sensors-logo

Journal Browser

Journal Browser

Feature Papers in Physical Sensors 2025

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 6446

Special Issue Editors


E-Mail Website
Guest Editor
Mechanical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
Interests: MEMS; NEMS; piezoelectric transduction; resonators; nonlinearity; 2D materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
Interests: optical sensors; biosensors and chemical sensors; optical fiber sensors and optoelectronic devices
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
“Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, I-50019 Firenze, Italy
Interests: optics; optical sensors; fibre optic sensors; point of care testing (POCT)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce that the Physical Sensors Section is currently compiling a collection of papers submitted exclusively by Editorial Board Members (EBMs) of our section and outstanding scholars in this research field.

The purpose of this Special Issue is to publish a set of insightful, influential, and original articles or reviews in which our Section’s EBMs discuss key topics in the field. We expect these papers to be widely read and highly influential within the field. All papers in this Special Issue will be collected in a printed book after the deadline and widely promoted.

We would also like to take this opportunity to call on the most accomplished scholars to join the Physical Sensors Section so that we may reach even more milestones together.

Dr. Guillermo Villanueva
Prof. Dr. Sabina Merlo
Prof. Dr. Nunzio Cennamo
Prof. Dr. Aldo Minardo
Dr. Cosimo Trono
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • acoustic, sound, vibration:
  • geophone
  • hydrophone
  • microphone
  • seismometer
  • sound locator
  • ultrasonic sensors electric current, electric potential, magnetic, radio:
  • current sensor
  • hall effect sensor
  • magnetic anomaly detector
  • magnetometer
  • magnetoresistance
  • MEMS magnetic field sensor
  • planar hall sensor
  • radio direction finder
  • voltage detector pressure, force, density, level:
  • pressure sensor
  • tactile sensor
  • force gauge and force sensor
  • level sensor
  • piezocapacitive pressure sensor
  • piezoelectric sensor
  • torque sensor thermal, heat, temperature:
  • microwave radiometer
  • infrared thermometer
  • special sensor microwave/imager mechanical:
  • mechanical sensors, transducers and actuators
  • flexible mechanical sensors proximity, presence
  • alarm sensor
  • motion detector
  • proximity sensor
  • infrared sensor triangulation sensor position, angle, displacement, distance, speed, acceleration
  • accelerometer
  • capacitive displacement sensor
  • capacitive sensing
  • piezoelectric accelerometer
  • position sensor
  • angular rate sensor
  • motion sensor
  • tilt sensor
  • tachometer
  • ultrasonic thickness gauge
  • variable reluctance sensor
  • speed sensor others
  • quantum sensor
  • sensor array
  • underwater sensors
  • MEMS sensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4403 KiB  
Article
ColorX: A Fitness Tracker-Based Device for Rapid, Optical Sensing of Water Quality Parameters
by Venkata V. B. Yallapragada, Adarsh Ananthachar, U. Gowda, F. ní Chlochasaigh, L. O’Faolain and G. C. R. Devarapu
Sensors 2025, 25(16), 4935; https://doi.org/10.3390/s25164935 (registering DOI) - 9 Aug 2025
Abstract
Optical sensors have emerged as a popular technology for sensing biological and chemical analytes in various fields, including environmental monitoring, toxicology, disease/infection screening, and food processing, due to their ease of use, high sensitivity, and specificity. In this study, we introduce ColorX, an [...] Read more.
Optical sensors have emerged as a popular technology for sensing biological and chemical analytes in various fields, including environmental monitoring, toxicology, disease/infection screening, and food processing, due to their ease of use, high sensitivity, and specificity. In this study, we introduce ColorX, an ultra-portable and smart spectrophotometric device based on a commercially available fitness tracker. ColorX exploits the in-built LEDs and photodiodes of a fitness tracker for wavelength-specific absorption measurements and can be controlled wirelessly using a companion smartphone app. The device’s raw data are transmitted via Bluetooth and stored on the app for analysis and data visualisation. We validated the performance of ColorX against a standard benchtop spectrophotometer by experimentally testing five different measurements related to water quality: nitrite (>0.07 mg/L, %avgCV: 1.06)), sulphate (>18 mg/L, %avgCV: 0.39), chromium (>0.002 mg/L, %avgCV: 0.51), free chlorine (>0.005 mg/L, %avgCV: 0.68), and turbidity (>2.97 NTU, %avgCV: 1.04). Our results showed that ColorX had comparable performance to the benchmark spectrophotometer (R2 values > 0.9 in all cases). Due to its ultra-portability, water-proof design, wireless control, and smartphone-aided data analysis, we believe ColorX will be highly beneficial for a wide range of on-field spectrophotometric applications. Our work demonstrates the potential of frugal science to develop affordable and accessible technology for optical sensing. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

21 pages, 5425 KiB  
Article
Designing a Capacitive Sensor to Detect Series Arcs in Aircraft HVDC Electrical Systems
by Gema Salinero and Guillermo Robles
Sensors 2025, 25(16), 4886; https://doi.org/10.3390/s25164886 - 8 Aug 2025
Abstract
The transition toward more electric aircraft (MEA) and all-electric aircraft (AEA) has driven the adoption of high-voltage DC (HVDC) electrical architectures to meet increasing power demands while reducing weight and enhancing overall efficiency. However, HVDC systems introduce new challenges, particularly concerning insulation reliability [...] Read more.
The transition toward more electric aircraft (MEA) and all-electric aircraft (AEA) has driven the adoption of high-voltage DC (HVDC) electrical architectures to meet increasing power demands while reducing weight and enhancing overall efficiency. However, HVDC systems introduce new challenges, particularly concerning insulation reliability and the detection of in-flight series arc faults. This paper presents the design and evaluation of a capacitive sensor specifically developed to detect series arc faults in HVDC electrical systems for aerospace applications. A model of the sensor is proposed and validated through both simulations and experimental measurements using a step response test. The results show excellent agreement between the model and the physical setup. After validating the capacitive coupling value and its response to high-frequency signals, series arcs were generated in the laboratory to evaluate the sensor’s performance under realistic operating conditions, which involve different signal dynamics. The results are highly satisfactory and confirm the feasibility of using capacitive sensing for early arc detection, particularly aligned with the stringent requirements of more electric aircraft (MEA) and all-electric aircraft (AEA). The proposed sensor thus enables non-intrusive detection of series arc faults in compact, lightweight, and safety-critical environments. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

22 pages, 4262 KiB  
Article
Tribo-Dynamics of Dual-Star Planetary Gear Systems: Modeling, Analysis, and Experiments
by Jiayu Zheng, Yonggang Xiang, Changzhao Liu, Yixin Wang and Zonghai Mou
Sensors 2025, 25(15), 4709; https://doi.org/10.3390/s25154709 - 30 Jul 2025
Viewed by 260
Abstract
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine [...] Read more.
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine the oil film thickness and sliding friction force along the tooth meshing line. Subsequently, the dynamic model of the dual-star planetary gear transmission system is developed through coordinate transformations of the dual-star gear train. Finally, by integrating lubrication effects into both time-varying mesh stiffness and time-varying backlash, a tribo-dynamic model for the dual-star planetary gear transmission system is established. The study reveals that the lubricant film thickness is positively correlated with relative sliding velocity but negatively correlated with unit line load. Under high-speed conditions, a thickened oil film induces premature meshing contact, leading to meshing impacts. In contrast, under high-torque conditions, tooth deformation dominates meshing force fluctuations while lubrication influence diminishes. By establishing a test bench for the planetary gear transmission system, the obtained simulation conclusions are verified. This research provides theoretical and experimental support for the design of high-reliability planetary gear systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
Hybrid Deep–Geometric Approach for Efficient Consistency Assessment of Stereo Images
by Michał Kowalczyk, Piotr Napieralski and Dominik Szajerman
Sensors 2025, 25(14), 4507; https://doi.org/10.3390/s25144507 - 20 Jul 2025
Viewed by 471
Abstract
We present HGC-Net, a hybrid pipeline for assessing geometric consistency between stereo image pairs. Our method integrates classical epipolar geometry with deep learning components to compute an interpretable scalar score A, reflecting the degree of alignment. Unlike traditional techniques, which may overlook subtle [...] Read more.
We present HGC-Net, a hybrid pipeline for assessing geometric consistency between stereo image pairs. Our method integrates classical epipolar geometry with deep learning components to compute an interpretable scalar score A, reflecting the degree of alignment. Unlike traditional techniques, which may overlook subtle miscalibrations, HGC-Net reliably detects both severe and mild geometric distortions, such as sub-degree tilts and pixel-level shifts. We evaluate the method on the Middlebury 2014 stereo dataset, using synthetically distorted variants to simulate misalignments. Experimental results show that our score degrades smoothly with increasing geometric error and achieves high detection rates even at minimal distortion levels, outperforming baseline approaches based on disparity or calibration checks. The method operates in real time (12.5 fps on 1080p input) and does not require access to internal camera parameters, making it suitable for embedded stereo systems and quality monitoring in robotic and AR/VR applications. The approach also supports explainability via confidence maps and anomaly heatmaps, aiding human operators in identifying problematic regions. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

23 pages, 3721 KiB  
Article
Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
by Jixing Ye and Gian-Franco Dalla Betta
Sensors 2025, 25(14), 4478; https://doi.org/10.3390/s25144478 - 18 Jul 2025
Viewed by 218
Abstract
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D [...] Read more.
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D pixel sensors have been used to equip the innermost tracking layers of the ATLAS and CMS detector upgrades at the High-Luminosity Large Hadron Collider. Additionally, the next generation of vertex detectors calls for precise measurement of charged particle timing at the pixel level. Owing to their fast response times, 3D sensors present themselves as a viable technology for these challenging applications. Nevertheless, both radiation hardness and fast timing require 3D sensors to be operated with high bias voltages on the order of ∼150 V and beyond. Special attention should therefore be devoted to avoiding problems that could cause premature electrical breakdown, which could limit sensor performance. In this paper, TCAD simulations are used to gain deep insight into the impact of surface isolation layers (i.e., p-stop and p-spray) used by different vendors on the high-voltage tolerance of small-pitch 3D sensors. Results relevant to different geometrical configurations and irradiation scenarios are presented. The advantages and disadvantages of the available technologies are discussed, offering guidance for design optimization. Experimentalmeasurements from existing samples based on both isolation techniques show good agreement with simulated breakdown voltages, thereby validating the simulation approach. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

43 pages, 6150 KiB  
Article
The Effect of Surface Roughness on Supersonic Nozzle Flow and Electron Dispersion at Low Pressure Conditions
by Pavla Šabacká, Jiří Maxa, Robert Bayer, Tomáš Binar and Petr Bača
Sensors 2025, 25(13), 4204; https://doi.org/10.3390/s25134204 - 5 Jul 2025
Viewed by 371
Abstract
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two [...] Read more.
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two regions with a great pressure gradient. The nozzle geometry and flow control in this region can significantly influence the scattering and loss of the primary electron beam traversing the differentially pumped chamber and aperture. To this end, an experimental chamber was designed to explore aspects of this low-pressure regime, characterized by a varying ratio of inertial to viscous forces. The initial experimental results obtained using pressure sensors from the fabricated experimental chamber were utilized to refine the Ansys Fluent simulation setup, and in this combined approach, initial analyses of supersonic flow and shock waves in low-pressure environments were conducted. The refined Ansys Fluent system demonstrated a very good correspondence with the experimental findings. Subsequently, an analysis of the influence of surface roughness on the resulting flow behavior in low-pressure conditions was performed on this refined model using the refined CFD model. Based on the obtained results, a comparison of the influence of nozzle roughness on the resulting electron beam scattering was conducted for selected low-pressure variants relevant to the operational conditions of the Environmental Scanning Electron Microscope (ESEM). The influence of roughness at elevated working pressures within the ESEM operating regime on reduced electron beam scattering has been demonstrated. At lower pressure values within the ESEM operating regime, this influence is significantly diminished. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

19 pages, 4767 KiB  
Article
Risk Mitigation of a Heritage Bridge Using Noninvasive Sensors
by Ricky W. K. Chan and Takahiro Iwata
Sensors 2025, 25(12), 3727; https://doi.org/10.3390/s25123727 - 14 Jun 2025
Viewed by 355
Abstract
Bridges are fundamental components of transportation infrastructure, facilitating the efficient movement of people and goods. However, the conservation of heritage bridges introduces additional challenges, encompassing environmental, social, cultural, and economic dimensions of sustainability. This study investigates risk mitigation strategies for a heritage-listed, 120-year-old [...] Read more.
Bridges are fundamental components of transportation infrastructure, facilitating the efficient movement of people and goods. However, the conservation of heritage bridges introduces additional challenges, encompassing environmental, social, cultural, and economic dimensions of sustainability. This study investigates risk mitigation strategies for a heritage-listed, 120-year-old reinforced concrete bridge in Australia—one of the nation’s earliest examples of reinforced concrete construction, which remains operational today. The structure faces multiple risks, including passage of overweight vehicles, environmental degradation, progressive crack development due to traffic loading, and potential foundation scouring from an adjacent stream. Due to the heritage status and associated legal constraints, only non-invasive testing methods were employed. Ambient vibration testing was conducted to identify the bridge’s dynamic characteristics under normal traffic conditions, complemented by non-contact displacement monitoring using laser distance sensors. A digital twin structural model was subsequently developed and validated against field data. This model enabled the execution of various “what-if” simulations, including passage of overweight vehicles and loss of foundation due to scouring, providing quantitative assessments of potential risk scenarios. Drawing on insights gained from the case study, the article proposes a six-phase Incident Response Framework tailored for heritage bridge management. This comprehensive framework incorporates remote sensing technologies for incident detection, digital twin-based structural assessment, damage containment and mitigation protocols, recovery planning, and documentation to prevent recurrence—thus supporting the long-term preservation and functionality of heritage bridge assets. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

20 pages, 9505 KiB  
Article
ARMA Model for Tracking Accelerated Corrosion Damage in a Steel Beam
by Sina Zolfagharysaravi, Denis Bogomolov, Camilla Bahia Larocca, Federica Zonzini, Lorenzo Mistral Peppi, Marco Lovecchio, Luca De Marchi and Alessandro Marzani
Sensors 2025, 25(8), 2384; https://doi.org/10.3390/s25082384 - 9 Apr 2025
Viewed by 2255
Abstract
This paper proposes an enhanced vibration-based damage detection index leveraging autoregressive moving average (ARMA) time-series modeling. The method relies on the fact that material deterioration alters the vibration features of the structure. Thus, the proposed method employs an innovative usage of the ARMA [...] Read more.
This paper proposes an enhanced vibration-based damage detection index leveraging autoregressive moving average (ARMA) time-series modeling. The method relies on the fact that material deterioration alters the vibration features of the structure. Thus, the proposed method employs an innovative usage of the ARMA time-series modeling to capture subtle shifts in the vibration response. Specifically, first, a reference ARMA model is fitted on the acceleration response of the undamaged structure. Next, a damage index (DI) is built from the goodness of fit between predicted responses from the reference ARMA model and the actual measured damaged-state acceleration data. Experimental validation was conducted on a steel beam subjected to a controlled accelerated corrosion (up to 40% thickness loss), simulating real-world degradation. Accelerations due to quick-release tests were collected using two accelerometers, along with thickness measurements providing ground-truth damage progression. Results demonstrate that the proposed method can provide sufficient sensitivity in detecting early-stage corrosion progression. This finding highlights the proposed usage of ARMA model’s potential for early structural damage detection, offering significant advantages for safety and maintenance strategies in civil engineering applications. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

Back to TopTop