Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Elemental Compositions of Beads Excavated from the Dohouan Site
3.2. Coloring Agents of Beads Excavated from the Dohouan Site
3.3. Elemental Compositions of Beads Collected from the Briare Industrial Site
3.4. Raman Signature of Beads Excavated from the Dohouan Site
3.5. Raman Signature of Beads Collected from the Briare Industrial Site
4. Discussion: Bead Processing and Characterization
4.1. Manufacturing of Glass Beads
4.2. Information Provided by the Prosser and Bapterosse Patents
4.3. Experimental Evidence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karklins, K. Glass Beads; National Historic Parks and Sites Branch, Parks Canada, Environment Canada: Ottawa, ON, Canada, 1982. [Google Scholar]
- Francis, P., Jr. Asia’s Maritime Bead Trade: 300 BC to the Present; University of Hawaii Press: Honolulu, HI, USA, 2002. [Google Scholar]
- Wood, M. A glass bead sequence for southern Africa from the 8th to the 16th century AD. J. Afr. Archaeol. 2011, 9, 67–84. [Google Scholar] [CrossRef]
- Wood, M. Glass beads from pre-European contact sub-Saharan Africa: Peter Francis’s work revisited and updated. Archaeol. Rese. Asia 2016, 6, 65–80. [Google Scholar] [CrossRef]
- Wood, M. Glass beads and Indian Ocean trade. In The Swahili World; Routledge: Oxford, UK, 2017; pp. 458–471. [Google Scholar]
- Koleini, F.; Colomban, P.; Pikirayi, I.; Prinsloo, L.C. Glass beads, markers of ancient trade in Sub-Saharan Africa: Methodology, state of the art and perspectives. Heritage 2019, 2, 2343–2369. [Google Scholar] [CrossRef]
- Baujard, P. The Worlds of the Indian Ocean: A Global History; Cambridge University Press: Cambridge, UK, 2019; Volume 2. [Google Scholar]
- Truffa Giachet, M.; Gratuze, B.; Mayor, A.; Huysecom, E. Compositional and provenance study of glass beads from archaeological sites in Mali and Senegal at the time of the first Sahelian states. PLoS ONE 2020, 15, e0242027. [Google Scholar] [CrossRef]
- Babalola, A.B. Glass beads in West Africa. In Oxford Research Encyclopedia of Anthropology; Oxford University Press: New York, NY, USA, 2022; Available online: https://www.researchgate.net/profile/AbidemiBabalola/publication/371702230_Glass_bead_in_West_Africa/links/64918331c41fb852dd19c4ee/Glass-bead-in-West-Africa.pdf (accessed on 7 December 2024).
- Dussubieux, L.; Walder, H. The Elemental Analysis of Glass Beads: Technology, Chronology and Exchange; Leuven University Press: Leuven, Belgium, 2022. [Google Scholar]
- Koleini, F.; Prinsloo, L.C.; Biemond, W.; Colomban, P.; Ngo, A.-T.; Boeyens, J.C.A.; Van der Ryst, M.M.; Van Brakel, K. Unravelling the glass trade bead sequence from Magoro hill, South Africa: Separating pre-seventeenth-century Asian imports from later European counterparts. Herit. Sci. 2016, 4, 43. [Google Scholar] [CrossRef]
- Colomban, P.; March, G.; Mazerolles, L.; Karmous, T.; Ayed, N.; Ennabli, A.; Slim, H. Raman Identification of Materials used for Jewelry and Mosaic in Ifriqiya. J. Raman Spectrosc. 2003, 34, 205–213. [Google Scholar] [CrossRef]
- Prinsloo, L.C.; Tournié, A.; Colomban, P. Raman classification of the glass beads excavated on Mapungubwe hill and K2, two archaeological sites in South Africa. J. Raman Spectrosc. 2012, 43, 532–542. [Google Scholar] [CrossRef]
- Koleini, F.; Prinsloo, L.C.; Biemond, W.; Colomban, P.; Ngo, A.-T.; Boeyens, J.C.A.; van der Ryst, M.M. Towards refining the classification of glass trade beads imported to southern Africa during 8th–16th century. J. Cult. Herit. 2016, 19, 435–444. [Google Scholar] [CrossRef]
- Fischbach, N.; Ngo, A.-T.; Colomban, P.; Pauly, M. Beads excavated from Antsiraka Boira necropolis (Mayotte Island, 12th–13th centuries) Colouring agents and glass matrix composition comparison with contemporary Southern Africa sites. ArcheoSciences 2016, 40, 83–102. [Google Scholar] [CrossRef]
- Costa, M.; Barrulas, P.; Dias, L.; da Conceição Lopes, M.; Barreira, J.; Clist, B.; Karklins, K.; de Jesus, M.D.P.; da Silva Domingos, S.; Vandenabeele, P.; et al. Multi-analytical approach to the study of the European glass beads found in the tombs of Kulumbimbi (Mbanza Kongo, Angola). Microchem. J. 2019, 149, 103990. [Google Scholar] [CrossRef]
- Boya, E. La Céramique de Dohouan: Aspect du Patrimoine des N’zéma-Adouvlè au Voisinage de la Forêt des Marais Tanoé-Ehy (FMTE- sud-est de la Côte d’Ivoire). Doctoral Thesis (Anthropologie/option: Archéologie, spécialité: Céramique), Université Félix Houphouet Boigny, Abidjan, Cote d’Ivoire, 2020; p. 381. [Google Scholar]
- Kouassi, K.S.; Boya, E.; Gratuze, B. Produits de traite et connexion Europe -sud côtier de la Côte d’Ivoire aux XVIIe-XIXe siècles. Orientations à travers les perles du site de Dohouan. e-Phaïstos [Enligne] 2024, XII-2. [Google Scholar] [CrossRef]
- MIPAF, Musée Itinérant de la Perle Ancienne-France. Available online: https://routesduverre.fr/recherche/musee-itinerant-de-la-perle-ancienne-en-france-mipaf (accessed on 10 August 2024).
- Available online: https://www.tourismeloiret.com/fr/diffusio/illustres/jean-felix-bapterosses-briare_TFOILLCEN045V509TG8 (accessed on 20 May 2025).
- Kouassi, K.; Koffi, K.; Kouassi, F.; Coulibaly, D.; Yao, K.; Boya, E. L’archéologie dans la patrimonialisation de la forêt des marais Tanoé-Ehy (FMTE-sud-est-Côte d’Ivoire). Première campagne de fouille sur le site de Dohouan 1. Cah. CERLESHS 2017, 55, 157–166. [Google Scholar]
- Koffi, K. Les Contacts Europe-Afrique du XVIe au XXe Siècle: Analyse des Perles de Verre de Dohouan (sud-est de la Côte d’Ivoire). Ph.D. Thesis, Université Paris 1 Panthéon Sorbonne, Paris, France, 2025. [Google Scholar]
- Gratuze, B. Glass Characterization Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Methods. In Recent Advances in Laser Ablation ICP-MS for Archaeology; Dussubieux, L., Golitko, M., Gratuze, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 179–196. [Google Scholar]
- Colomban, P. Polymerization degree and Raman identification of ancient glasses used for jewellery, ceramics enamels and mosaics. J. Non-Crystall. Solids 2003, 323, 180–187. [Google Scholar] [CrossRef]
- Colomban, P.O. Paulsen, Non-destructive Determination of the Structure and Composition of Glazes by Raman Spectroscopy. J. Am. Ceram. Soc. 2005, 88, 390–395. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Colomban, P. The Destructive/Non-Destructive Identification of Enameled Pottery, Glass Artifacts and Associated Pigments—A Brief Overview. Arts 2013, 2, 77–110. [Google Scholar] [CrossRef]
- Faurel, X.; Vanderperre, A.; Colomban, P. Pink Pigment optimisation by resonance Raman Spectroscopy. J. Raman Spectrosc. 2003, 34, 290–294. [Google Scholar] [CrossRef]
- Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to Present Times in Lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 2009, 8, 109–132. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Vandenabeele, P.; Colomban, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Colomban, P. Full spectral range Raman signatures related to changes in enameling technologies from the 18th to the 20th Century: Guidelines, effectiveness and limitations of the Raman analysis. Materials 2022, 15, 3158. [Google Scholar] [CrossRef]
- Seifert, F.A.; Mysen, B.O.; Virgo, D. Three-dimensional network structure of quenched melts (glass) in the systems SiO2–NaAlO2, SiO2–CaAl2O4 and SiO2–MgAl2O4. Am. Mineral. 1982, 67, 696–717. [Google Scholar]
- Mysen, B.O.; Virgo, D.; Scarfe, C.M. Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study. Am. Mineral. 1980, 65, 690–710. [Google Scholar]
- McMillan, P.F.; Piriou, B. Raman spectroscopic studies of silicate and related glass structure: A review. Bull. Minéral. 1983, 106, 57–75. [Google Scholar] [CrossRef]
- Colomban, P.; Tournié, A.; Bellot-Gurlet, L. Raman Identification of glassy silicates used in ceramic, glass and jewellry: A tentative differentiation guide. J. Raman Spectrosc. 2006, 37, 841–852. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Colomban, P.; Bowden, B. Raman spectroscopic analysis of an English soft-paste porcelain plaque-mounted table. J. Raman Spectrosc. 2004, 35, 656–661. [Google Scholar] [CrossRef]
- Colomban, P.; Treppoz, F. Identification and Differentiation of Ancient and Modern European Porcelains by Raman Macro- and Microspectroscopy. J. Raman Spectrosc. 2001, 32, 93–102. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G. Timurid, Ottoman, Safavid and Qajar Ceramics: Raman and Composition Classification of the Different Types of Glaze and Pigments. Minerals 2003, 13, 977. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P. Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 2016, 47, 499–530. [Google Scholar] [CrossRef]
- Shapiro, S.M.; O’Shea, D.C.; Cummins, H.Z. Raman scattering study of the alpha-beta phase transition in quartz. Phys. Rev. Lett. 1967, 19, 361. [Google Scholar] [CrossRef]
- Syme, R.W.G.; Lockwood, D.J.; Kerr, H.J. Raman spectrum of synthetic zircon (ZrSiO4) and thorite (ThSiO4). J. Phys. C Solid State Phys. 1977, 10, 1335. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Z.; Cheng, H.; Zhang, Z.; Frost, R.L. A Raman spectroscopic comparison of calcite and dolomite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 158–162. [Google Scholar] [CrossRef]
- De Aza, P.N.; Santos, C.; Pazo, A.; De Aza, S.; Cusco, R.; Artus, L. Vibrational properties of calcium phosphate compounds. 1. Raman spectrum of β-tricalcium phosphate. Chem. Mater. 1997, 9, 912–915. [Google Scholar] [CrossRef]
- Richet, P.; Mysen, B.O.; Ingrin, J. High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys. Chem. Miner. 1998, 25, 401–414. [Google Scholar] [CrossRef]
- Koenig, J.L. Raman scattering of synthetic polymers—A review. Appl. Spectrosc. Rev. 1971, 4, 233–305. [Google Scholar] [CrossRef]
- Van Pevenage, J.; Lauwers, D.; Herremans, D.; Verhaeven, E.; Vekemans, B.; de Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P. A combined spectroscopic study on Chinese porcelain containing ruan-cai colours. Anal. Methods 2014, 2, 6387–6394. [Google Scholar] [CrossRef]
- De Faria, D.L.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Kırmızı, B.; Colomban, P.; Quette, B. On-site analysis of Chinese Cloisonné enamels from fifteenth to nineteenth centuries. J. Raman Spectrosc. 2010, 41, 780–790. [Google Scholar] [CrossRef]
- Alencar, I.; Ruiz-Fuertes, J.; Schwartz, K.; Trautmann, C.; Bayarjargal, L.; Haussühl, E.; Winkler, B. Irradiation effects in CaF2 probed by Raman scattering. J. Raman Spectrosc. 2016, 47, 978–983. [Google Scholar] [CrossRef]
- Fornacelli, C.; Colomban, P.; Turbanti Memmi, I. Toward a Raman/FORS discrimination between Art Nouveau and contemporary stained glasses from CdSxSe1−x nanoparticles signatures. J. Raman Spectrosc. 2015, 46, 1129–1139. [Google Scholar] [CrossRef]
- Jankowiak, R.; Roberts, K.; Tomasik, P.; Sikora, M.; Small, G.J.; Schilling, C.H. Probing the crystalline environment of α-alumina via luminescence of metal ion impurities: An optical method of ceramic flaw detection. Mater. Sci. Eng. A 2000, 281, 45–55. [Google Scholar] [CrossRef]
- Deléglise, F.; Berger, M.H.; Jeulin, D.; Bunsell, A.R. Microstructural stability and room temperature mechanical properties of Nextel 720 fibre. J. Eur. Ceram. Soc. 1980, 21, 569–580. [Google Scholar] [CrossRef]
- Hadjiev, V.G.; Iliev, M.N.; Vergilov, I.V. The Raman spectra of Co3O4. J. Phys. C Solid State Phys. 1988, 21, L199. [Google Scholar] [CrossRef]
- Agye, I.K.; Adu-Agyem, J.; Steiner, R. Exploring traditional glass bead making techniques in jewellery. J. Sci. Technol. 2012, 32, 103–112. [Google Scholar] [CrossRef]
- Abraham, S.A. Glass beads and glass production in early South India: Contextualizing Indo-Pacific bead manufacture. Archaeol. Res. Asia 2016, 6, 4–15. [Google Scholar] [CrossRef]
- Available online: https://prossertheengineer.com/ (accessed on 10 March 2025).
- Available online: https://prossertheengineer.com/images/PDF/Patent_No._8548_17_June_1840_(Dust-Pressed_Process).pdf (accessed on 10 March 2025).
- Kaspers, F. Beads from Briare. The Story of a Bead Revolution from France, Marblings Publishing. 2011. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.blurb.co.uk/b/2602875-beads-from-briare&ved=2ahUKEwiTmoWIsdmHAxWCdKQEHUSHHnkQFnoECBIQAQ&usg=AOvVaw3T_Brzj88gFOwX3IP61Aiy (accessed on 20 May 2025).
- Quintero, R.J.N.; Guillemet, S.; Aguilar-Garib, J.A.; Melo, M.E.R.; Durand, B. The thickness of BaTiO3 tape castings as function of the slip system. J. Ceram. Process. Res. 2012, 13, 101–104. [Google Scholar]
- Prinsloo, L.C.; Boeyens, J.C.; Van der Ryst, M.M.; Webb, G. Raman signatures of the modern pigment (Zn, Cd) S1−x Sex and glass matrix of a red bead from Magoro Hill, an archaeological site in Limpopo Province, South Africa, recalibrate the settlement chronology. J. Mol. Struct. 2012, 1023, 123–127. [Google Scholar] [CrossRef]
- Eppler, R.A.; Eppler, D.R. Glazes and Glasses Coatings; The American Ceramics Society: Westerville, OH, USA, 2000. [Google Scholar]
- Opper, M.J.; Opper, H. French beadmaking: An historical perspective emphasizing the 19th and 20th Centuries. Beads J. Soc. Bead Res. 1991, 3, 47–59. [Google Scholar]
- Francis, P., Jr. Beadmaking at Arikamedu and beyond. World Archaeol. 1991, 23, 28–43. [Google Scholar] [CrossRef]
- Van der Sleen, W.G.N. Ancient glass beads with special reference to the beads of East and Central Africa and the Indian Ocean. J. R. Anthropol. Inst. G. B. Irel. 1958, 88, 203–216. [Google Scholar] [CrossRef]
- Beck, R.B. Bibles and beads: Missionaries as traders in southern Africa in the early nineteenth century. J. Afr. Hist. 1989, 30, 211–225. [Google Scholar] [CrossRef]
- Opper, M.J.; Opper, H. Diakhité: A study of the beads from an 18th-19th-century burial site in Senegal, West Africa. Beads J. Soc. Bead Res. 1989, 1, 5–20. [Google Scholar] [CrossRef]
- Saitowitz, S.J. 19th Century Glass Trade Beads: From Two Zulu Royal Residences. Doctoral Dissertation, University of Cape Town, Cape Town, South Africa, 1990. [Google Scholar]
- Mann, R. The history of beads in East Africa. Kenya Past Present 2000, 31, 6–47. [Google Scholar] [CrossRef]
- Burgess, L.E.; Dussubieux, L. Chemical composition of late 18th- and 19th-century glass beads from western North America: Clues to sourcing beads. Beads J. Soc. Bead Res. 2007, 19, 58–73. [Google Scholar]
- Billeck, W.T. Red-on-white drawn or cornelian beads: A 19th-century temporal marker for the plains. Beads J. Soc. Bead Res. 2008, 20, 49–61. [Google Scholar]
- Eagleton, C.; Fuller, H.; Perkins, J. (Eds.) Money in Africa; The British Museum: London, UK, 2009; Available online: https://www.researchgate.net/profile/Karin-Pallaver/publication/304309581_A_Recognized_Currency_in_Beads_Glass_Beads_as_Money_in_Nineteenth-century_East_Africa_the_Central_Caravan_Road/links/576bbfb808aefcf135c00813/A-Recognized-Currency-in-Beads-Glass-Beads-as-Money-in-Nineteenth-century-East-Africa-the-Central-Caravan-Road.pdf (accessed on 19 May 2025).
- Marshall, L.W. Typological and interpretive analysis of a 19th-century bead cache in coastal Kenya. J. Afr. Archaeol. 2012, 10, 89–205. [Google Scholar] [CrossRef]
- Marshall, L.W. Consumer choice and beads in fugitive slave villages in nineteenth-century Kenya. Int. J. Hist. Archaeol. 2019, 23, 103–128. [Google Scholar] [CrossRef]
- Hons, B.A. The Glass Beads from Maleoskop, the 19th-Century Capital of the Bakopa in the Groblersdal Area, Limpopo Province. Doctoral Dissertation, University of Pretoria, Pretoria, South Africa, 2009. [Google Scholar]
- Robertshaw, P.; Wood, M.; Haour, A.; Karklins, K.; Neff, H. Chemical analysis, chronology, and context of a European glass bead assemblage from Garumele, Niger. J. Archaeol. Sci. 2014, 41, 591–604. [Google Scholar] [CrossRef]
- Denbow, J.; Klehm, C.; Dussubieux, L. The glass beads of Kaitshàa and early Indian Ocean trade into the far interior of southern Africa. Antiquity 2015, 89, 361–377. [Google Scholar] [CrossRef]
- Karklins, K.; Jargstorf, S.; Zeh, G.; Dussubieux, L. The Fichtelgebirge bead and button industry of Bavaria. Beads J. Soc. Bead Res. 2016, 28, 16–37. [Google Scholar]
- Biginagwa, T.J. Counterfeit glass beads during the East African caravan trade: Mineralogical and gemnological analysis. UMMA 2023, 10, 1–28. [Google Scholar] [CrossRef]
Color | Sample | Al2O3 | CaO | P2O5 | CuO | CoO | ZnO | Cr2O3 | Fe2O3 | UO2 | As2O3 | PbO | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blue | D2-2 | 13.9 | 2.08 | 0.04 | 0.26 | 0.58 | 0.01 | <0.001 | 0.1 | <0.002 | 0.02 | 0.02 | <0.003 |
D2-3 | 13.5 | 2.16 | 0.04 | 0.18 | 0.61 | 0.009 | ″ | 0.11 | ″ | 0.01 | <0.02 | 0.0016 | |
D2-4 | 13.5 | 1.18 | 0.02 | 0.31 | 0.30 | 0.003 | ″ | 0.12 | ″ | 0.01 | 1.12 | 0.0016 | |
D2-5 | 11.8 | 2.16 | 0.05 | 0.009 | 0.44 | 0.003 | ″ | 0.15 | ″ | 0.008 | <0.02 | 0.19 | |
D2-6 | 10.1 | 2.47 | 0.04 | 0.011 | 0.38 | 0.003 | ″ | 0.13 | ″ | 0.006 | ″ | 0.17 | |
D2-7 | 13.3 | 1.89 | 0.06 | 0.24 | 0.65 | 0.035 | ″ | 0.10 | ″ | 0.008 | ″ | 0.015 | |
D2-8 | 15 | 1.81 | 0 | 0.02 | 0.06 | 0.13 | ″ | 0.11 | ″ | 0.006 | ″ | 0.020 | |
D2-10 | 14.8 | 0.16 | 0.004 | 0.003 | 0.09 | 0.5 | ″ | 0.04 | ″ | 0.03 | ″ | 0.005 | |
Turquoise | A1-3 | 8.54 | 0.31 | 0.005 | 1.13 | 0.023 | 0.0013 | ″ | 0.11 | ″ | 0.01 | ″ | 0.040 |
A1-5 | 7.64 | 0.15 | 0.015 | 0.84 | 0.0005 | 0.0015 | ″ | 0.14 | ″ | 0.006 | <0.01 | 0.016 | |
A1-6 | 7.94 | 0.17 | 0.014 | 0.87 | 0.0001 | 0.0013 | ″ | 0.08 | ″ | 0.007 | ″ | 0.011 | |
D2-20 | 7.88 | 0.17 | 0.014 | 0.91 | 0.0001 | 0.0011 | ″ | 0.09 | ″ | 0.01 | ″ | 0.011 | |
D2-21 | 7.78 | 0.19 | 0.015 | 0.83 | 0.002 | 0.0019 | ″ | 0.13 | ″ | 0.008 | ″ | 0.013 | |
White | A1-8 | 18.8 | 0.84 | 1.05 | 0.002 | - | 0.0008 | 0.002 | 0.10 | ″ | 0.015 | ″ | 0.010 |
D2-23 | 18.6 | 1.08 | 1.29 | 0.002 | - | 0.0009 | - | 0.04 | ″ | - | ″ | 0.009 | |
Green | D2-11 | 6.65 | 1.52 | 0.02 | 0.59 | 0.0008 | 0.0034 | 0.08 | 0.34 | ″ | 0.0007 | 0.35 | 0.016 |
D2-27 | 10.2 | 0.20 | 0.69 | 0.77 | 0.0001 | 0.0021 | 0.12 | 0.09 | ″ | 0.0012 | 1.39 | 0.028 | |
Yellow-green | D2-19 | 13.8 | 0.87 | 0.07 | 0.20 | 0.0001 | 0.28 | 0.13 | 0.07 | ″ | 0.04 | 1.17 | 0.01 |
Yellow | A1-7 | 18.5 | 0.51 | 0.05 | 0.005 | - | 0.003 | 0.0002 | 0.01 | 0.69 | 0.006 | <0.01 | 0.0010 |
D2-26 | 18.1 | 0.37 | 0.04 | 0.004 | - | 0.011 | - | 0.06 | 0.63 | 0.004 | ″ | 0.0007 | |
Pink | D2-24 + | 13.8 | 1.88 | 0.003 | 0.013 | 0.0002 | 0.004 | 0.01 | 0.12 | <0.002 | 0.01 | 0.02 | 0.019 |
D2-22 | 11.2 | 1.39 | 0.14 | 0.004 | - | 0.005 | 0.0001 | 0.08 | ″ | 0.007 | 0.01 | 0.044 | |
Red | D2-25 | 12.5 | 1.77 | 0.13 | 0.01 | 0.0006 | 0.004 | 0.0003 | 0.83 | ″ | 0.008 | 0.01 | 0.016 |
Brown | A1-4 | 16.1 | 0.95 | 0.12 | 0.008 | 0.0001 | 2.53 | 0.38 | 0.88 | ″ | 0.01 | 0.01 | 0.027 |
Color | Sample | Al2O3 | CaO | P2O5 | CuO | CoO | ZnO | Cr2O3 | Fe2O3 | UO2 | As2O3 | PbO | CeO2 | TiO2 | CdO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cream–pink | Col29 | 11.16 | 1.17 | 0.147 | 0.0047 | 0.0001 | 0.0007 | 0.0004 | 0.14 | 0.0001 | 0.0004 | 0.0003 | 0.0005 | 0.0454 | <0.0001 |
White | Col3 | 9.95 | 6.12 | 0.115 | 0.005 | <0.0001 | 0.0008 | 0.0001 | 0.08 | 0.0001 | 0.0023 | 0.0044 | 0.0008 | 0.0229 | <0.0001 |
White | Col6 | 11.25 | 1.36 | 0.144 | 0.0002 | 0.0003 | 0.0004 | 0.0004 | 0.14 | 0.0002 | 0.0002 | 0.0003 | 0.27 | 0.076 | 0.0001 |
White | Col14 | 9.84 | 6.13 | 0.115 | 0.0019 | <0.0001 | 0.0005 | 0.0003 | 0.08 | 0.0001 | 0.0024 | 0.0003 | 0.0008 | 0.024 | <0.0001 |
White | Col19 | 11.17 | 1.49 | 0.146 | 0.0002 | 0.0001 | 0.0005 | <0.0001 | 0.15 | 0.0002 | 0.0001 | 0.0006 | 0.32 | 0.050 | <0.0001 |
White | Col23w | 10.46 | 1.26 | 0.145 | 0.0002 | <0.0001 | 0.0003 | 0.0002 | 0.12 | 0.0002 | 0.0001 | 0.0019 | 0.32 | 0.042 | <0.0001 |
Blue | Col7 | 11.22 | 1.44 | 0.139 | 0.0004 | 0.1954 | 0.36 | 0.0003 | 0.12 | 0.0003 | 0.0002 | 0.0061 | 0.0012 | 0.044 | 0.0002 |
Blue | Col11 | 12.40 | 1.30 | 0.137 | 0.0004 | 0.5252 | 0.60 | 0.0004 | 0.13 | 0.0001 | 0.0002 | 0.0042 | 0.0008 | 0.061 | 0.0005 |
Blue | Col12 | 12.74 | 1.30 | 0.134 | 0.0006 | 0.6174 | 0.75 | 0.0005 | 0.14 | 0.0001 | 0.0002 | 0.0042 | 0.0008 | 0.061 | 0.0003 |
Blue | Col28a | 13.89 | 1.07 | 0.163 | 0.0007 | 0.0817 | 0.03 | 0.0004 | 0.08 | 0.0001 | 0.0009 | 0.0034 | 0.04 | 0.024 | <0.0001 |
Blue | Col24 | 10.44 | 1.29 | 0.138 | 0.3487 | 0.0001 | 0.0006 | 0.0003 | 0.09 | 0.0002 | 0.0005 | 0.0007 | 0.30 | 0.040 | 0.0004 |
Blue | Col8 | 11.24 | 1.37 | 0.149 | 0.0010 | 0.4039 | 0.0013 | 0.0005 | 0.13 | 0.0002 | 0.0003 | 0.0005 | 0.0010 | 0.061 | 0.0001 |
Blue | Col13 | 11.63 | 1.58 | 0.147 | 0.0006 | 0.5962 | 0.0010 | 0.0006 | 0.15 | 0.0002 | 0.0003 | 0.0008 | 0.0014 | 0.082 | <0.0001 |
Blue | Col16 | 10.74 | 1.39 | 0.141 | 0.0013 | 0.2895 | 0.0007 | 0.0004 | 0.13 | 0.0002 | 0.0002 | 0.0007 | 0.0007 | 0.048 | 0.0002 |
Blue | Col28b | 11.31 | 1.39 | 0.149 | 0.0017 | 0.5091 | 0.0010 | 0.0004 | 0.13 | 0.0002 | 0.0001 | 0.0005 | 0.0007 | 0.053 | 0.0003 |
Blue–white | Col27 | 5.44 | 6.19 | 0.022 | 0.0022 | 0.0871 | 0.0007 | 0.0010 | 0.24 | 0.0003 | 0.0002 | 0.0008 | 0.0010 | 0.035 | <0.0001 |
Yellow | Col4 | 11.83 | 1.53 | 0.041 | 0.0001 | 0.0001 | 0.0011 | 0.0040 | 0.12 | 0.0003 | 0.0002 | 0.0012 | 0.0014 | 0.038 | 0.02 |
Yellow | Col 17 | 10.76 | 1.29 | 0.134 | 0.0002 | <0.0001 | 0.12 | 0.0004 | 0.12 | 0.0002 | 0.0008 | 0.26 | 0.0009 | 0.045 | 0.0001 |
Yellow | Col 18 | 13.13 | 1.81 | 0.057 | 0.0004 | 0.0001 | 0.19 | 0.0004 | 0.11 | 0.0002 | 0.0003 | 0.0012 | 0.0015 | 0.038 | 0.16 |
Yellow | Col 20 | 12.39 | 1.74 | 0.047 | 0.0002 | 0.0002 | 0.0094 | 0.0002 | 0.11 | 0.0002 | 0.0002 | 0.0004 | 0.0014 | 0.029 | 0.0086 |
Yellow | Col 28c | 12.64 | 1.66 | 0.040 | 0.0002 | <0.0001 | 0.0007 | 0.0003 | 0.09 | 0.0002 | 0.0002 | 0.0018 | 0.0011 | 0.023 | 0.17 |
Brown | Col 2 | 12.18 | 1.56 | 0.112 | 0.0002 | 0.0001 | 0.0023 | 0.0004 | 0.41 | 0.0003 | 0.0004 | 0.0009 | 0.0009 | 0.036 | 0.1 |
Mauve | Col 25 | 10.24 | 1.82 | 0.131 | 0.0001 | 0.0033 | 0.0002 | 0.0002 | 0.11 | 0.0002 | 0.0001 | 0.0007 | 0.0007 | 0.46 | 0.0001 |
Black | Col 23bk | 10.49 | 1.29 | 0.132 | 0.0006 | 0.0921 | 0.0018 | 0.079 | 0.23 | 0.0002 | 0.0002 | 0.0011 | 0.0012 | 0.046 | <0.0001 |
Red | Col 21 | 12.44 | 1.79 | 0.107 | 0.0004 | 0.0001 | 0.0009 | 0.0004 | 0.10 | 0.0002 | 0.0006 | 0.0019 | 0.0008 | 0.046 | 0.58 |
Green | Col 22 | 8.53 | 0.92 | 0.063 | 1.48 | 0.0001 | 0.0080 | 0.0004 | 0.10 | 0.0001 | 0.0002 | 0.21 | 0.0052 | 0.103 | 0.0001 |
Samples | Colors | Groups | Remarks | ||||
---|---|---|---|---|---|---|---|
SiO2–Al2O3–Fluxes | CaO-PbO-Na2O + K2O | Na2O- K2O-CaO | P2O5 | Raman | |||
D2_2 | Blue | 1′ | β | d | n.a. | Alumina-rich | |
D2_5 | Blue | 1′ | δ | d | n.a. | Alumina-rich | |
D2_6 | Blue | 1′ | δ | d | n.a. | ||
D2_3 | Blue | 1′ | δ′ | d | n.a. | Alumina-rich | |
D2_11 | Green | 1′ | δ′ | d | n.a. | ||
D2_21 | Turquoise | 1′ | δ′ | c | n.a. | Alumina-rich Ca-free | |
A1_3 | Turquoise | 1′ | δ′ | c | A | ||
A1_5 | Turquoise | 1′ | δ′ | c | A | ||
A1_6 | Turquoise | 1′ | δ′ | c | n.a. | ||
D2_20 | Turquoise | 1′ | δ′ | c | n.a. | ||
D2_8 | Blue | 1″ | δ′ | c | n.a. | ||
A1_7 | Yellow | 1″ | δ′ | d | x | Fluo | Alumina-rich |
D2_26 | Yellow | 1″ | δ′ | d | x | Fluo | |
D2_7 | Blue | 1″ | δ′ | d | n.a. | ||
D2_10 | Blue | 1″ | δ | a | ? | Alumina-rich Na-rich | |
A1_8 | White | 1″ | δ′ | d | x | P | +PO4 +PO4 +PO4 Alumina-rich |
D2_23 | White | 1″ | δ′ | d | x | P | |
I 5 | White | n.a. | n.a. | n.a. | P | ||
D2_25 | Red | 1″ | δ′ | d | B | ||
D2_24 | Pink | 1″ | δ′ | d | B | ||
D2_22 | Pink | 1″ | δ′ | a | A | ||
A 20 | Purple | 1″ | α′ | d | B | Alumina-rich | |
D2_4 | Blue | 1″ | β | d | n.a. | Alumina-rich | |
D2_27 | Green | 1″ | β | c | x | ||
D2_19 | Yellow-green | 1″ | β | c | ? | ||
A1_4 | Brown | 1″ | β | d | ? | ||
A 66 | Brown | 1″ | α | d | F | Pb-based | |
A1_11 bk | Black | 2 | δ | b | A | K-free Na-rich K-free | |
A1_11 blue | Blue | 2 | δ | a | B | ||
A 61 | Red | 2 | δ | b | D | ||
A1_10 | Blue | 2 | α | b | n.a. | Pb-based K-free | |
A1_12 green | Green | 2 | α | No group | A | ||
A1_12 red | Red | 2 | α | b | A | ||
D2_15 red | Red | 2 | α | b | n.a. | ||
D2_16 red | Red | 2 | α | b | n.a. | ||
D2_18 | Green | 2 | α | b | n.a. | ||
D2_9 | Blue | 2 | α | d | n.a. | ||
A1_1 | Blue | 2 | α′ | a | A | Pb, Na-based | |
A1_2 | White | 2 | α′ | a | n.a. | ||
A1_9 | White | 2 | α′ | d | D | ||
A1_12 Yel | Yellow | 2 | α′ | a | - | ||
D2_1 | Blue | 2 | α′ | a | n.a. | ||
D2_12 | White | 2 | α′ | a | n.a. | ||
D2_13 | White | 2 | α′ | a | n.a. | ||
D2_14 | White | 2 | α′ | a | n.a. | ||
D2_15 wh | White | 2 | α′ | b | n.a. | ||
D2_17 | White | 2 | α′ | a | n.a. | ||
D2_16 wh | White | 2 | α′ | a | n.a. | ||
A 62 | Red | No group | δ | b | C | ||
A 70 | Green | No group | α | a | D | K-free | |
D 2 | Pink | n.a. | n.a. | n.a. | ? | ||
A 15 | Turquoise | n.a. | n.a. | n.a. | E | ||
A 17 | Purple | n.a. | n.a. | n.a. | B | Alumina-rich |
Samples | Colors | Groups | Remarks | |||
---|---|---|---|---|---|---|
SiO2-Al2O3-Flux | CaO-PbO-Na2O + K2O | Na2O-K2O-CaO | Raman | |||
Col1 | Red | - | - | - | fluo | |
Col3 | White | 1″ | δ | b | K-free | |
Col27 | Blue | 1″ | δ′ | b | ||
Col14 | White | 1″ | δ′ | b | ||
Col2 | Brown | 1″ | δ′ | a | fluo ? B B B B B B fluo | Na-rich +PO4 +PO4 +PO4 +PO4 |
Col18 | Yellow | 1″ | δ′ | a | ||
Col4 | Yellow | 1″ | δ′ | a | ||
Col24 | Blue | 1″ | δ′ | a | ||
Col29 | Cream–pink | 1″ | δ′ | a | ||
Col12 | Blue | 1″ | δ′ | a | ||
Col5 | Blue | - | - | - | ||
Col20 | Yellow | 1″ | δ′ | a | ||
Col21 | Red | 1″ | δ′ | a | ||
Col17 | Yellow | 1″ | δ″ | a | B B B | |
Col22 | Green | 1″ | δ″ | a | ||
Col25 | Mauve | 1″ | δ″ | a | ||
Col6 | White | 1″ | δ′ | a | P P P P P | |
Col19 | White | 1″ | δ′ | a | ||
Col23 | Black | 1″ | δ″ | a | ||
Col28 | Blue Yellow core | 1″ 1″ | δ″ δ″ | a a |
Color | Dohouan Sample | Chromophore/Opacifier Element (LA-ICP-MS) | Raman Fingerprint | Figure |
---|---|---|---|---|
White | A1_8, D2_23, | Ca P Zr Si | Wollastonite Calcium phosphate Zircon Quartz | Figure 5 and Figure 7 Figure 5 and Figure 7 Figure 7 Figure 7 |
Turquoise | A1_3, A1_5 | Cu | No | Figure 7 |
Blue | A1_11 Blue | Co Co-Zn | Co-Zn spinel |
Figure 6 |
Yellow | A1_7 | U | ? | - |
Brown | A1_4 | Fe-Cr | ? | Figure 7 |
Red | D2_25 | Fe | Hematite | Figure 7, Table S2 |
Green | D2_11, D2_27, D2_19 | Cu–Cr Pb-Ba-Zn-Sb | Chromate | Figure 7, Table 2 |
Pink | F2_22, D2_24 | Cr (Sn) | Malayaite garnet | Figure 6 |
Color | Briare Sample | Chromophore/Opacifier Element (LA-ICP-MS) | Raman Fingerprint | Figure |
---|---|---|---|---|
White | Si | Quartz | Figure 8 | |
Cream–pink | Col 29 | P | Calcite | Figure 9 |
Blue | Col 12, Col 27 | Co–Zn Co | Zircon, calcite, cobalt | Figure 8 |
Yellow | Col 28 | Pb-Sb (Sn?) | Naples yellow | Figure 8 |
Brown | Fe | |||
Red Brown | Col 21 Col 2 | Fe CdS-CdSe | Hematite Blend | Figure 9 Figure 9 |
Green | Col 22 | Cu | - | - |
Mauve | Col 25 | Ti | ? | Figure 9 |
Black | Col 23 | Fe-Co-Cr | ? | Figure 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koffi, K.M.; Colomban, P.; Petit, C.; Kouassi, K.S. Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire). Ceramics 2025, 8, 71. https://doi.org/10.3390/ceramics8020071
Koffi KM, Colomban P, Petit C, Kouassi KS. Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire). Ceramics. 2025; 8(2):71. https://doi.org/10.3390/ceramics8020071
Chicago/Turabian StyleKoffi, Kouakou Modeste, Philippe Colomban, Christophe Petit, and Kouakou Siméon Kouassi. 2025. "Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire)" Ceramics 8, no. 2: 71. https://doi.org/10.3390/ceramics8020071
APA StyleKoffi, K. M., Colomban, P., Petit, C., & Kouassi, K. S. (2025). Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire). Ceramics, 8(2), 71. https://doi.org/10.3390/ceramics8020071