Previous Issue
Volume 8, June
 
 

Ceramics, Volume 8, Issue 3 (September 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 2699 KiB  
Article
Sunflower Shells Biomass Fly Ash as Alternative Alkali Activator for One-Part Cement Based on Ladle Slag
by Aleksandar Nikolov, Vladislav Kostov, Nadia Petrova, Liliya Tsvetanova, Stanislav V. Vassilev and Rositsa Titorenkova
Ceramics 2025, 8(3), 79; https://doi.org/10.3390/ceramics8030079 - 20 Jun 2025
Abstract
This study explores the synergistic potential of ladle slag (LS) and sunflower shell fly ash (SSFA) in alkali-activated binder systems, focusing on their chemical and mineralogical characteristics and the influence of SSFA addition on the mechanical performance of LS-based pastes. X-ray fluorescence and [...] Read more.
This study explores the synergistic potential of ladle slag (LS) and sunflower shell fly ash (SSFA) in alkali-activated binder systems, focusing on their chemical and mineralogical characteristics and the influence of SSFA addition on the mechanical performance of LS-based pastes. X-ray fluorescence and XRD analysis revealed that LS is rich in CaO and latent hydraulic phases such as γ-belite and mayenite, while SSFA is dominated by K2O, SO3, and KCl/K2SO4 phases, reflecting its biomass origin. Infrared spectroscopy and thermal analysis confirmed the presence of carbonate, hydroxide, and hydrate phases, with SSFA exhibiting more complex thermal behavior due to volatile-rich composition. When used alone, LS produced weak binders; however, a 10 wt% SSFA addition tripled compressive strength to nearly 30 MPa, indicating a significant activation effect. Further increases in SSFA content led to strength reduction, likely due to increased porosity and excess salts. Microstructural analysis showed that SSFA promotes the formation of AFm phases such as Friedel’s salt and hydrocalumite, altering hydration pathways and enhancing early strength through chemical activation and carbonation processes. The findings highlight the potential of combining LS and SSFA as a sustainable binder system, offering a waste-derived alternative for low-carbon construction materials. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

Previous Issue
Back to TopTop