- Article
Real-Time Robust 2.5D Stereo Multi-Object Tracking with Lightweight Stereo Matching Algorithm
- Jinhyeong Lee,
- Junyoung Shin and
- Eunwoo Park
- + 1 author
Multi-object tracking faces persistent challenges from occlusions and truncations in monocular vision systems. While stereo vision provides depth information, existing approaches require computationally expensive dense matching or 3D reconstruction. This paper presents a real-time 2.5D stereo multi-object tracking framework combining lightweight stereo matching with resilient tracker management. The stereo matching module employs Direct Linear Transform-based triangulation using only bounding box coordinates, eliminating costly feature extraction while maintaining robust correspondence through geometric constraints. A dual-tracker architecture maintains independent trackers in both views, enabling re-identification when objects become occluded in one view but remain visible in the other. Experimental validation on a refrigerator monitoring dataset demonstrates that StereoSORT achieves a multiple object tracking accuracy (MOTA) of 0.932 and an identification F1 score (IDF1) of 0.823, substantially outperforming monocular trackers, including OC-SORT (IDF1: 0.765) and ByteTrack (IDF1: 0.609). The system achieves a 50.1 mm median depth error, comparable to commercial sensors, while maintaining 70 FPS on standard hardware. These results validate that geometric constraints alone enable robust stereo tracking without appearance features, offering a practical solution for resource-constrained environments where computational efficiency and tracking reliability are equally critical.
5 November 2025







