Ancient Chinese scripts—including oracle bone carvings, bronze inscriptions, stone steles, Dunhuang scrolls, and bamboo slips—are rich in historical value but often degraded due to centuries of erosion, damage, and stylistic variability. These issues severely hinder manual transcription and render conventional OCR techniques inadequate,
[...] Read more.
Ancient Chinese scripts—including oracle bone carvings, bronze inscriptions, stone steles, Dunhuang scrolls, and bamboo slips—are rich in historical value but often degraded due to centuries of erosion, damage, and stylistic variability. These issues severely hinder manual transcription and render conventional OCR techniques inadequate, as they are typically trained on modern printed or handwritten text and lack interpretability. To tackle these challenges, we propose FAIR-Net, a hybrid architecture that combines the unsupervised feature learning capacity of a deep autoencoder with the semantic transparency of a fuzzy rule-based classifier. In FAIR-Net, the deep autoencoder first compresses high-resolution character images into low-dimensional, noise-robust embeddings. These embeddings are then passed into a Fuzzy Neural Network (FNN), whose hidden layer leverages Fuzzy C-Means (FCM) clustering to model soft membership degrees and generate human-readable fuzzy rules. The output layer uses Iteratively Reweighted Least Squares Estimation (IRLSE) combined with a Softmax function to produce probabilistic predictions, with all weights constrained as linear mappings to maintain model transparency. We evaluate FAIR-Net on CASIA-HWDB1.0, HWDB1.1, and ICDAR 2013 CompetitionDB, where it achieves a recognition accuracy of 97.91%, significantly outperforming baseline CNNs (
p < 0.01, Cohen’s d > 0.8) while maintaining the tightest confidence interval (96.88–98.94%) and lowest standard deviation (±1.03%). Additionally, FAIR-Net reduces inference time to 25 s, improving processing efficiency by 41.9% over AlexNet and up to 98.9% over CNN-Fujitsu, while preserving >97.5% accuracy across evaluations. To further assess generalization to historical scripts, FAIR-Net was tested on the Ancient Chinese Character Dataset (9233 classes; 979,907 images), achieving 83.25% accuracy—slightly higher than ResNet101 but 2.49% lower than SwinT-v2-small—while reducing training time by over 5.5× compared to transformer-based baselines. Fuzzy rule visualization confirms enhanced robustness to glyph ambiguities and erosion. Overall, FAIR-Net provides a practical, interpretable, and highly efficient solution for the digitization and preservation of ancient Chinese character corpora.
Full article