Micro-Vibrations Analysis in LEO CubeSats Using MEMS Accelerometers
Abstract
1. Introduction
2. WREN-1 System Design
2.1. The WREN-1 Spacecraft
- TCTM COM and UANT: The Telemetry/Telecommand Communication Module is capable of establishing radio-frequency communication between the ground station and the spacecraft. The UHF frequency band is used for both telecommand uplink and telemetry downlink. The TCTM COM module also includes two omnidirectional V-dipole antennas (UANT) [12].
- OBC: The On-Board Computer is the central element of platform-side on-board data handling. It receives telecommands from the TCTM COM and gathers telemetry from all over the spacecraft for downlink, and it is also able to manage scheduled commanding [13].
- SP and EPS: The Solar Panels are assemblies of photovoltaic solar cells capturing sunlight and converting it to unregulated DC electricity. The Electrical Power System is responsible for connecting the solar cells onto the unregulated power bus through MPPT (Maximal Power Point Tracking) circuitry, managing the charging of the secondary power source (battery), and distributing the power among the subsystems [14].
- ADCS: The Attitude Determination and Control System uses a set of sensors (e.g., sun sensors, nadir sensor, magnetometer, etc.) and actuators (magnetorquers, reaction wheels) to determine the attitude of the spacecraft and control it according to the mission’s needs [15].
2.2. The Micro-Vibration Sensing Module
2.3. About the Micro-Vibration Sensors and Data Structure
- FIFO mode, where an interruption is generated after 20 × 3 samples, with 20 samples in all 3 axes.
- 100 sample/s rate.
- ± 2 g range.
- Number format is 14 bits + 2 axis identification bits.
- After the power supply is switched on, the program makes an initialization process and resets the necessary interface devices.
- It resets the acceleration sensors and configures the necessary registers after performing a soft-reset process.
- The microcontroller goes to standby mode and waits for measurement instructions from the on-board controller.
- After the measurement command is received, the acceleration sensor measurement process starts, and the FIFO buffers will be filled with measurement data. The first measurement data are generated after 10 ms + 20 µs.
- After the twentieth sample arrives in the acceleration sensor FIFO buffer, the device sends an interrupt request to the microcontroller, which in turn queries and reads the data stored in the sensors’ FIFO buffers. During the readout, the sensors continue to perform measurements autonomously. During a readout process, 120 bytes are transferred (20 sample packets, with 3 axis data per packet, where one sample is 16 bits in size).
- The readout uses the corresponding SPI bus. Both SPI buses’ clock is 1 MHz, meaning the readout speed is 1 Mbit/s. The readout time of the entire acceleration sensor FIFO is therefore 120 × 8 × 1 µs = 960µs per sensor [21].
- [b15, b14]: axis identifier bits (00: X axis; 01: Y axis; 10: Z-axis).
- [b13–b0]: 14-bit signed integer acceleration value, where b13 is the MSB.
+0: 0x81 | ”Response to a specific command” |
+1 | Sensor ID (from 0x01 to 0x06) |
+2–+121 | Sensor data (20 × 6 bytes) |
+122, +123 | Sequence number |
+124 | Not used |
+125 | Not used |
+126 | Not used |
+127: | Checksum |
3. Telemetry Analysis Results
3.1. Data Structures and Conversion
3.2. Theory of Data Processing
3.3. Vibration Data Analysis with ADCS off
3.4. Vibration Data Analysis with ADCS on
3.5. An Application Example for CubeSat Designers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCS | Attitude Determination and Control System |
DSP | Digital Signal Processing |
EO | Earth Observation |
FFT | Fast Fourier Transform |
FIFO | First In, First Out |
IPC | Intelligent Payload Controller |
LEO | Low Earth Orbit |
MEMS | Micro-Electro-Mechanical Systems |
NIR | Near-Infrared |
NRZ | Non-Return-to-Zero |
OBC | On-Board Computer |
OWL | Orbital Whereabout Locator |
PCM | Pulse Code Modulation |
SWIR | Short-Wave Infrared |
TCTM | Telemetry/Telecommand Communication Module |
WAV | Waveform Audio File Format |
WREN | Water Resources in Efficient Networks |
References
- Bouzoukis, K.-P.; Moraitis, G.; Kostopoulos, V.; Lappas, V. An Overview of CubeSat Missions and Applications. Aerospace 2025, 12, 550. [Google Scholar] [CrossRef]
- Rosero-Montalvo, P.D.; Priest, J.C.P. CubeSat Imaging Payload Design for Environmental Monitoring of Greenland. Electronics 2025, 14, 18. [Google Scholar] [CrossRef]
- Aoyanagi, Y.; Doi, T.; Arai, H.; Shimada, Y.; Yasuda, M.; Yamazaki, T.; Sawazaki, H. On-Orbit Performance and Hyperspectral Data Processing of the TIRSAT CubeSat Mission. Remote Sens. 2025, 17, 1903. [Google Scholar] [CrossRef]
- C3S LLC; Grepton Consortium; Óbuda University. Hungarian Satellite Successfully Completes Its Mission. Hungary Today, 2024. Available online: https://hungarytoday.hu/hungarian-satellite-successfully-completes-its-mission/?utm_source (accessed on 15 September 2025).
- C3S LLC; COMBIT Computer Technology Ltd.; Óbuda University; Széchenyi István University. Launch of the Largest Hungarian Satellite WREN-1. C3S News, 2024. Available online: https://c3s.hu/2024/08/15/drought-monitoring-by-satellite-with-remote-sensing/ (accessed on 15 September 2025).
- SEOPS Space. Customer Spotlight: C3S’ WREN-1 for Climate-Adapted Drought Monitoring. SEOPS News, 2024. Available online: https://seops.space/news/customer-spotlight/ (accessed on 15 September 2025).
- Nadeem, S. Empirical Methods for Reaction Wheel Micro-Vibration Verification in a Production Environment. In Proceedings of the 36th Annual Small Satellite Conference, Logan, UT, USA, 6–11 August 2022; Available online: https://digitalcommons.usu.edu/smallsat/2022/all2022/2/ (accessed on 15 September 2025).
- Han, Q.; Gao, S.; Chu, F. Micro-Vibration Analysis, Suppression, and Isolation of Spacecraft Flywheel Rotor Systems: A Review. Vibration 2024, 7, 229–263. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Qin, T.; Wang, J.; Peng, J.; Wu, Y.; Jing, Z.; Zhang, H.; Hou, J.; Qi, B. Investigation on Micro-Vibration Test and Image Stabilization of a High-Precision Space Optical Payload. Appl. Sci. 2025, 15, 1596. [Google Scholar] [CrossRef]
- Chen, S.-B.; Xuan, M.; Zhang, L.; Gu, S.; Gong, X.-X.; Sun, H.-Y. Simulating and Testing Microvibrations on an Optical Satellite Using Acceleration Sensor-Based Jitter Measurements. Sensors 2019, 19, 1797. [Google Scholar] [CrossRef]
- C3S LLC. Customizable High-Performance On-Board Computer (IPC) Featuring Linux-Based SoM with FPGA Extension for Payload Interface. C3S Brochure 2024. Available online: https://c3s.hu/wp-content/uploads/2024/11/C3S_Brochure_2024_forWEB3.pdf (accessed on 15 September 2025).
- Saeidi, T.; Karamzadeh, S. Enhancing CubeSat Communication Through Beam-Steering Antennas: A Review of Technologies and Challenges. Electronics 2025, 14, 754. [Google Scholar] [CrossRef]
- Almazrouei, A.; Khan, A.; Alhembar, A.; Albuainain, A.; Bushlaibi, A.; Al Mahmood, A.; Alqaraan, A.; Alhammadi, A.; AlBalooshi, A.; Khater, A.; et al. A Complete Mission Concept Design and Analysis of the Student-Led CubeSat Project: Light-1. Aerospace 2021, 8, 247. [Google Scholar] [CrossRef]
- Casado, P.; Torres, C.; Blanes, J.M.; Garrigós, A.; Marroquí, D. Implementation of a 6U CubeSat Electrical Power System Digital Twin. Aerospace 2024, 11, 688. [Google Scholar] [CrossRef]
- Ticona Coaquira, F.J.; Wang, X.; Vidaurre Torrez, K.W.; Mamani Quiroga, M.J.; Silva Plata, M.A.; Luna Verdueta, G.A.; Murillo Quispe, S.E.; Auza Banegas, G.J.; Antezana Lopez, F.P.; Rojas, A. Model-Based Design and Testbed for CubeSat Attitude Determination and Control System with Magnetic Actuation. Appl. Sci. 2024, 14, 6065. [Google Scholar] [CrossRef]
- Pellegrino, A.; Pancalli, M.G.; Gianfermo, A.; Marzioli, P.; Curianò, F.; Angeletti, F.; Piergentili, F.; Santoni, F. HORUS: Multispectral and Multiangle CubeSat Mission Targeting Sub-Kilometer Remote Sensing Applications. Remote Sens. 2021, 13, 2399. [Google Scholar] [CrossRef]
- Mankour, A.; Smahat, A.; Guy, R.; Wang, R.; Khatir, M. Experimental Investigation of Microvibrations Induced by Reaction Wheels on Earth Observation Satellite. Adv. Space Res. 2021, 68, 4484–4495. [Google Scholar] [CrossRef]
- Sejera, M.; Yamauchi, T.; Orger, N.C.; Otani, Y.; Cho, M. Scalable and Configurable Electrical Interface Board for Bus System Development of Different CubeSat Platforms. Appl. Sci. 2022, 12, 8964. [Google Scholar] [CrossRef]
- Colagrossi, A.; Lavagna, M.; Bertacin, R. An Effective Sensor Architecture for Full-Attitude Determination in the HERMES Nano-Satellites. Sensors 2023, 23, 2393. [Google Scholar] [CrossRef]
- Liu, C.; An, J.; Yan, Q.; Dong, Z. Cache-Based Design of Spaceborne Solid-State Storage Systems. Electronics 2025, 14, 2041. [Google Scholar] [CrossRef]
- Analog Devices Inc. ADXL367: Micropower, 3-Axis, Digital Output MEMS Accelerometer; Data Sheet, Rev. B.; Analog Devices: Wilmington, MA, USA, 2023; Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl367.pdf (accessed on 15 September 2025).
- Xie, Y.; Zhang, S.; Meng, X.; Nguyen, D.T.; Ye, G.; Li, H. An Innovative Sensor Integrated with GNSS and Accelerometer for Bridge Health Monitoring. Remote Sens. 2024, 16, 607. [Google Scholar] [CrossRef]
- Borges, R.A.; dos Santos, A.C.; Silva, W.R.; Aguayo, L.; Borges, G.A.; Karam, M.M.; de Sousa, R.B.; García, B.F.-A.; Botelho, V.M.d.S.; Fernández-Carrillo, J.M.; et al. The AlfaCrux CubeSat Mission Description and Early Results. Appl. Sci. 2022, 12, 9764. [Google Scholar] [CrossRef]
- Bradburn, J.; Aksoy, M.; Apudo, L.; Vukolov, V.; Ashley, H.; VanAllen, D. ACCURACy: A Novel Calibration Framework for CubeSat Radiometer Constellations. Remote Sens. 2025, 17, 486. [Google Scholar] [CrossRef]
- Miljković, T.; Ćertić, J.; Bjelić, M.; Pavlović, D.Š. Digital Signal Processing of the Inharmonic Complex Tone. Appl. Sci. 2025, 15, 8293. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Z.; Lacidogna, G.; Wang, X.; Jia, M.; Liu, Z. Sound Sensing: Generative and Discriminant Model-Based Approaches to Bolt Loosening Detection. Sensors 2024, 24, 6447. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wu, H.; Shen, R.; Kang, J. A Loose Integration of High-Rate GNSS and Strong-Motion Records with Variance Compensation Adaptive Kalman Filter for Broadband Co-Seismic Displacements. Appl. Sci. 2024, 14, 9360. [Google Scholar] [CrossRef]
- Xiao, X.; Han, H.; Wang, J.; Li, D.; Chen, C.; Wang, L. Dynamic Deformation Analysis of Super High-Rise Buildings Based on GNSS and Accelerometer Fusion. Sensors 2025, 25, 2659. [Google Scholar] [CrossRef]
- Srokosz, P.E.; Daniszewska, E.; Banach, J.; Śmieja, M. In-Depth Analysis of Low-Cost Micro Electromechanical System (MEMS) Accelerometers in the Context of Low Frequencies and Vibration Amplitudes. Sensors 2024, 24, 6877. [Google Scholar] [CrossRef]
- Ceresoli, M.; Colagrossi, A.; Silvestrini, S.; Lavagna, M. Robust Onboard Orbit Determination Through Error Kalman Filtering. Aerospace 2025, 12, 45. [Google Scholar] [CrossRef]
- Jiao, Z.; Liu, B.; Liu, E.; Yue, Y. Low-Pass Parabolic FFT Filter for Airborne and Satellite Lidar Signal Processing. Sensors 2015, 15, 26085–26095. [Google Scholar] [CrossRef]
- Hassan, I.U.; Panduru, K.; Walsh, J. An In-Depth Study of Vibration Sensors for Condition Monitoring. Sensors 2024, 24, 740. [Google Scholar] [CrossRef] [PubMed]
- Pamplona Berón, L.E.; De Simone, M.C.; Guida, D. Application of Signal Processing Techniques to the Vibration Analysis of a 3-DoF Structure Under Multiple Excitation Scenarios. Appl. Sci. 2025, 15, 8241. [Google Scholar] [CrossRef]
- Contreras-Benito, L.; Osipova, K.; Buitrago-Leiva, J.N.; Gracia-Sola, G.; Coppa, F.; Climent-Salazar, P.; Sopena-Coello, P.; Garcín, D.; Ramos-Castro, J.; Camps, A. 3Cat-8 Mission: A 6-Unit CubeSat for Ionospheric Multisensing and Technology Demonstration Test-Bed. Remote Sens. 2024, 16, 4199. [Google Scholar] [CrossRef]
- Finance, A.; Meftah, M.; Dufour, C.; Boutéraon, T.; Bekki, S.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Damé, L.; Mangin, A. A New Method Based on a Multilayer Perceptron Network to Determine In-Orbit Satellite Attitude for Spacecrafts without Active ADCS Like UVSQ-SAT. Remote Sens. 2021, 13, 1185. [Google Scholar] [CrossRef]
- Mustață, M.Ș.; Grigorie, T.L. A Low-Cost Redundant Attitude System for Small Satellites, Based on Strap-Down Inertial Techniques and Gyro Sensors Linear Clustering. Appl. Sci. 2024, 14, 6585. [Google Scholar] [CrossRef]
- Kong, X.; Li, H.; Zhou, X.; Xiang, X.; Shen, X. Flywheel Vibration Isolation of Satellite Structure by Applying Structural Plates with Elastic Boundary Instead of Restrained Boundary. Appl. Sci. 2023, 13, 12756. [Google Scholar] [CrossRef]
- González-Rodríguez, D.; Orgeira-Crespo, P.; Cappelletti, C.; Aguado-Agelet, F. Methodology for CubeSat Debris Collision Avoidance Based on Its Active ADCS System. Appl. Sci. 2023, 13, 12388. [Google Scholar] [CrossRef]
- Mmopelwa, K.; Ramodimo, T.T.; Matsebe, O.; Basutli, B. Attitude Determination System for a Cubesat Experiencing Eclipse. Sensors 2023, 23, 8549. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xie, Y.; Jia, J.; Zhang, L. Development of Active Microvibration Isolation System for Precision Space Payload. Appl. Sci. 2022, 12, 4548. [Google Scholar] [CrossRef]
- Naumann, P.; Sands, T. Micro-Satellite Systems Design, Integration, and Flight. Micromachines 2024, 15, 455. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Zhu, C.; Liu, F.; Yu, K.; Wu, Y. Micro-Vibration Control of Deployable Space Optical Imaging System Using Distributed Active Vibration Absorbers. Sensors 2025, 25, 989. [Google Scholar] [CrossRef]
Axis | Displacement in Meters |
---|---|
X | 360 |
Y | 1086 |
Z | 3456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyányi, S.; Szabolcsi, R.; Varga, P.J.; Horváth, G.; Horváth, P.; Wührl, T. Micro-Vibrations Analysis in LEO CubeSats Using MEMS Accelerometers. Sensors 2025, 25, 5917. https://doi.org/10.3390/s25185917
Gyányi S, Szabolcsi R, Varga PJ, Horváth G, Horváth P, Wührl T. Micro-Vibrations Analysis in LEO CubeSats Using MEMS Accelerometers. Sensors. 2025; 25(18):5917. https://doi.org/10.3390/s25185917
Chicago/Turabian StyleGyányi, Sándor, Róbert Szabolcsi, Péter János Varga, Gyula Horváth, Péter Horváth, and Tibor Wührl. 2025. "Micro-Vibrations Analysis in LEO CubeSats Using MEMS Accelerometers" Sensors 25, no. 18: 5917. https://doi.org/10.3390/s25185917
APA StyleGyányi, S., Szabolcsi, R., Varga, P. J., Horváth, G., Horváth, P., & Wührl, T. (2025). Micro-Vibrations Analysis in LEO CubeSats Using MEMS Accelerometers. Sensors, 25(18), 5917. https://doi.org/10.3390/s25185917