Open AccessArticle
Ethanolic Extract of Hippocampus abdominalis Exerts Anti-Melanogenic Effects in B16F10 Melanoma Cells and Zebrafish Larvae by Activating the ERK Signaling Pathway
by
Ilandarage Menu Neelaka Molagoda, Yung Hyun Choi, Seungheon Lee, Jiwon Sung, Cho Rong Lee, Hyo Geun Lee, Jongho Lim, Kyeong-Jun Lee, You-Jin Jeon, Jeongin Ma and Gi-Young Kim
Cited by 7 | Viewed by 6175
Abstract
The big belly seahorse (
Hippocampus abdominalis), a well-known ingredient of traditional medicine, possesses anti-inflammatory, anti-aging, anti-fatigue, and anti-thrombotic properties, and also increases male fertility. This study demonstrates that the ethanolic extract of dried
H. abdominalis (EEHA) has anti-melanogenic effects in B16F10
[...] Read more.
The big belly seahorse (
Hippocampus abdominalis), a well-known ingredient of traditional medicine, possesses anti-inflammatory, anti-aging, anti-fatigue, and anti-thrombotic properties, and also increases male fertility. This study demonstrates that the ethanolic extract of dried
H. abdominalis (EEHA) has anti-melanogenic effects in B16F10 melanoma cells and zebrafish larvae. EEHA significantly reduced the α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis in B16F10 melanoma cells without causing cytotoxicity. At a concentration of 200 µg/mL, EEHA had significant anti-melanogenic activity in zebrafish larvae, accompanied by a severe reduction in the heart rate (118 ± 17 heartbeats/min) compared to that of the untreated group (185 ± 8 heartbeats/min), indicating that EEHA induces cardiotoxicity at high concentrations. Below 100 µg/mL, EEHA significantly reduced melanogenesis in zebrafish larvae in the presence or absence of α-MSH, while the heart rate remained unaltered. Additionally, EEHA downregulated the release of cyclic adenosine monophosphate (cAMP) and the phosphorylation of cAMP response element-binding protein (CREB) in B16F10 melanoma cells, which inhibited microphthalmia-associated transcription factor (MITF), leading to the inhibition of tyrosinase activity. EEHA also increased the phosphorylation of extracellular-signal regulated kinase (ERK). The ERK inhibitor PD98059 interfered with the anti-melanogenic activity of EEHA in B16F10 melanoma cells and zebrafish larvae, indicating that the ERK signaling pathway might regulate the anti-melanogenic properties of EEHA. Altogether, we conclude that EEHA represses the cAMP–CREB–MITF axis, which consequently inhibits tyrosinase-mediated melanogenesis. We propose that at low concentrations, EEHA can serve as a promising anti-melanogenic agent that could be used to prepare whitening cosmetics and for treating melanogenic disorders.
Full article
►▼
Show Figures