetic adsorption, and it was found that the experimental kinetic data fit well with a pseudo-second-order kinetic model with a coefficient of determination R2 close to one, a nonlinear chi-square value close to zero, and a reduced root mean square error RMSE (R2 → 1, X2 → 0 and lower RMSE). The adsorption was best described by the Sips isotherm. The ca-C.O.R composite achieved a PCT removal efficiency of 91% and a maximum adsorption capacity of 122 mg·g−1 improving on the performance of previous work. Furthermore, the variation in enthalpy (∆H°), Gibbs free energy (∆G°), and entropy (∆S°) indicated that the adsorption is exothermic in nature. The composite has shown promising efficiency for the adsorption of PCT as a model of emergent pollutant from aqueous solutions, making it a viable option for industrial wastewater treatment. Using Density Functional Theory (DFT) along with the 6-31G (d) basis set, the geometric structure of the molecule was determined, and the properties were estimated by analyzing its boundary molecular orbitals. The adsorption energy of PCT on MMT and ca-C.O.R studied using the Monte Carlo (MC) simulation method was −120.3 and −292.5 (kcal·mol−1), respectively, which shows the potential of the two adsorbents for the emerging product. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 6066 KiB  
Article
Pseudocapacitive Behavior of Protonic Niobate Nanowires in Aqueous Acidic Electrolyte
by Adilar Gonçalves dos Santos Júnior, Jessica Gotardi, Edna Jerusa Pacheco Sampaio, Cristiano Campos Araújo, Gabriel Luiz Rasch, Antonio Marcos Helgueira de Andrade, Roberto Hübler, Andrés Cuña Suárez and Célia de Fraga Malfatti
Ceramics 2025, 8(2), 59; https://doi.org/10.3390/ceramics8020059 - 20 May 2025
Viewed by 288
Abstract
Niobium-based oxides are being increasingly evaluated as materials for energy storage applications. Additionally, the use of these oxides as cathodes in aqueous electrolytes has shown promise. Based on this, the pseudocapacitive behavior of protonic niobate nanowires in an aqueous acidic electrolyte (1 M [...] Read more.
Niobium-based oxides are being increasingly evaluated as materials for energy storage applications. Additionally, the use of these oxides as cathodes in aqueous electrolytes has shown promise. Based on this, the pseudocapacitive behavior of protonic niobate nanowires in an aqueous acidic electrolyte (1 M H2SO4) was evaluated for the first time. The material was obtained in two simple sequential steps. First, hydrothermal synthesis resulted in sodium niobate; second was ionic exchange (in two concentrations of 2 M and 0.1 M HNO3), where the protonic niobate was obtained. The resulting protonic niobate was characterized by FEG-SEM, the results demonstrated that the morphology of the oxide was concentration-dependent in the ionic exchange step, and EDS analysis was used to validate the procedure. Using DRX, Raman spectroscopy, and FTIR analysis, the transformation of sodium niobate to protonic niobate was evidenced. The electrochemical tests demonstrated that the protonic niobate presented pseudocapacitive behavior when employed as the cathode in 1 M H2SO4, and the ionic exchange in 2 M HNO3 promoted a better specific capacitance, reaching 119.8 mF·cm−2 at a 1 mA·cm−2 current density. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

15 pages, 3711 KiB  
Article
Binder Jetting for Functional Testing of Ceramic Sanitaryware
by Cristina Fabuel, María Pilar Gómez-Tena, Arnaldo Moreno, Fernando González-Juárez, Verónica Rico-Pérez and Jordi Balcells
Ceramics 2025, 8(2), 58; https://doi.org/10.3390/ceramics8020058 - 19 May 2025
Viewed by 407
Abstract
Additive manufacturing (AM) of ceramics presents a promising approach for the production of complex sanitaryware prototypes, offering advantages in terms of cost and time to market. This study explores binder jetting (BJ) as an optimal AM technique due to its ability to process [...] Read more.
Additive manufacturing (AM) of ceramics presents a promising approach for the production of complex sanitaryware prototypes, offering advantages in terms of cost and time to market. This study explores binder jetting (BJ) as an optimal AM technique due to its ability to process ceramic materials without thermal stress, accommodate various compositions, and produce large components without support structures. A combination of refractory cement, feldspathic sands, quartz, and calcined alumina was used to formulate 19 different compositions, ensuring adequate green strength and minimizing shrinkage during sintering. A hydration-activated binding method with a water-based binder was employed to enhance part formation and mechanical properties. The results indicate that compositions containing calcined alumina exhibited lower pyroplastic deformation, while optimized gelling agent concentrations improved green strength and dimensional accuracy. The final selected material (SA18) demonstrated high compressive strength, low shrinkage, and a surface roughness comparable to traditional sanitaryware. The application of an engobe layer improved glaze adherence, ensuring a homogeneous surface. This study highlights binder jetting as a viable alternative to traditional ceramic processing, paving the way for its adoption in industrial sanitaryware manufacturing. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

14 pages, 4358 KiB  
Article
Clarification of Clove Basil Extract Using Spinel Hollow Fiber Membranes
by Kristopher Rodrigues Dorneles, Guilherme Guimarães Ascendino, Vicelma Luiz Cardoso and Miria Hespanhol Miranda Reis
Ceramics 2025, 8(2), 57; https://doi.org/10.3390/ceramics8020057 - 16 May 2025
Viewed by 387
Abstract
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at [...] Read more.
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at 1350 °C, combining alumina and dolomite as raw materials. The calcination of the powder materials at 1350 °C resulted in the spinel phase formation, as indicated by the XRD analyses. The spinel hollow fiber membrane presented a hydrophilic surface (water contact angle of 74°), moderate roughness (144.31 ± 12.93 nm), and suitable mechanical strength. The ceramic membrane demonstrated a water permeability of 35.28 ± 2.46 L h−1 m−2 bar−1 and a final permeate flux of 9.22 ± 1.64 L h−1 m−2 for filtration of clove basil extract at 1.0 bar. Fouling analysis identified cake formation as the dominant mechanism for flux decline. The membrane retained 44% of the total phenolic compounds and reduced turbidity by 60%, while preserving significant antioxidant capacity in the permeate. The results highlight the potential of spinel-based hollow fiber membranes as a cost-effective and efficient solution for clarifying bioactive plant extracts, offering enhanced mechanical properties and lower sintering temperatures compared to conventional alumina membranes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

23 pages, 10496 KiB  
Article
Synthesis MFI Zeolites Using Alternative Silica Source for CO2 Capture
by Clenildo de Longe, Aryandson da Silva, Anne Beatriz Figueira Câmara, Francisco Gustavo Hayala Silveira Pinto, Lindiane Bieseki, Luciene Santos de Carvalho and Sibele Berenice Castellã Pergher
Ceramics 2025, 8(2), 56; https://doi.org/10.3390/ceramics8020056 - 16 May 2025
Viewed by 846
Abstract
In recent years, climate change has attracted the attention of the scientific community. These changes are attributed to human action, which is responsible for the emission of polluting gases, mainly through the burning of fossil fuels, deforestation, and industrial processes that are responsible [...] Read more.
In recent years, climate change has attracted the attention of the scientific community. These changes are attributed to human action, which is responsible for the emission of polluting gases, mainly through the burning of fossil fuels, deforestation, and industrial processes that are responsible for the greenhouse effect. Post-combustion CO2 capture using solid adsorbents is a technology that is currently gaining prominence as an alternative and viable form of capture to other industrial processes used. Zeolites are adsorbents capable of capturing CO2 selectively due to their properties such as textural properties, high surface area, and active sites. In this context, this work developed materials with a zeolite structure with an alternative low-cost silica source from beach sand, called MPI silica, to make the process eco-friendly. Crystallization time studies were carried out for materials containing MFI-type zeolites with MPI silica with a time of 15 h (ZM 15 h) and 3 days (SM 3 d), with relative crystallinities of 92.90% and 111.90%, respectively. The synthesized materials were characterized by several techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), the textural analysis of N2 adsorption/desorption isotherms, absorption spectroscopy in the infrared region with Fourier transform (FTIR), scanning electron microscopy (SEM), and thermal analysis. The evaluation of the experimental adsorption isotherms showed that the best results were for the zeolites synthesized in the basic medium, namely ZMP 3 d, ZM 10.5 h, and ZM 15 h, with capacities of 3.72, 3.10, and 3.22 mmol/g of CO2, respectively, and in the hydrofluoric medium, namely SP 9 d, SM 3 d, and SM 6 d, with capacities of 3.94, 3.78, and 3.60 mmol/g of CO2, respectively. The evaluation of the mathematical models indicated that the zeolites in the basic medium best fitted the Freündlich model, namely ZMP 3 d, ZM 10.5 h, and ZM 15 h, with capacities of 2.56, 1.68, and 1.87 mmol/g of CO2, respectively. The zeolites in the hydrofluoric medium are adjusted to the Langmuir model (SP 9 d and SM 3 d) and Temkin model (SM 6 d), with capacities of 3.79, 2.23, and 2.11 mmol/g of CO2, respectively. Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
Show Figures

Figure 1

17 pages, 5229 KiB  
Article
CuNb2O6 Particles Obtained via Solid-State Reaction and Application as Electrocatalyst for Oxygen Evolution Reaction
by Kívia F. G. de Araújo, Cleber S. Lourenço, Vitor M. S. F. Souza, Matheus D. da Silva, Gabriel D. S. Vasconcelos, Maria J. S. Lima, Jakeline R. D. Santos, Kelly C. Gomes, Francisco J. A. Loureiro, Marco A. Morales and Uílame U. Gomes
Ceramics 2025, 8(2), 55; https://doi.org/10.3390/ceramics8020055 - 13 May 2025
Viewed by 750
Abstract
Copper niobate (CuNb2O6) is an important compound due to its low cost and polymorphism, presenting monoclinic and orthorhombic phases, which leads to unique physical–chemical properties. The electrochemical performance of efficient electrocatalysts for the oxygen evolution reaction (OER) is of [...] Read more.
Copper niobate (CuNb2O6) is an important compound due to its low cost and polymorphism, presenting monoclinic and orthorhombic phases, which leads to unique physical–chemical properties. The electrochemical performance of efficient electrocatalysts for the oxygen evolution reaction (OER) is of importance in order to produce hydrogen gas from water. In this context, this work reports the synthesis of CuNb2O6 particles by high-energy milling for 5 and 10 h, and subsequent thermal treatment at 900 °C for 3 h. The samples were characterized by XRD, XRF, FESEM, RAMAN, UV–Vis, and FT-IR techniques, and were applied as electrocatalysts for the OER. The samples had both monoclinic and orthorhombic crystalline phases. The band gaps were in the range of 1.92 to 2.06 eV. In the application for the OER, the particles obtained by 5 and 10 h of milling exhibited overpotentials of 476 and 347 mV vs. RHE at 10 mA cm−2, respectively. In chronopotentiometry experiments for 15 h, the samples exhibited excellent chemical stability. The electrochemical performance of the sample milled for 10 h showed superior performance (347 mV vs. RHE) when compared with electrocatalysts of the same type, demonstrating that the methodology used to synthesize the samples is promising for energy applications. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 7919 KiB  
Article
Recycling Face Mask Fibers in Geopolymer-Based Matrices for Sustainable Building Materials
by Roberto Ercoli, Paola Stabile, Elena Ossoli, Irene Luconi, Alberto Renzulli and Eleonora Paris
Ceramics 2025, 8(2), 54; https://doi.org/10.3390/ceramics8020054 - 12 May 2025
Viewed by 543
Abstract
This study investigates the upcycling of disposable face masks, which were produced in vast quantities during the COVID-19 pandemic and are now widely stockpiled in public institutions, destined for landfills after reaching expiration dates. The research focuses on incorporating shredded mask fibers into [...] Read more.
This study investigates the upcycling of disposable face masks, which were produced in vast quantities during the COVID-19 pandemic and are now widely stockpiled in public institutions, destined for landfills after reaching expiration dates. The research focuses on incorporating shredded mask fibers into geopolymer matrices, evaluating the effects on mechanical and thermal properties to develop sustainable, high-performance materials. This approach addresses critical environmental, social, and economic challenges by transforming problematic waste into valuable resources while promoting sustainable building practices, such as developing insulating products for the construction industry. Mechanical testing demonstrated that adding shredded mask fibers (2 mm and 6 mm in size, up to 5 wt.%) enhanced the flexural strength of geopolymeric products. The optimal performance was achieved by adding 3 wt.% of 2 mm-length fibers, resulting in a flexural strength of 4.56 ± 0.23 MPa. Regarding compressive strength, the highest value (54.78 ± 2.08 MPa) was recorded in geopolymers containing 1 wt.% of 2 mm fibers. Thermal insulation properties of the materials improved with higher mask content, as evidenced by reductions in thermal conductivity, diffusivity, and specific heat. The lowest thermal conductivity values were observed in geopolymers containing 5 wt.% (0.4346 ± 0.0043 W·m−1·K−1) and 3 wt.% (0.6514 ± 0.0002 W·m−1·K−1) of 2 mm mask fibers. To further enhance thermal insulation, geopolymers with 5 wt.% mask fibers were foamed using H2O2 to obtain highly porous light materials, obtaining a reduction of thermal conductivity (0.3456 and 0.3710 ± 0.0007 W·m−1·K−1). This research highlights the potential of integrating fibrous waste materials into advanced construction technologies, offering solutions for waste reduction and development in the building sector toward sustainability. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

26 pages, 3893 KiB  
Review
Molecularly Imprinted Polymer-Supported Ceramic Catalysts for Environmental Applications: A Comprehensive Review
by Mateus Aquino Gonçalves, Felipe de Almeida la Porta, Adilson Candido da Silva, Teodorico Castro Ramalho and Sérgio Francisco de Aquino
Ceramics 2025, 8(2), 53; https://doi.org/10.3390/ceramics8020053 - 10 May 2025
Viewed by 1479
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to exhibit selective recognition and binding capabilities toward target molecules and have been widely combined with advanced ceramic-based materials toward better performance in many catalytic applications of interest and beyond. What sets MIPs apart is [...] Read more.
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to exhibit selective recognition and binding capabilities toward target molecules and have been widely combined with advanced ceramic-based materials toward better performance in many catalytic applications of interest and beyond. What sets MIPs apart is their molecularly imprinted cavities, which are formed during polymerization in the presence of a template molecule. Upon template removal, these cavities retain the shape, size, and chemical functionality of the template molecule, allowing for highly specific recognition and binding of target molecules. In recent years, there has been a growing interest in leveraging these molecularly imprinted cavities not only for molecular recognition and sensing but also as catalytic sites and supports. Complementary to experimental studies, density functional theory (DFT) calculations are increasingly used to elucidate the molecular interactions, catalytic mechanisms, and optimize the design of MIP–ceramic catalysts. This review aims to provide a comprehensive overview of the current state of research on advanced ceramic-based catalysts supported by MIPs for environmental applications. Additionally, the review will discuss challenges and future directions in the field, focusing on enhancing the catalytic efficiency, stability, and scalability of MIP-based ceramic catalysts. By exploring these aspects, this review seeks to illustrate the promising role of MIP-modified ceramic materials in advancing the field of catalysis and catalytic supports. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 4618 KiB  
Article
A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties
by Nivaldo F. Andrade Neto, Onecima B. M. Ramalho, Marcio D. Teodoro, Mauricio R. D. Bomio and Fabiana V. Motta
Ceramics 2025, 8(2), 52; https://doi.org/10.3390/ceramics8020052 - 8 May 2025
Viewed by 292
Abstract
In this study, CdWO4/CdMoO4 powders’ heterostructures were synthesized using the microwave-assisted hydrothermal method, characterized, and evaluated for their photocatalytic properties. The samples were analyzed using X-ray diffraction (XRD), Raman and ultraviolet-visible (UV-Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), and photoluminescence [...] Read more.
In this study, CdWO4/CdMoO4 powders’ heterostructures were synthesized using the microwave-assisted hydrothermal method, characterized, and evaluated for their photocatalytic properties. The samples were analyzed using X-ray diffraction (XRD), Raman and ultraviolet-visible (UV-Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL). The photocatalytic performance was assessed using methylene blue as a model pollutant. XRD patterns and Raman spectra confirmed the formation of heterostructures containing the Wolframite phase of CdWO4 and the Scheelite phase of CdMoO4. FESEM micrographs revealed that the CdWO4 phase exhibits a plate-like morphology, while the CdMoO4 phase consists of irregular nanoparticles. Photocatalytic tests demonstrated that the 20Mo sample exhibited the best performance, degrading 96% of the dye after 2 h of reaction. The findings of this study indicate that CdWO4/CdMoO4 heterostructures hold significant potential for photocatalytic applications in the degradation of cationic dyes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

16 pages, 3244 KiB  
Article
Reduction of Ceramic Wear by Concave Dimples on the Bearing Surface in CoC Hip Implants: A Finite Element Analysis
by Mario Ceddia, Arcangelo Morizio, Giuseppe Solarino and Bartolomeo Trentadue
Ceramics 2025, 8(2), 51; https://doi.org/10.3390/ceramics8020051 - 7 May 2025
Viewed by 446
Abstract
The wear of hip prostheses represents a significant challenge for the longevity and functionality of joint implants. Recent studies have explored surface texturing of prostheses as a strategy to enhance tribological performance. This study aims to evaluate the impact of textured ceramic surfaces [...] Read more.
The wear of hip prostheses represents a significant challenge for the longevity and functionality of joint implants. Recent studies have explored surface texturing of prostheses as a strategy to enhance tribological performance. This study aims to evaluate the impact of textured ceramic surfaces with dimples on wear and friction reduction in ceramic-on-ceramic (CoC) prostheses. Materials and Methods: Three-dimensional models of ceramic surfaces with and without dimples were created. Contact pressure was analyzed and wear volume was estimated using Archard’s law. Simulations were conducted using finite element methods (FEM) under various loading conditions. Results: Numerical simulations demonstrated that the wear rate for the dimpled femoral head was 0.2369 mm3/year, compared to 0.286 mm3/year for the smooth counterpart, highlighting a wear reduction of 17.2%. Conclusions: The integration of textured surfaces with dimples in ceramic prostheses can substantially improve their functionality and durability, representing a promising approach to addressing the issues associated with hip prosthesis wear. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

13 pages, 2960 KiB  
Article
The Influence of Si(C,N) Layer Composition on the Corrosion of NiCr Prosthetic Alloy
by Zofia Kula, Barbara Burnat, Katarzyna Dąbrowska and Leszek Klimek
Ceramics 2025, 8(2), 50; https://doi.org/10.3390/ceramics8020050 - 5 May 2025
Viewed by 466
Abstract
For decades, metal alloys have played a crucial role in medicine and dentistry as restorative materials. To enhance corrosion resistance and mitigate undesirable biological reactions, surface modifications of these alloys are widely employed. This study investigates the corrosion resistance and adhesion properties of [...] Read more.
For decades, metal alloys have played a crucial role in medicine and dentistry as restorative materials. To enhance corrosion resistance and mitigate undesirable biological reactions, surface modifications of these alloys are widely employed. This study investigates the corrosion resistance and adhesion properties of a NiCr dental alloy coated with a Si(C,N) layer. The findings suggest that these coatings hold potential as protective layers for prosthetic components in future applications. Si(C,N) coatings were deposited using the reactive magnetron sputtering (RMS) method on the surface of a NiCr dental alloy. Four different carbon-to-nitrogen (C/N) ratio variations were examined. The results indicate that Si(C,N) coatings deposited via magnetron sputtering exhibit relatively low porosity (approximately 3%), enabling them to function effectively as barrier coatings. Among the tested coatings, the Si(39.6C/25.2N) layer demonstrated the highest polarization resistance (Rp) value and the lowest corrosion current density (icor), corrosion rate (CR), and mass loss rate (MR), suggesting that this composition achieves an optimal balance between carbon and nitrogen content. These findings are promising for the potential application of Si(C,N) coatings in dental techniques. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

26 pages, 7832 KiB  
Article
Properties of Bilayer Zr- and Sm-Oxide Gate Dielectric on 4H-SiC Substrate Under Varying Nitrogen and Oxygen Concentrations
by Ahmad Hafiz Jafarul Tarek, Tahsin Ahmed Mozaffor Onik, Chin Wei Lai, Bushroa Abdul Razak, Chia Ching Kee and Yew Hoong Wong
Ceramics 2025, 8(2), 49; https://doi.org/10.3390/ceramics8020049 - 2 May 2025
Viewed by 512
Abstract
This work systematically analyses the electrical and structural properties of a bilayer gate dielectric composed of Sm2O3 and ZrO2 on a 4H-SiC substrate. The bilayer thin film was fabricated using a sputtering process, followed by a dry oxidation step [...] Read more.
This work systematically analyses the electrical and structural properties of a bilayer gate dielectric composed of Sm2O3 and ZrO2 on a 4H-SiC substrate. The bilayer thin film was fabricated using a sputtering process, followed by a dry oxidation step with an adjusted oxygen-to-nitrogen (O2:N2) gas concentration ratio. XRD analysis validated formation of an amorphous structure with a monoclinic phase for both Sm2O3 and ZrO2 dielectric thin films. High-resolution transmission emission (HRTEM) analysis verified the cross-section of fabricated stacking layers, confirmed physical oxide thickness around 12.08–13.35 nm, and validated the amorphous structure. Meanwhile, XPS confirmed the presence of more stoichiometric dielectric oxide formation for oxidized/nitrided O2:N2-incorporated samples, and more sub-stochiometric thin films for samples only oxidized in ambient O2. The oxidation/nitridation processes with N2 incorporation influenced the band offsets and revealed conduction band offsets (CBOs) ranging from 2.24 to 2.79 eV. The affected charge movement and influenced electrical performance where optimized samples with gas concentration ratio of 90% O2:10% N2 achieved the highest electrical breakdown field of 10.1 MV cm−1 at a leakage current density of 10−6 A cm−2. This gate stack also improved key parameters such as the effective dielectric constant (keff) up to 29.75, effective oxide charge (Qeff), average interface trap density (Dit), and slow trap density (STD). The bilayer gate stack of Sm2O3 and ZrO2 revealed potential attractive characteristics as a candidate for high-k gate dielectric applications in metal-oxide-semiconductor (MOS)-based devices. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop