Next Issue
Volume 14, November
Previous Issue
Volume 14, September
 
 

Metabolites, Volume 14, Issue 10 (October 2024) – 54 articles

Cover Story (view full-size image): The current understanding of how modified atmospheric packaging (MAP) affects the metabolite profiles of cooked beef is limited. This study aimed to assess the effects of different packaging methods on the color and metabolite composition of both normal-pH and atypical dark-cutting beef. A total of 129 metabolite features were identified in this study. Serine and tryptophan were over-abundant in cooked atypical dark-cutting beef compared to raw atypical samples. This study suggests that packaging conditions change metabolite profiles, which can influence cooked metabolites. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 7552 KiB  
Article
Metabolomics Reveal Key Metabolic Pathway Responses to Anxiety State Regulated by Serotonin in Portunus trituberculatus
by Wei Zhai, Yuanyuan Fu, Lei Liu, Xinlian Huang and Sixiang Wang
Metabolites 2024, 14(10), 568; https://doi.org/10.3390/metabo14100568 - 21 Oct 2024
Viewed by 838
Abstract
Background: Anxiety refers to the pathological persistence and intensification of emotional responses to danger, affecting health from psychological and physical aspects. Serotonin is an important neurotransmitter involved in the onset of anxiety. Methods and Results: To explore the biological changes in the formation [...] Read more.
Background: Anxiety refers to the pathological persistence and intensification of emotional responses to danger, affecting health from psychological and physical aspects. Serotonin is an important neurotransmitter involved in the onset of anxiety. Methods and Results: To explore the biological changes in the formation of anxiety in crustaceans under the regulation of serotonin, we applied the open field-like test method for assessing anxiety states of larval Portunus trituberculatus, a highly aggressive crustacean species with a more simple neural structure compared with rodents and mammals. Compared with the control group, serotonin treatment resulted in a significant decrease in the time spent by the larvae in the central zone, suggesting anxiety-like behavior. Clonazepam treatment reversed this result and provided further evidence that the behavior of larval P. trituberculatus displayed anxiety. Moreover, a non-targeted metabolomic analysis found a significant alteration in the metabolites involved in tryptophan metabolism pathways associated with anxiety, including L-kynurenine, N-acetyl serotonin, and serotonin. These metabolites are involved in the serotonin pathway, the kynurenine pathway, and other pathways that affect anxiety through tryptophan metabolism. There were no significant differences in tryptophan metabolism levels between the control and clonazepam treatment groups. Conclusions: Our results demonstrate the possible existence of anxiety-like behavior in the larvae of P. trituberculatus from two perspectives. Being a species with a simpler neural structure than that of mammals, the larvae of P. trituberculatus offer a convenient model for studying the mechanisms of anxiety in crustaceans. Full article
Show Figures

Figure 1

14 pages, 2938 KiB  
Article
Effects of Different Photoperiods on Peripheral 5-Hydroxytryptamine Metabolism, Breast Muscle Glucose Metabolism, and Myopathies in Broilers
by Miao Yu, Mengjie Xu, Guangju Wang, Jinghai Feng and Minhong Zhang
Metabolites 2024, 14(10), 567; https://doi.org/10.3390/metabo14100567 - 21 Oct 2024
Viewed by 535
Abstract
Background: There is a close relationship between breast muscle glucose metabolism, peripheral 5-hydroxytryptamine (5-HT), and myopathies in animals. Here, this study aimed to investigate the effects of different photoperiods on peripheral 5-HT metabolism, white striping (WS), and wooden breast (WB) in broilers. [...] Read more.
Background: There is a close relationship between breast muscle glucose metabolism, peripheral 5-hydroxytryptamine (5-HT), and myopathies in animals. Here, this study aimed to investigate the effects of different photoperiods on peripheral 5-HT metabolism, white striping (WS), and wooden breast (WB) in broilers. Methods: A total of 216 healthy 5-day-old (d) Arbor Acres (AA) male broilers were randomly assigned to 12L:12D, 18L:6D, and 24L:0D photoperiods for 4 weeks. Results: Compared with the 12L:12D photoperiod, we found the WB score in broilers was significantly increased in the 18L:6D and 24L:0D photoperiod at week 4 (p < 0.05). Muscle glycogen was significantly reduced (p < 0.05) and glycolysis was promoted in the breast muscles of broilers under the 18L:6D and 24L:0D photoperiods at week 2 and 4. Peripheral 5-HT concentrations, the mRNA expression of tryptophan hydroxylase 1 (TPH1) and serotonin transporter (SERT) in the cecal mucosa, and 5-hydroxytryptamine receptor 2A (5-HTR2A) mRNA expression in the breast muscle of broilers significantly up-regulated in the 18L:6D and 24L:0D photoperiod at week 2 and 4 (p < 0.05). Conclusions: Our findings revealed that extending the photoperiod improved the breast muscle growth rate, but up-regulated 5-HT synthesis and secretion to higher peripheral 5-HT, induced breast muscle glucose metabolism disorder, and increased WB incidence rates in broilers. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

18 pages, 1328 KiB  
Article
Metabolomics Approach to Identify Biomarkers of Acute and Subacute Mastitis in Milk Samples: A Pilot Case–Control Study
by Paola Quifer-Rada, Laia Aguilar-Camprubí, Sara Samino, Nuria Amigó, Oria Soler and Alba Padró-Arocas
Metabolites 2024, 14(10), 566; https://doi.org/10.3390/metabo14100566 - 21 Oct 2024
Viewed by 1388
Abstract
Background and aims: Mastitis is one of the main complications during breastfeeding and contributes to the cessation of breastfeeding. However, the etiopathogenesis and diagnosis of mastitis are complex and not yet well defined. We aimed to identify metabolic and lipidic changes in [...] Read more.
Background and aims: Mastitis is one of the main complications during breastfeeding and contributes to the cessation of breastfeeding. However, the etiopathogenesis and diagnosis of mastitis are complex and not yet well defined. We aimed to identify metabolic and lipidic changes in human milk during acute and subacute mastitis in order to detect potential biomarkers of mastitis. Methods: We conducted a pilot case–control study including 14 breastfeeding women with acute mastitis, 32 with subacute mastitis symptoms, and 19 without any mastitis symptoms (control). Milk samples were collected and analyzed by proton nuclear magnetic resonance (H-NMR) for metabolomics analysis. To assess the association between the significant metabolites and lipids and the development of acute and subacute mastitis, multi-adjusted logistic regression models were developed. Results: The NMR-based metabolomics approach was able to identify and quantify a total of 40 metabolites in breast milk samples. After adjusting for confounding variables, acute mastitis was significantly associated with acetate (OR 3.9 IC 1.4–10.8), total cholesterol (OR 14 CI 3.2–62), esterified cholesterol (OR 3.3 CI 1.9–5.8), and sphingomyelin (OR 2.6 CI 1.2–5.8). The other metabolites presented weak association (OR < 2.5). Subacute mastitis was significantly associated with glutamine, lysophosphatidylcholine, phosphatidylcholine, plasmalogen, and total polyunsaturated fatty acids, but only cholesterol showed a strong association (OR > 2.5) with an OR of 2.6 (IC 1.1–6.6). Conclusions: Metabolic alteration in breast milk occurs during a process of both acute and subacute mastitis. Acetate, esterified cholesterol, lysophostidylcholine, and polyunsaturated fatty acids increased in both acute and subacute mastitis. However, according to the multi-adjusted regression logistic models, the candidate biomarkers for acute and subacute mastitis are cholesterol, lysophosphatidylcoholine, phosphatidylcholine, plasmalogen, and polyunsaturated fatty acids. Full article
Show Figures

Figure 1

11 pages, 729 KiB  
Article
Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto’s Thyroiditis on Levothyroxine Substitution
by Eszter Berta, Sándor Halmi, István Molnár, Dávid Hutkai, Sára Csiha, Harjit Pal Bhattoa, Hajnalka Lőrincz, Sándor Somodi, Mónika Katkó, Mariann Harangi, György Paragh, Endre V. Nagy and Miklós Bodor
Metabolites 2024, 14(10), 565; https://doi.org/10.3390/metabo14100565 - 21 Oct 2024
Viewed by 563
Abstract
Background/Objectives: Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism exerting protection against atherosclerosis by multiple actions on the blood vessels, liver, and adipose tissues. We aimed to investigate serum FGF21 level and its relation to thyroid hormones [...] Read more.
Background/Objectives: Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism exerting protection against atherosclerosis by multiple actions on the blood vessels, liver, and adipose tissues. We aimed to investigate serum FGF21 level and its relation to thyroid hormones and metabolic parameters among patients with Hashimoto’s thyroiditis (HT). Methods: Eighty patients with HT on levothyroxine treatment and eighty-two age- and BMI-matched adults without thyroid disease serving as controls were enrolled. Serum FGF21 concentrations were determined with an enzyme-linked immunosorbent assay. Results: Median serum FGF21 level was significantly lower in HT patients compared with controls (74.2 (33.4–148.3) pg/mL vs. 131.9 (44.8–236.3) pg/mL; p = 0.03). We found a positive correlation between FGF21 and age, triglyceride, total cholesterol, and low-density lipoprotein cholesterol in both groups, while thyroid stimulating hormone and C-reactive protein showed a positive correlation, and thyroxine had an inverse correlation with FGF21 only in control subjects. According to multiple regression analyses, thyroid status is the main predictor of FGF21 in healthy controls, while it is not a significant predictor of FGF21 among HT patients on levothyroxine supplementation therapy. Conclusions: Our results indicate that the physiological role of thyroid function in the regulation of FGF21 synthesis is impaired in HT patients, which may contribute to the metabolic alterations characteristic of HT patients. Full article
(This article belongs to the Special Issue Lipid Metabolism in Obesity and Diabetes, 2nd Edition)
Show Figures

Figure 1

5 pages, 493 KiB  
Editorial
The Underlying Effect of Urate Levels on Female Infertility
by Muhammad Naveed and Jennifer W. Hill
Metabolites 2024, 14(10), 564; https://doi.org/10.3390/metabo14100564 - 21 Oct 2024
Viewed by 499
Abstract
Female infertility is a complex and multifaceted condition that affects millions of women globally [...] Full article
Show Figures

Figure 1

20 pages, 7485 KiB  
Article
Comparative Evaluation of the Chemical Components and Anti-Inflammatory Potential of Yellow- and Blue-Flowered Meconopsis Species: M. integrifolia and M. betonicifolia
by Peizhao Cheng, Ruixi Gan, Cong Wang, Qian Xu, Kelsang Norbu, Feng Zhou, Sixin Kong, Zhuoma Jia, Dawa Jiabu, Xin Feng and Junsong Wang
Metabolites 2024, 14(10), 563; https://doi.org/10.3390/metabo14100563 - 20 Oct 2024
Viewed by 768
Abstract
Background/Objectives: Meconopsis has long been used in traditional Tibetan medicine to treat various inflammatory and pain-related conditions. However, blue-flowered Meconopsis (M. betonicifolia) is becoming increasingly scarce due to overharvesting. As a potential alternative, yellow-flowered Meconopsis (M. integrifolia) shows [...] Read more.
Background/Objectives: Meconopsis has long been used in traditional Tibetan medicine to treat various inflammatory and pain-related conditions. However, blue-flowered Meconopsis (M. betonicifolia) is becoming increasingly scarce due to overharvesting. As a potential alternative, yellow-flowered Meconopsis (M. integrifolia) shows promise but requires comprehensive characterization. This study aimed to evaluate and compare the anti-inflammatory potential of yellow- and blue-flowered Meconopsis species. Methods: Liquid chromatography–mass spectrometry (LC-MS) techniques were used to analyze the chemical profiles of yellow- and blue-flowered Meconopsis. Putative targets of shared constituents were subjected to GO and disease enrichment analysis. The LPS-induced RAW264.7 macrophage model was employed to assess anti-inflammatory effects. Metabolomics was applied to gain mechanistic insights. Results: LC-MS revealed over 70% chemical similarity between species. Enrichment analysis associated targets with inflammation-related pathways. In macrophage assays, both species demonstrated dose-dependent antioxidative and anti-inflammatory activities, with yellow Meconopsis exhibiting superior efficacy. Metabolomics showed modulation of key inflammatory metabolic pathways. Conclusions: This integrative study validated yellow-flowered Meconopsis as a credible alternative to its blue-flowered counterpart for anti-inflammatory applications. Metabolic profiling provided initial clues regarding their multi-targeted modes of action, highlighting their potential for sustainable utilization and biodiversity conservation. Full article
(This article belongs to the Special Issue Metabolomics in Plant Natural Products Research)
Show Figures

Figure 1

20 pages, 1457 KiB  
Article
Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers
by Alina Ebert, Saleh Alseekh, Lucio D’Andrea, Ute Roessner, Ralph Bock and Joachim Kopka
Metabolites 2024, 14(10), 562; https://doi.org/10.3390/metabo14100562 - 20 Oct 2024
Viewed by 599
Abstract
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana [...] Read more.
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. Objectives: We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. Methods: We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. Results: We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. Conclusions: We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

19 pages, 658 KiB  
Review
Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure–Activity Relationship
by Xinru Liu, Qiuyue Hu, Yafang Shen, Yuxin Wu, Lu Gao, Xuechao Xu and Guijie Hao
Metabolites 2024, 14(10), 561; https://doi.org/10.3390/metabo14100561 - 20 Oct 2024
Viewed by 636
Abstract
Background/Objectives: Excessive reactive oxygen species (ROS) can lead to oxidative stress, which has become an urgent problem requiring effective solutions. Due to the drawbacks of chemically synthesized antioxidants, there is a growing interest in natural antioxidants, particularly antioxidant peptides. Methods: By reviewing [...] Read more.
Background/Objectives: Excessive reactive oxygen species (ROS) can lead to oxidative stress, which has become an urgent problem requiring effective solutions. Due to the drawbacks of chemically synthesized antioxidants, there is a growing interest in natural antioxidants, particularly antioxidant peptides. Methods: By reviewing recent literature on antioxidant peptides, particularly those extracted from various parts of fish, summarize which fish by-products are more conducive to the extraction of antioxidant peptides and elaborate on their characteristics. Results: This article summarizes recent advancements in extracting antioxidant peptides from fish processing by-products, Briefly introduced the purification and identification process of antioxidant peptides, specifically focusing on the extraction of antioxidant peptides from various fish by-products. Additionally, this article comprehensively reviews the relationship between amino acid residues that compose antioxidant peptides and their potential mechanisms of action. It explores the impact of amino acid types, molecular weight, and structure–activity relationships on antioxidant efficacy. Conclusions: Different amino acid residues can contribute to the antioxidant activity of peptides by scavenging free radicals, chelating metal ions, and modulating enzyme activities. The smaller the molecular weight of the antioxidant peptide, the stronger its antioxidant activity. Additionally, the antioxidant activity of peptides is influenced by specific amino acids located at the C-terminus and N-terminus positions. Simultaneously, this review provides a more systematic analysis and a broader perspective based on existing research, concluded that fish viscera are more favorable for the extraction of antioxidant peptides, providing new insights for the practical application of fish by-products. This could increase the utilization of fish viscera and reduce the environmental pollution caused by their waste, offering valuable references for the study and application of antioxidant peptides from fish by-products. Full article
Show Figures

Figure 1

22 pages, 813 KiB  
Review
Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions
by Iris Jasmin Santos German, Sandra Maria Barbalho, Jesus Carlos Andreo, Tereza Lais Menegucci Zutin, Lucas Fornari Laurindo, Victória Dogani Rodrigues, Adriano Cressoni Araújo, Elen Landgraf Guiguer, Rosa Direito, Karina Torres Pomini and André Luis Shinohara
Metabolites 2024, 14(10), 560; https://doi.org/10.3390/metabo14100560 - 18 Oct 2024
Viewed by 576
Abstract
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of [...] Read more.
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of action of catechins on bone tissue. Methods: The search was applied to PubMed without limitations in date, language, or article type. Fifteen articles matched the topic and objective of this review. Results: EGCG (epigallocatechin gallate) and epicatechin demonstrated action on the osteogenic markers RANKL, TRAP, and NF-κβ and expression of BMPs and ALP, thus improving the bone microarchitecture. Studies on animals showed the action of EGCG in increasing calcium and osteoprotegerin levels, in addition to regulating the transcription factor NF-ATc1 associated with osteoclastogenesis. However, it did not show any effect on osteocalcin and RANK. Regarding human studies, EGCG reduced the risk of fracture in a dose-dependent manner. In periodontal tissue, EGCG reduced IL-6, TNF, and RANKL in vitro and in vivo. Human studies showed a reduction in periodontal pockets, gingival index, and clinical attachment level. The action of EGCG on membranes and hydrogels showed biocompatible and osteoinductive properties on the microenvironment of bone tissue by stimulating the expression of osteogenic growth factors and increasing osteocalcin and alkaline phosphate levels, thus promoting new bone formation. Conclusions: EGCG stimulates cytokines related to osteogenes, increasing bone mineral density, reducing osteoclastogenesis factors, and showing great potential as a therapeutic strategy for reducing the risk of bone fractures. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

15 pages, 1822 KiB  
Article
Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer
by Simona Manuguerra, Fabrizia Carli, Egeria Scoditti, Andrea Santulli, Amalia Gastaldelli and Concetta Maria Messina
Metabolites 2024, 14(10), 559; https://doi.org/10.3390/metabo14100559 - 17 Oct 2024
Viewed by 636
Abstract
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to [...] Read more.
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to pollutants causes oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which can affect signaling pathways that regulate the cell cycle, apoptosis, energy balance, and cellular metabolism. The aim of this study was to investigate the effects of sub-lethal concentrations of mixtures of emerging pollutants and pharmaceuticals on the modulation of biomarkers related to toxicity, oxidative stress, and cancer. Methods: In this study, the hepatoma cell line HepG2 was exposed to increasing concentrations of polybrominated diphenyl ether 47 (BDE-47), cadmium chloride (CdCl2), and carbamazepine (CBZ), both individually and in mixtures, for 72 h to assess cytotoxicity using the MTT assay. The subsequent step, following the identification of the sub-lethal concentration, was to investigate the effects of exposure at the gene expression level, through the evaluation of molecular markers related to cell cycle and apoptosis (p53), oxidative stress (NRF2), conjugation and detoxification of xenobiotics (CYP2C9 and GST), DNA damage (RAD51 and γH2AFX), and SUMOylation processes (SUMO1 and UBC9) in order to identify any potential alterations in pathways that are normally activated at the cellular level. Results: The results showed that contaminants tend to affect the enzymatic detoxification and antioxidant system, influencing DNA repair defense mechanisms involved in resistance to oxidative stress. The combined effect of the compounds at sub-lethal doses results in a greater activation of these pathways compared to exposure to each compound alone, thereby exacerbating their cytotoxicity. Conclusions: The biomarkers analyzed could contribute to the definition of early warning markers useful for environmental monitoring, while simultaneously providing insight into the toxicity and hazard levels of these substances in the environment and associated health risks. Full article
Show Figures

Figure 1

13 pages, 5623 KiB  
Article
Unveiling the Metabolic Trajectory of Pig Feces Across Different Ages and Senescence
by Chuanmin Qiao, Chengzhong Liu, Ruipei Ding, Shumei Wang and Maozhang He
Metabolites 2024, 14(10), 558; https://doi.org/10.3390/metabo14100558 - 17 Oct 2024
Viewed by 648
Abstract
Porcine models are increasingly recognized for their similarities to humans and have been utilized in disease modeling and organ grafting research. While extensive metabolomics studies have been conducted in swine, primarily focusing on conventional cohorts or specific animal models, the composition and functions [...] Read more.
Porcine models are increasingly recognized for their similarities to humans and have been utilized in disease modeling and organ grafting research. While extensive metabolomics studies have been conducted in swine, primarily focusing on conventional cohorts or specific animal models, the composition and functions of fecal metabolites in pigs across different age groups—particularly in the elderly—remain inadequately understood. In this study, an untargeted metabolomics approach was employed to analyze the fecal metabolomes of pigs at three distinct age stages: young (one year), middle-aged (four years), and elderly (eight years). The objective was to elucidate age-associated changes in metabolite composition and functionality under standardized rearing conditions. The untargeted metabolomic analysis revealed a diverse array of age-related metabolites. Notably, L-methionine sulfoxide levels were found to increase with age, whereas cytidine-5-monophosphate levels exhibited a gradual decline throughout the aging process. These metabolites demonstrated alterations across various biological pathways, including energy metabolism, pyrimidine metabolism, lipid metabolism, and amino acid metabolism. Collectively, the identified key metabolites, such as L-methionine sulfoxide and Cholecalciferol, may serve as potential biomarkers of senescence, providing valuable insights into the mechanistic understanding of aging in pigs. Full article
Show Figures

Figure 1

18 pages, 3074 KiB  
Article
Causal Metabolomic and Lipidomic Analysis of Circulating Plasma Metabolites in Autism: A Comprehensive Mendelian Randomization Study with Independent Cohort Validation
by Zhifan Li, Yanrong Li, Xinrong Tang, Abao Xing, Jianlin Lin, Junrong Li, Junjun Ji, Tiantian Cai, Ke Zheng, Sai Sachin Lingampelly and Kefeng Li
Metabolites 2024, 14(10), 557; https://doi.org/10.3390/metabo14100557 - 17 Oct 2024
Viewed by 599
Abstract
Background: The increasing prevalence of autism spectrum disorder (ASD) highlights the need for objective diagnostic markers and a better understanding of its pathogenesis. Metabolic differences have been observed between individuals with and without ASD, but their causal relevance remains unclear. Methods: Bidirectional two-sample [...] Read more.
Background: The increasing prevalence of autism spectrum disorder (ASD) highlights the need for objective diagnostic markers and a better understanding of its pathogenesis. Metabolic differences have been observed between individuals with and without ASD, but their causal relevance remains unclear. Methods: Bidirectional two-sample Mendelian randomization (MR) was used to assess causal associations between circulating plasma metabolites and ASD using large-scale genome-wide association study (GWAS) datasets—comprising 1091 metabolites, 309 ratios, and 179 lipids—and three European autism datasets (PGC 2015: n = 10,610 and 10,263; 2017: n = 46,351). Inverse-variance weighted (IVW) and weighted median methods were employed, along with robust sensitivity and power analyses followed by independent cohort validation. Results: Higher genetically predicted levels of sphingomyelin (SM) (d17:1/16:0) (OR, 1.129; 95% CI, 1.024–1.245; p = 0.015) were causally linked to increased ASD risk. Additionally, ASD children had higher plasma creatine/carnitine ratios. These MR findings were validated in an independent US autism cohort using machine learning analysis. Conclusion: Utilizing large datasets, two MR approaches, robust sensitivity analyses, and independent validation, our novel findings provide evidence for the potential roles of metabolomics and circulating metabolites in ASD diagnosis and etiology. Full article
Show Figures

Figure 1

16 pages, 11346 KiB  
Article
Silybin Meglumine Mitigates CCl4-Induced Liver Fibrosis and Bile Acid Metabolism Alterations
by Xiaoxin Liu, Ninglin Xia, Qinwei Yu, Ming Jin, Zifan Wang, Xue Fan, Wen Zhao, Anqin Li, Zhenzhou Jiang and Luyong Zhang
Metabolites 2024, 14(10), 556; https://doi.org/10.3390/metabo14100556 - 17 Oct 2024
Viewed by 640
Abstract
Background: Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Silybin meglumine (SLB-M) is widely used in treating various liver diseases including liver fibrosis. However, research on its effects on [...] Read more.
Background: Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Silybin meglumine (SLB-M) is widely used in treating various liver diseases including liver fibrosis. However, research on its effects on bile acid (BA) metabolism is limited. This study investigated the therapeutic effects of SLB-M on liver fibrosis and BA metabolism in a CCl4-induced murine model. Methods: A murine liver fibrosis model was induced by CCl4. Fibrosis was evaluated using HE, picrosirius red, and Masson’s trichrome staining. Liver function was assessed by serum and hepatic biochemical markers. Bile acid (BA) metabolism was analyzed using LC-MS/MS. Bioinformatics analyses, including PPI network, GO, and KEGG pathway analyses, were employed to explore molecular mechanisms. Gene expression alterations in liver tissue were examined via qRT-PCR. Results: SLB-M treatment resulted in significant histological improvements in liver tissue, reducing collagen deposition and restoring liver architecture. Biochemically, SLB-M not only normalized serum liver enzyme levels (ALT, AST, TBA, and GGT) but also mitigated disruptions in both systemic and hepatic BA metabolism by increased unconjugated BAs like cholic acid and chenodeoxycholic acid but decreased conjugated BAs including taurocholic acid and taurodeoxycholic acid, compared to that in CCl4-induced murine model. Notably, SLB-M efficiently improved the imbalance of BA homeostasis in liver caused by CCl4 via activating Farnesoid X receptor. Conclusions: These findings underscore SLB-M decreased inflammatory response, reconstructed BA homeostasis possibly by regulating key pathways, and gene expressions in BA metabolism. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

17 pages, 3970 KiB  
Article
Rats Exposed to Excess Sucrose During a Critical Period Develop Inflammation and Express a Secretory Phenotype of Vascular Smooth Muscle Cells
by Verónica Guarner-Lans, Elizabeth Soria-Castro, Agustina Cano-Martínez, María Esther Rubio-Ruiz, Gabriela Zarco, Elizabeth Carreón-Torres, Oscar Grimaldo, Vicente Castrejón-Téllez and Israel Pérez-Torres
Metabolites 2024, 14(10), 555; https://doi.org/10.3390/metabo14100555 - 17 Oct 2024
Viewed by 616
Abstract
Background: Neonatal rats that receive sucrose during a critical postnatal period (CP, days 12 to 28) develop hypertension by the time they reach adulthood. Inflammation might contribute to changes during this period and could be associated with variations in the vascular smooth muscle [...] Read more.
Background: Neonatal rats that receive sucrose during a critical postnatal period (CP, days 12 to 28) develop hypertension by the time they reach adulthood. Inflammation might contribute to changes during this period and could be associated with variations in the vascular smooth muscle (VSMC) phenotype. Objective: We studied changes in inflammatory pathways that could underlie the expression of the secretory phenotype in the VSMC in the thoracic aorta of rats that received sucrose during CP. Methods: We analyzed histological changes in the aorta and the expression of the COX-2, TLR4, iNOS, eNOS, MMP-2 and -9, and β- and α-actin, the quantities of TNF-α, IL-6, and IL-1β using ELISA, and the levels of fatty acids using gas chromatography. Results: The aortic wall presented disorganization, decellularization, and wavy elastic fibers and an increase in the lumen area. The α- and β-actin expressions were decreased, while COX-2, TLR4, TNF-α, and the activity of IL-6 were increased. Oleic acid was increased in CP in comparison to the control group. Conclusions: There is transient hypertension at the end of the CP that is accompanied by inflammation and a change in the phenotype of VSMC to the secretory phenotype. The inflammatory changes could act as epigenetic signals to determine the development of hypertension when animals reach adulthood. Full article
(This article belongs to the Special Issue Impact of Macronutrients on Metabolism)
Show Figures

Graphical abstract

12 pages, 2076 KiB  
Article
Liraglutide Therapy in Obese Patients Alters Macrophage Phenotype and Decreases Their Tumor Necrosis Factor Alpha Release and Oxidative Stress Markers—A Pilot Study
by Łukasz Bułdak, Aleksandra Bołdys, Estera Skudrzyk, Grzegorz Machnik and Bogusław Okopień
Metabolites 2024, 14(10), 554; https://doi.org/10.3390/metabo14100554 - 16 Oct 2024
Viewed by 578
Abstract
Introduction: Obesity is one of the major healthcare challenges. It affects one in eight people around the world and leads to several comorbidities, including type 2 diabetes, hyperlipidemia, and arterial hypertension. GLP-1 analogs have become major players in the therapy of obesity, [...] Read more.
Introduction: Obesity is one of the major healthcare challenges. It affects one in eight people around the world and leads to several comorbidities, including type 2 diabetes, hyperlipidemia, and arterial hypertension. GLP-1 analogs have become major players in the therapy of obesity, leading to significant weight loss in patients. However, benefits resulting from their usage seem to be greater than simple appetite reduction and glucose-lowering potential. Recent data show better cardiovascular outcomes, which are connected with the improvements in the course of atherosclerosis. Macrophages are crucial cells in the forming and progression of atherosclerotic lesions. Previously, it was shown that in vitro treatment with GLP-1 analogs can affect macrophage phenotype, but there is a paucity of in vivo data. Objective: To evaluate the influence of in vivo treatment with liraglutide on basic phenotypic and functional markers of macrophages. Methods: Basic phenotypic features were assessed (including inducible nitric oxide synthase, arginase 1 and mannose receptors), proinflammatory cytokine (IL-1β, TNFα) release, and oxidative stress markers (reactive oxygen species, malondialdehyde) in macrophages obtained prior and after 3-month therapy with liraglutide in patients with obesity. Results: Three-month treatment with subcutaneous liraglutide resulted in the alteration of macrophage phenotype toward alternative activation (M2) with accompanying reduction in the TNFα release and diminished oxidative stress markers. Conclusions: Our results show that macrophages in patients treated with GLP-1 can alter their phenotype and function. Those findings may at least partly explain the pleiotropic beneficial cardiovascular effects seen in subjects treated with GLP-1 analogs. Full article
Show Figures

Figure 1

16 pages, 2098 KiB  
Article
Mitochondrial Abundance and Function Differ Across Muscle Within Species
by Con-Ning Yen, Jocelyn S. Bodmer, Jordan C. Wicks, Morgan D. Zumbaugh, Michael E. Persia, Tim H. Shi and David E. Gerrard
Metabolites 2024, 14(10), 553; https://doi.org/10.3390/metabo14100553 - 16 Oct 2024
Viewed by 593
Abstract
Background: Mitochondria are considered the powerhouse of cells, and skeletal muscle cells are no exception. However, information regarding muscle mitochondria from different species is limited. Methods: Different muscles from cattle, pigs and chickens were analyzed for mitochondrial DNA (mtDNA), protein and [...] Read more.
Background: Mitochondria are considered the powerhouse of cells, and skeletal muscle cells are no exception. However, information regarding muscle mitochondria from different species is limited. Methods: Different muscles from cattle, pigs and chickens were analyzed for mitochondrial DNA (mtDNA), protein and oxygen consumption. Results: Bovine oxidative muscle mitochondria contain greater mtDNA (p < 0.05), protein (succinate dehydrogenase, SDHA, p < 0.01; citrate synthase, CS, p < 0.01; complex I, CI, p < 0.05), and oxygen consumption (p < 0.01) than their glycolytic counterpart. Likewise, porcine oxidative muscle contains greater mtDNA (p < 0.01), mitochondrial proteins (SDHA, p < 0.05; CS, p < 0.001; CI, p < 0.01) and oxidative phosphorylation capacity (OXPHOS, p < 0.05) in comparison to glycolytic muscle. However, avian oxidative skeletal muscle showed no differences in absolute mtDNA, SDHA, CI, complex II, lactate dehydrogenase, or glyceraldehyde 3 phosphate dehydrogenase compared to their glycolytic counterpart. Even so, avian mitochondria isolated from oxidative muscles had greater OXPHOS capacity (p < 0.05) than glycolytic muscle. Conclusions: These data show avian mitochondria function is independent of absolute mtDNA content and protein abundance, and argue that multiple levels of inquiry are warranted to determine the wholistic role of mitochondria in skeletal muscle. Full article
(This article belongs to the Special Issue Unlocking the Mysteries of Muscle Metabolism in the Animal Sciences)
Show Figures

Figure 1

17 pages, 823 KiB  
Article
Maternal Dietary Deficiencies in Folic Acid and Choline Change Metabolites Levels in Offspring after Ischemic Stroke
by Faizan Anwar, Mary-Tyler Mosley, Paniz Jasbi, Jinhua Chi, Haiwei Gu and Nafisa M. Jadavji
Metabolites 2024, 14(10), 552; https://doi.org/10.3390/metabo14100552 - 16 Oct 2024
Viewed by 700
Abstract
Background/objectives: Ischemic stroke is a major health concern, and nutrition is a modifiable risk factor that can influence recovery outcomes. This study investigated the impact of maternal dietary deficiencies in folic acid (FADD) or choline (ChDD) on the metabolite profiles of offspring [...] Read more.
Background/objectives: Ischemic stroke is a major health concern, and nutrition is a modifiable risk factor that can influence recovery outcomes. This study investigated the impact of maternal dietary deficiencies in folic acid (FADD) or choline (ChDD) on the metabolite profiles of offspring after ischemic stroke. Methods: A total of 32 mice (17 males and 15 females) were used to analyze sex-specific differences in response to these deficiencies. Results: At 1-week post-stroke, female offspring from the FADD group showed the greatest number of altered metabolites, including pathways involved in cholesterol metabolism and neuroprotection. At 4 weeks post-stroke, both FADD and ChDD groups exhibited significant disruptions in metabolites linked to inflammation, oxidative stress, and neurotransmission. Conclusions: These alterations were more pronounced in females compared to males, suggesting sex-dependent responses to maternal dietary deficiencies. The practical implications of these findings suggest that ensuring adequate maternal nutrition during pregnancy may be crucial for reducing stroke susceptibility and improving post-stroke recovery in offspring. Nutritional supplementation strategies targeting folic acid and choline intake could potentially mitigate the long-term adverse effects on metabolic pathways and promote better neurological outcomes. Future research should explore these dietary interventions in clinical settings to develop comprehensive guidelines for maternal nutrition and stroke prevention. Full article
(This article belongs to the Special Issue Neuronutrition: Metabolomic Insights and Perspectives)
Show Figures

Figure 1

16 pages, 273 KiB  
Article
Metabolic and Immune Parameters in Pregnant Women with Impaired Glucose Metabolism—A Pilot Study
by Jelena Omazić, Andrijana Muller, Blaž Dumančić, Mirta Kadivnik, Jasna Aladrović, Lana Pađen, Kristina Kralik, Nikolina Brkić, Blaženka Dobrošević, Barbara Vuković and Jasenka Wagner
Metabolites 2024, 14(10), 551; https://doi.org/10.3390/metabo14100551 - 16 Oct 2024
Viewed by 619
Abstract
Gestational diabetes mellitus (GDM) is a public health problem with increasing prevalence. Analyses of metabolic and immune profiles have great potential for discovering new markers and mechanisms related to the development of GDM. We monitored 61 pregnant women during the first and third [...] Read more.
Gestational diabetes mellitus (GDM) is a public health problem with increasing prevalence. Analyses of metabolic and immune profiles have great potential for discovering new markers and mechanisms related to the development of GDM. We monitored 61 pregnant women during the first and third trimesters of pregnancy, including 13 pregnant women with GDM, 14 pregnant women with elevated glucose in the first trimester and 34 healthy pregnant women. A number of metabolic and immunological parameters were measured, including glucose, insulin, lipid status, fatty acids, lymphocyte profile, adiponectin, IL-6, IL-10 and TNF-a. A higher number of T-helper lymphocytes and a higher ratio of helper/cytotoxic lymphocytes was found in the control group in the first trimester of pregnancy. Pregnant women whose glucose threshold values were measured in the first trimester, but who did not develop GDM, showed a higher percentage of neutrophils and a lower percentage of lymphocytes in the third trimester. Differences in polyunsaturated fatty acids levels were observed between healthy pregnant women and those with glucose metabolism disorders in the first trimester of pregnancy. The results of this pilot study demonstrate that there are differences in the profiles of T lymphocytes, NK cells and polyunsaturated fatty acids between the examined groups of pregnant women, which can serve as a direction for future research. Full article
(This article belongs to the Special Issue Glucose Metabolism in Pregnancy)
12 pages, 2854 KiB  
Article
Multi-Modal Investigation of Metabolism in Murine Breast Cancer Cell Lines Using Fluorescence Lifetime Microscopy and Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopy
by Sarah Erickson-Bhatt, Benjamin L. Cox, Erin Macdonald, Jenu V. Chacko, Paul Begovatz, Patricia J. Keely, Suzanne M. Ponik, Kevin W. Eliceiri and Sean B. Fain
Metabolites 2024, 14(10), 550; https://doi.org/10.3390/metabo14100550 - 15 Oct 2024
Viewed by 634
Abstract
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with [...] Read more.
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with differing metastatic potential in a 3D collagen gel bioreactor system. Methods: Within the bioreactor, hyperpolarized magnetic resonance spectroscopy (HP-MRS) is used to image lactate/pyruvate ratios, while fluorescence lifetime imaging microscopy (FLIM) of endogenous metabolites measures metabolism at the cellular scale. Results: HP-MRS results showed no lactate peak for 67NR and a comparatively large lactate/pyruvate ratio for both 4T1 and 4T07 cell lines, suggestive of greater pyruvate utilization with greater metastatic potential. Similar patterns were observed using FLIM with significant increases in FAD intensity, redox ratio, and NAD(P)H lifetime. The lactate/pyruvate ratio was strongly correlated to NAD(P)H lifetime, consistent with the role of NADH as an electron donor for the glycolytic pathway, suggestive of an overall upregulation of metabolism (both glycolytic and oxidative), for the 4T07 and 4T1 cell lines compared to the non-metastatic 67NR cell line. Conclusions: These findings support a complementary role for HP-MRS and FLIM enabled by a novel collagen gel bioreactor system to investigate metastatic potential and cancer metabolism. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

31 pages, 1017 KiB  
Review
Nutritional Modulation of the Gut–Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management
by Mariana Merino del Portillo, Vicente Javier Clemente-Suárez, Pablo Ruisoto, Manuel Jimenez, Domingo Jesús Ramos-Campo, Ana Isabel Beltran-Velasco, Ismael Martínez-Guardado, Alejandro Rubio-Zarapuz, Eduardo Navarro-Jiménez and José Francisco Tornero-Aguilera
Metabolites 2024, 14(10), 549; https://doi.org/10.3390/metabo14100549 - 14 Oct 2024
Viewed by 1996
Abstract
Mental health is an increasing topic of focus since more than 500 million people in the world suffer from depression and anxiety. In this multifactorial disorder, parameters such as inflammation, the state of the microbiota and, therefore, the patient’s nutrition are receiving more [...] Read more.
Mental health is an increasing topic of focus since more than 500 million people in the world suffer from depression and anxiety. In this multifactorial disorder, parameters such as inflammation, the state of the microbiota and, therefore, the patient’s nutrition are receiving more attention. In addition, food products are the source of many essential ingredients involved in the regulation of mental processes, including amino acids, neurotransmitters, vitamins, and others. For this reason, this narrative review was carried out with the aim of analyzing the role of nutrition in depression and anxiety disorders. To reach the review aim, a critical review was conducted utilizing both primary sources, such as scientific publications and secondary sources, such as bibliographic indexes, web pages, and databases. The search was conducted in PsychINFO, MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl. The results show a direct relationship between what we eat and the state of our nervous system. The gut–brain axis is a complex system in which the intestinal microbiota communicates directly with our nervous system and provides it with neurotransmitters for its proper functioning. An imbalance in our microbiota due to poor nutrition will cause an inflammatory response that, if sustained over time and together with other factors, can lead to disorders such as anxiety and depression. Changes in the functions of the microbiota–gut–brain axis have been linked to several mental disorders. It is believed that the modulation of the microbiome composition may be an effective strategy for a new treatment of these disorders. Modifications in nutritional behaviors and the use of ergogenic components are presented as important non-pharmacological interventions in anxiety and depression prevention and treatment. It is desirable that the choice of nutritional and probiotic treatment in individual patients be based on the results of appropriate biochemical and microbiological tests. Full article
Show Figures

Figure 1

14 pages, 771 KiB  
Article
The Impact of Negative Energy Balance in Holstein-Friesian Cows on the Blood Concentrations of Interleukin-6 and Plasminogen
by Kalina Wnorowska, Krzysztof Młynek and Kamila Puppel
Metabolites 2024, 14(10), 548; https://doi.org/10.3390/metabo14100548 - 14 Oct 2024
Viewed by 590
Abstract
Background/Objectives: The negative energy balance activaties of spontaneous lipolysis. This may promotes inflammation within the adipose tissue. The aim of the study was to explain the development of inflammation during increased lactogenesis. It was hypothesized that lipolysis contributes synthesis of interleukin-6 and plasminogen. [...] Read more.
Background/Objectives: The negative energy balance activaties of spontaneous lipolysis. This may promotes inflammation within the adipose tissue. The aim of the study was to explain the development of inflammation during increased lactogenesis. It was hypothesized that lipolysis contributes synthesis of interleukin-6 and plasminogen. Methods: The study was in production conditions carried out using Holstein-Friesian cows. The period studied covered time of early lactation. Results: Up to the peak of lactation, milk yield strongly influenced the rate of loss of body condition. This had an impact on with the intensity of the release of the fatty acids. In both cases this relationships strengthened to the peak of production. Oobserved tendencies towards a decrease in the concentration of glucose and an increase in that of leptin. Loss of the body condition and the release of NEFA were were influencing to affect the blood concentrations of interleukin-6 and plasminogen. We have shown that IL-6 has a relatively strong correlation with the NEFA. They correlate with IL-6 independently of EB influence. This may suggest independent associations between these variables, which could potentially be applied in practice. Conclusions: The NEFA release in the long term can increase the inflammatory response within adipose tissue and can intensify the release of interleukin-6 and plasminogen. It is likely that in the initial stage of lactogenesis, the inflammatory process developing within adipose tissue is physiologically justified. Our results can provide background to this little-described area of research. Full article
Show Figures

Figure 1

21 pages, 21358 KiB  
Article
Didymin Ameliorates Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis by Regulating Gut Microbiota and Amino Acid Metabolism in Mice
by Zhongxing Chu, Zuomin Hu, Feiyan Yang, Yaping Zhou, Yiping Tang and Feijun Luo
Metabolites 2024, 14(10), 547; https://doi.org/10.3390/metabo14100547 - 14 Oct 2024
Viewed by 754
Abstract
Background: Didymin is a dietary flavonoid derived from citrus fruits and has been shown to have extensive biological functions, especially anti-inflammatory effects, but its mechanism is unclear. The purpose of this study was to investigate the potential mechanism of didymin that alleviates ulcerative [...] Read more.
Background: Didymin is a dietary flavonoid derived from citrus fruits and has been shown to have extensive biological functions, especially anti-inflammatory effects, but its mechanism is unclear. The purpose of this study was to investigate the potential mechanism of didymin that alleviates ulcerative colitis. Methods and Results: Our results indicated that didymin could alleviate the symptoms of ulcerative colitis, as it inhibited the expressions of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Didymin also promoted the expressions of claudin-1 and zona occludens-1(ZO-1), which are closely related with restoring colon barrier function. Didymin also increased the abundance of Firmicutes and Verrucomicobiota, while decreasing the abundance of Bacteroidota and Proteobacteria. Meanwhile, didymin significantly altered the levels of metabolites related to arginine synthesis and metabolism, and lysine degradation in the colitis mice. Utilizing network pharmacology and molecular docking, our results showed that the metabolites L-ornithine and saccharin could interact with signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-B (NF-κB). In this in vitro study, L-ornithine could reduce the expressions of transcription factors STAT3 and NF-κB, and it also inhibited the expressions of IL-6 and IL-1β in the lipopolysaccharides (LPS) induced in RAW264.7 cells, while saccharin had the opposite effect. Conclusions: Taken together, didymin can regulate gut microbiota and alter metabolite products, which can modulate STAT3 and NF-κB pathways and inhibit the expressions of inflammatory factors and inflammatory response in the DSS-induced colitis mice. Full article
Show Figures

Figure 1

20 pages, 2238 KiB  
Article
Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis
by Kiana L. Holbrook, George E. Quaye, Elizabeth Noriega Landa, Xiaogang Su, Qin Gao, Heinric Williams, Ryan Young, Sabur Badmos, Ahsan Habib, Angelica A. Chacon and Wen-Yee Lee
Metabolites 2024, 14(10), 546; https://doi.org/10.3390/metabo14100546 - 13 Oct 2024
Viewed by 767
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70–80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges [...] Read more.
Background: Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70–80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges in disease management and improving patient outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model. Methods: This study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry (SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on 163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting in a ccRCC diagnostic model involving 24 VOC markers. Results: The findings demonstrated promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92% specificity. Conclusions: This study highlights the feasibility of using urine as a reliable biospecimen for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this study’s capability to differentiate between ccRCC and control groups, despite sample size limitations, holds significant promise. Full article
(This article belongs to the Special Issue Emerging Applications of Urinary Metabolomics in Cancer)
Show Figures

Figure 1

24 pages, 1102 KiB  
Review
Recent Advances in Metabolomics and Lipidomics Studies in Human and Animal Models of Multiple Sclerosis
by Petros Pousinis, Olga Begou, Marina Kleopatra Boziki, Nikolaos Grigoriadis, Georgios Theodoridis and Helen Gika
Metabolites 2024, 14(10), 545; https://doi.org/10.3390/metabo14100545 - 13 Oct 2024
Viewed by 852
Abstract
Multiple sclerosis (MS) is a neurodegenerative and inflammatory disease of the central nervous system (CNS) that leads to a loss of myelin. There are three main types of MS: relapsing-remitting MS (RRMS) and primary and secondary progressive disease (PPMS, SPMS). The differentiation in [...] Read more.
Multiple sclerosis (MS) is a neurodegenerative and inflammatory disease of the central nervous system (CNS) that leads to a loss of myelin. There are three main types of MS: relapsing-remitting MS (RRMS) and primary and secondary progressive disease (PPMS, SPMS). The differentiation in the pathogenesis of these two latter courses is still unclear. The underlying mechanisms of MS are yet to be elucidated, and the treatment relies on immune-modifying agents. Recently, lipidomics and metabolomics studies using human biofluids, mainly plasma and cerebrospinal fluid (CSF), have suggested an important role of lipids and metabolites in the pathophysiology of MS. In this review, the results from studies on metabolomics and lipidomics analyses performed on biological samples of MS patients and MS-like animal models are presented and analyzed. Based on the collected findings, the biochemical pathways in human and animal cohorts involved were investigated and biological mechanisms and the potential role they have in MS are discussed. Limitations and challenges of metabolomics and lipidomics approaches are presented while concluding that metabolomics and lipidomics may provide a more holistic approach and provide biomarkers for early diagnosis of MS disease. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

24 pages, 3004 KiB  
Review
Non/Low-Caloric Artificial Sweeteners and Gut Microbiome: From Perturbed Species to Mechanisms
by Jiahao Feng, Jingya Peng, Yun-Chung Hsiao, Chih-Wei Liu, Yifei Yang, Haoduo Zhao, Taylor Teitelbaum, Xueying Wang and Kun Lu
Metabolites 2024, 14(10), 544; https://doi.org/10.3390/metabo14100544 - 11 Oct 2024
Viewed by 1058
Abstract
Background: Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for [...] Read more.
Background: Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for public use, with acceptable daily intake information available: aspartame, acesulfame-K, saccharin, sucralose, neotame, and advantame. However, the impacts of NAS on the gut microbiome have raised potential concerns, since sporadic research revealed NAS-induced microbial changes in the gastrointestinal tracts and alterations in the microbiome–host interactive metabolism. Methods: Given the fact that the gut microbiome influences kaleidoscopic physiological functions in host health, this review aimed to decipher the impacts of NAS on the gut microbiome by implementing a comprehensive two-stage literature analysis based on each NAS. Results: This review documented disturbed microbiomes due to NAS exposure to a maximal resolution of species level using taxonomic clustering analysis, and recorded metabolism alterations involved in gut microbiome–host interactions. Conclusions: The results elucidated that specific NAS exhibited discrepant impacts on the gut microbiome, even though overlapping on the genera and species were identified. Some NAS caused glucose tolerance impairment in the host, but the key metabolites and their underlying mechanisms were different. Furthermore, this review embodied the challenges and future directions of current NAS–gut microbiome research to inspire advanced examination of the NAS exposure–gut microbiome–host metabolism axis. Full article
(This article belongs to the Special Issue Effects of Environmental Exposure on Host and Microbial Metabolism)
Show Figures

Graphical abstract

16 pages, 4025 KiB  
Article
Effects of Pollen Germination and Pollen Tube Growth under Different Temperature Stresses in Mango (Mangifera indica L.) by Metabolome
by Xinyu Liu, Lirong Zhou, Chengxun Du, Songbiao Wang, Hongjin Chen, Wentian Xu, Zhuanying Yang and Qingzhi Liang
Metabolites 2024, 14(10), 543; https://doi.org/10.3390/metabo14100543 - 11 Oct 2024
Viewed by 491
Abstract
Background: The dramatic temperature fluctuations spurred by global warming and the accompanying extreme weather events inhibit mango growth and threaten mango productivity. Particularly, mango flowering is highly sensitive to temperature changes. The mango fruit setting rate was significantly positively correlated with pollen activity, [...] Read more.
Background: The dramatic temperature fluctuations spurred by global warming and the accompanying extreme weather events inhibit mango growth and threaten mango productivity. Particularly, mango flowering is highly sensitive to temperature changes. The mango fruit setting rate was significantly positively correlated with pollen activity, and pollen activity was regulated by different metabolites. Methods: In this study, the in vitro pollen of two mango varieties (‘Renong No.1’ and ‘Jinhuang’), in which sensitivity to temperature differed significantly, were subjected to different temperature stresses (15 °C, 25 °C and 35 °C), and their metabolomics were analyzed. Results: The present results showed that 775 differential metabolites were screened by liquid chromatography–mass spectrometry and divided into 12 categories. The two varieties had significant differences in metabolite expression under different temperature stresses and the effect of low temperature on ‘Renong No.1’ mainly focused on amino acid metabolism, while the effect on ‘Jinhuang’ was mainly related to glycolysis. However, under the 35 °C temperature stress, ‘Renong No.1’ responded by redistributing riboflavin and betaine in vivo and the most obvious metabolic pathway of ‘Jinhuang’ enrichment was pyrimidine metabolism, which had undergone complex main body formation and extensive regulatory processes. The changes of metabolites of different varieties under low temperature and high temperature stress were different. Among them, flavonoids or flavonoid derivatives were included in class A (216 metabolites), C (163 metabolites) and D (233 metabolites) metabolites, indicating that flavonoid metabolites had an obvious regulatory effect on mango pollen metabolism under different temperature stress. Conclusions: The present results provide valuable information for reproductive biology studies and breeding in mango, in particular, the selection and breeding of the most suitable varieties for different production areas. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

26 pages, 973 KiB  
Systematic Review
Impact of Acupuncture on Human Metabolomic Profiles: A Systematic Review
by Hongjin Li, Hannah Choi, Madelyn C. Houser, Changwei Li, Tingting Liu, Shuang Gao, Katy Sullivan and Judith M. Schlaeger
Metabolites 2024, 14(10), 542; https://doi.org/10.3390/metabo14100542 - 11 Oct 2024
Viewed by 723
Abstract
Background/Objectives: Metabolomics provides insights into the biological underpinnings of disease development and treatment. This systematic review investigated the impact of acupuncture on metabolite levels and associated metabolic pathways using a metabolomic approach. Methods: Five databases (i.e., PubMed, Embase, Scopus, CINAHL, and Cochrane Central) [...] Read more.
Background/Objectives: Metabolomics provides insights into the biological underpinnings of disease development and treatment. This systematic review investigated the impact of acupuncture on metabolite levels and associated metabolic pathways using a metabolomic approach. Methods: Five databases (i.e., PubMed, Embase, Scopus, CINAHL, and Cochrane Central) were searched using terms such as “acupuncture” and “metabolites” to retrieve relevant journal articles published through January 2024. Studies utilizing mass spectrometry or nuclear magnetic resonance were included. Risk of bias was evaluated using the Cochrane Risk of Bias tool and the Newcastle–Ottawa scale. Metabolic pathway analysis was conducted using MetaboAnalyst 6.0 to identify common significant pathways affected by acupuncture. Additionally, subgroup pathway enrichment analysis identified metabolites significantly altered in more than two studies. Results: Among 4019 articles, 22 studies met inclusion criteria, examining changes in metabolomic biomarkers before and after acupuncture for various diseases and symptoms. A total of 226 metabolites showed significant changes, with 14 common metabolites altered in more than two studies (glutamine, androsterone glucuronide, choline, citric acid, decanoylcarnitine, estrone, glutathione, glycine, hypoxanthine, lactic acid, pyruvic acid, serine, proline, and sn-glycero-3-phosphocholine). Common pathways affected by acupuncture were glycine, serine, and threonine metabolism, glutathione metabolism, arginine biosynthesis, and glyoxylate and dicarboxylate metabolism. Conclusions: This review provides insights of the metabolomic mechanisms underlying acupuncture, highlighting its impact on specific metabolic pathways. Recognizing these changes can enhance acupuncture’s effectiveness and support the development of personalized treatments. The findings underscore metabolomics as a valuable tool for understanding and optimizing acupuncture for various diseases and symptoms. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

14 pages, 1263 KiB  
Article
Blackcurrant Anthocyanins Attenuate Estrogen -Deficiency-Induced Bone Loss through Modulating Microbial-Derived Short-Chain Carboxylic Acids and Phytoestrogen Metabolites in Peri- and Early Postmenopausal Women
by Briana M. Nosal, Staci N. Thornton, Alexey V. Melnik, Ali Lotfi, Manije Darooghegi Mofrad, Alexander Aksenov, Elaine Choung-Hee Lee and Ock K. Chun
Metabolites 2024, 14(10), 541; https://doi.org/10.3390/metabo14100541 - 11 Oct 2024
Viewed by 651
Abstract
Objectives: The present study aimed to assess the effects of blackcurrant (BC) anthocyanins on concentrations of microbial-derived short-chain carboxylic acids (SCCAs) and metabolites of phytoestrogens. We then examined their associations with six-month changes in whole-body bone mineral density (BMD) and biomarkers of bone [...] Read more.
Objectives: The present study aimed to assess the effects of blackcurrant (BC) anthocyanins on concentrations of microbial-derived short-chain carboxylic acids (SCCAs) and metabolites of phytoestrogens. We then examined their associations with six-month changes in whole-body bone mineral density (BMD) and biomarkers of bone metabolism. Methods: Fecal and blood samples from a pilot randomized controlled trial were collected and analyzed from 37 eligible peri- and early postmenopausal women aged 45–60 years who were randomized into one of three treatment groups consuming one placebo capsule (control), 392 mg BC (low BC) or 784 mg BC (high BC) daily for six months. Results: Significant differences were observed between groups at baseline in acetic, propionic, valeric, caproic and heptanoic acids (p < 0.05). Isobutyric acid significantly decreased from baseline (0 months) to six months in the control group (p < 0.05) and the high BC group had a significantly greater concentration than the control group at six months (p < 0.05). Butyric acid was significantly greater in the high BC group than low BC at six months (p < 0.05). Six-month changes in caproic and isobutyric acids showed weak correlations with changes in whole-body BMD (r = 0.3519, p < 0.05 and r = 0.3465, p < 0.05, respectively). Isovaleric and valeric acids displayed weak correlations with BALP (r = 0.3361, p < 0.05) and OPG (r = 0.3593, p < 0.05), respectively. Enterodiol was positively correlated with BALP (r = 0.6056, p < 0.01) while enterolactone was positively correlated with osteocalcin (r = 0.5902, p < 0.001) and negatively correlated with sclerostin (r = −0.3485, p < 0.05). Conclusions: The results suggest that BC may be a potential dietary agent to reduce postmenopausal bone loss through modulating microbially-derived SCCAs and phytoestrogen metabolites. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

18 pages, 351 KiB  
Article
The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level
by Katarzyna Pozorska, Irena Baranowska-Bosiacka, Dominika Raducha, Patrycja Kupnicka, Mateusz Bosiacki, Beata Bosiacka, Justyna Szmit-Domagalska, Joanna Ratajczak, Anita Horodnicka-Józwa, Mieczysław Walczak, Dariusz Chlubek and Elżbieta Petriczko
Metabolites 2024, 14(10), 540; https://doi.org/10.3390/metabo14100540 - 9 Oct 2024
Viewed by 637
Abstract
Background: Our paper draws attention to the impact of lead (Pb) on the specificity of obesity development in children exposed to environmental pollution. An advantage of this paper is the homogeneous study group comprising children of identical age from a single geographic region. [...] Read more.
Background: Our paper draws attention to the impact of lead (Pb) on the specificity of obesity development in children exposed to environmental pollution. An advantage of this paper is the homogeneous study group comprising children of identical age from a single geographic region. Moreover, while the influence of environmental toxins on adults has been extensively explored, this study delves into pediatric populations, which have yet to receive comprehensive scrutiny within the scientific literature. Methods: Initially, a group of 136 obese children (the research program lasted three consecutive years: 2016, 2017, and 2018) living in the north-western region of Poland, from whom biochemical tests and auxological data were obtained, were enrolled for analysis. Blood lead levels (BLLs) were determined in 115 children. The age of the children ranged from 7.1 to 10.4 years. The body mass index (BMI) of children averaged 21.5 ± 2.2. Results: The results showed that a large proportion of the participants had BLLs above the threshold for Pb. BLLs ≤ 5 µg/dL (considered safe for children and pregnant women) were found in over 70% of the participants, with BLLs in the range of 5.01–10.00 µg/dL in over 26% of the children, and concentrations > 10 µg/dL (considered toxic threshold for adults) in nearly 2% of the children. The results of our research revealed a positive association between BLLs and average systolic and diastolic blood pressure in the studied children. Moreover, we found a negative correlation between BLLs and absolute fat tissue content and triglyceride concentration. Among the included biochemical factors, only insulin demonstrated a statistically significant relationship with fat mass. This result suggests that early carbohydrate metabolism disorders in overweight children involve decreased peripheral tissue insulin sensitivity. Conclusions: Lead exposure may significantly contribute to the development of hypertension, insulin resistance, and glucose metabolism disorders in overweight and obese children. It is essential to implement multidirectional actions to increase awareness of the harmful effects of xenobiotic exposure, including lead, in order to prevent early-life exposure. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
18 pages, 7282 KiB  
Article
Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats
by Chuanqin Hu, Zhenzhen Shao, Wei Wu and Jing Wang
Metabolites 2024, 14(10), 539; https://doi.org/10.3390/metabo14100539 - 9 Oct 2024
Viewed by 600
Abstract
Background: Pentosidine is an advanced glycation end product that is commonly found in heat-processed foods. Pentosidine has been involved in the occurrence and development of some chronic diseases. It was reported that pentosidine exposure can impair the function of the liver and [...] Read more.
Background: Pentosidine is an advanced glycation end product that is commonly found in heat-processed foods. Pentosidine has been involved in the occurrence and development of some chronic diseases. It was reported that pentosidine exposure can impair the function of the liver and kidneys. Adipose tissue, as an active endocrine organ, plays an important role in maintaining the normal physiological function of cells. However, the metabolic mechanism that causes pentosidine to induce toxicity in adipose tissue remains unclear. Methods: In the study, thirty male Sprague-Dawley rats were divided into a normal diet group, low dose group, and high dose group. A non-targeted metabolomics approach was used to compare the metabolic profiles of adipose tissue between the pentosidine and normal diet groups. Furthermore, histopathological observation and body weight change analysis were performed to test the results of the metabolomics analysis. Results: A total of forty-two differential metabolites were identified. Pentosidine mainly disturbed twelve metabolic pathways, such as ascorbate and aldarate metabolism, glycine, serine, and threonine metabolism, sulfur metabolism, pyruvate metabolism, etc. Additionally, pyruvic acid was identified as a possible key upregulated metabolite involved in thirty-four metabolic pathways. α-Ketoglutaric acid was named as a probable key downregulated metabolite involved in nineteen metabolic pathways based on enrichment network analysis. In addition, histopathological analysis and body weight changes confirmed the results of the metabolomics analysis. Conclusions: These results provided a new perspective for the molecular mechanisms of adipose tissue toxicity induced by pentosidine. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop