Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing
Abstract
1. Introduction
2. Design Theory
2.1. Unit Structure and Radiation Principle
2.2. Scalable Design Principle
2.3. Parametric Study
3. Proposed Antenna and Performance
3.1. 256-Element Planar Array
3.2. Fabrication and Results
3.3. Performance Comparison
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Communications Commission (NCC). Low-Power Radio-Frequency Devices Technical Regulations; National Communications Commission: Washington, DC, USA, 2020.
- Federal Communications Commission (FCC). Amendment of Part 15 of The Commission’s Rules To Establish Regulations For Tank Level Probing Radars in the Frequency Band 24.05–29.00 GHz; Report and Order, FCC-14-2, Docket No: 10-2310-27; Federal Communications Commission: Washington, DC, USA, 2014.
- VEGA. VEGAPULS 6X with PVDF Threaded Antenna; ID: O6QPS6XW; FCC: Washington, DC, USA, 2025.
- VEGA. VEGAPULS 6X with Horn Antenna; ID: O6QPS6XW; FCC: Washington, DC, USA, 2025.
- VEGA. VEGAPULS 6X with Horn Antenna for High Temperatures; ID: O6QPS6XW; FCC: Washington, DC, USA, 2025.
- VEGA. VEGAPULS 6X with Hygienic Antenna; ID: O6QPS6XW; FCC: Washington, DC, USA, 2025.
- AQUAS. SMR61 Radar Level Gauge; ID: CCAJ24LP5830T8; NCC: Washington, DC, USA, 2025. [Google Scholar]
- SIEMENS. SITRANS LR460; SITRANS LR460 Datasheet; Siemens: Munich, Germany, 2025. [Google Scholar]
- SIEMENS. SITRANS LR150; SITRANS LR150 Datasheet; Siemens: Munich, Germany, 2025. [Google Scholar]
- OTT HydroMET. OTT RLS Radar Level Sensor; ID: OA6RLS252, and OTT RLS Radar Level Sensor Datasheet; FCC: Washington, DC, USA, 2025.
- Mistialustina, H.; Syihabuddin, B.; Chairunnisa; Munir, A. Performance evaluation on radiation characteristics of Kaiser-based linear antenna array. In Proceedings of the 2023 Photonics & Electromagnetics Research Symposium (PIERS), Orlando, FL, USA, 12–16 November 2023; pp. 457–462. [Google Scholar]
- Chairunnisa, H.M.; Irawan, B.; Munir, A. Analytical comparison of Blackman and Kaiser functions for power weighted linear array antennas with small number of elements. In Proceedings of the 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020; pp. 1–4. [Google Scholar]
- Mistialustina, H.; Chairunnisa; Munir, A. Performance analysis of power weighted linear array antennas based on Blackman function. In Proceedings of the PIERS-Spring, Rome, Italy, 17–20 June 2019; pp. 4132–4137. [Google Scholar]
- Pranathi, G.V.P.; Rani, N.D.; Rao, G.T.; Devi, P.V.S. A Koch multiband fractal array using Kaiser window technique. In Proceedings of the 13th International Conference on Electromagnetic Interference and Compatibility (INCEMIC), Visakhapatnam, India, 22–23 July 2015; pp. 135–137. [Google Scholar]
- Sarker, M.R.; Islam, M.M.; Alam, M.T.; Hossam-E-Haider, M. Side lobe level reduction in antenna array using weighting function. In Proceedings of the International Conference on Electrical Engineering and Information & Communication Technology, Dhaka, Bangladesh, 10–12 April 2014; pp. 1–5. [Google Scholar]
- Aboul-Seoud, A.K.; Mahmoud, A.K.; Hafez, A. A sidelobe level reduction (SLL) for planar array antennas. In Proceedings of the National Radio Science Conference, Cairo, Egypt, 17–19 March 2009; pp. 1–8. [Google Scholar]
- Nuttall, A. Some windows with very good sidelobe behavior. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 84–91. [Google Scholar] [CrossRef]
- Dash, J.C.; Sarkar, D.; Antar, Y. Design of series-fed patch array with modified binomial coefficients for MIMO radar application. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1027–1028. [Google Scholar]
- Philip Ayiku Dzagbletey, K.-S.K.; Byun, W.-J.; Jung, Y.-B. Stacked microstrip linear array with highly suppressed side-lobe levels and wide bandwidth. IET Microw. Antennas Propag. 2017, 11, 17–22. [Google Scholar] [CrossRef]
- Yan, J.; Wang, H.; Yin, J.; Yu, C.; Hong, W. Planar series-fed antenna array for 77 GHz automotive radar. In Proceedings of the 6th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Chen, Z.; Otto, S. A taper optimization for pattern synthesis of microstrip series-fed patch array antennas. In Proceedings of the European Wireless Technology Conference, Rome, Italy, 28–29 September 2009; pp. 160–163. [Google Scholar]
- Zhang, J.; Su, Y.; Cao, R.; Tao, X.; Zhang, Y.; Qi, X. Design of 94 GHz series-fed microstrip antenna array. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), Cape Town, South Africa, 5–9 September 2022; pp. 225–227. [Google Scholar]
- Zhang, H.; Ouyang, S.; Zhang, L.; Zhang, Y.; Huang, Y. Analysis and design of millimeter wave series-fed microstrip array antenna. In Proceedings of the 3rd China International SAR Symposium (CISS), Shanghai, China, 2–4 November 2022; pp. 1–5. [Google Scholar]
- Liu, Y.; Bai, G.; Yagoub, M.C.E. A 79 GHz series-fed microstrip patch antenna array with bandwidth enhancement and sidelobe suppression. In Proceedings of the International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, 18–20 November 2020; pp. 155–158. [Google Scholar]
- Tan, Q.; Chen, K.; Fan, K.; Luo, G. A low-sidelobe series-fed microstrip patch antenna array for 77 GHz automotive radar applications. In Proceedings of the Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, 13–16 December 2020; pp. 1–3. [Google Scholar]
- Tsai, C.-E.; Jin, H.; Liao, C.-H.; Li, C.-Y.; Chang, W.-C.; Liu, H.-E.; Chin, K.-S. A 60 GHz rhombic patch array antenna with high gain, low sidelobe level, and reduced array area. IEEE Access 2022, 10, 86498–86509. [Google Scholar] [CrossRef]
- Li, B.; Qiu, Y.; Zhang, J.; Zhou, Z.; Sun, L. W-band series-fed microstrip patch array with optimization of tapering profile. In Proceedings of the 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 4–7 August 2020; pp. 1–2. [Google Scholar]
- Chopra, R.; Kumar, G. Series-fed binomial microstrip arrays for extremely low sidelobe level. IEEE Trans. Antennas Propag. 2019, 67, 4275–4279. [Google Scholar] [CrossRef]
- Chao, C.-P.; Yang, S.-H.; Tung, C.-M.; Yang, C.-F.; Lin, W.-H.; Chai, C.-Y.; Lin, I. A series-fed cavity-back patch array antenna for a miniaturized 77 GHz radar module. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 657–658. [Google Scholar]
- Khalili, H.; Mohammadpour-Aghdam, K.; Alamdar, S.; Mohammad-Taheri, M. Low-cost series-fed microstrip antenna arrays with extremely low sidelobe levels. IEEE Trans. Antennas Propag. 2018, 66, 4606–4612. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Che, W.; Gu, L.; Li, X. A novel 24-GHz series-fed patch antenna array for radar system. In Proceedings of the IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Nanjing, China, 16–18 May 2016; pp. 1–4. [Google Scholar]
- Slomian, I.; Wincza, K.; Gruszczynski, S. 4 × 2 broadband microstrip antenna array utilizing 4-way slot-coupled power divider. In Proceedings of the IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Beach, Aruba, 3–9 August 2014; pp. 155–158. [Google Scholar]
- Wincza, K.; Gruszczynski, S. Microstrip antenna arrays fed by a series-parallel slot-coupled feeding network. IEEE Antennas Wireless Propag. Lett. 2011, 10, 991–994. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, Z.; Li, N. A small size microstrip antenna array based on high-conductive graphene films for 5G applications. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Ji, P.; Qi, Z.; Huang, X.; Zhao, W.; Zhu, Y.; Li, X. K-band wideband microstrip antenna array with sidelobe level reduction. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar]
- Yang, Q.; Zhou, H.; Hu, M. A wideband K/Ka-band slot-coupled microstrip patch antenna and array design. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Gan, Z.; Tu, Z.-H. Dual-mode conjoint patch-pair for 5G wideband patch antenna array application. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 244–248. [Google Scholar] [CrossRef]
- Ai, X.; Liu, Y.; Jia, Y.; Xu, Y. 4 × 4 antenna array for 5G millimeter wave applications. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Lamminen, A.; Säily, J.; Ala-Laurinaho, J.; de Cos, J.; Ermolov, V. Patch antenna and antenna array on multilayer high-frequency PCB for D-band. IEEE Open J. Antennas Propag. 2020, 1, 396–403. [Google Scholar] [CrossRef]
- Asaadi, M.; Sebak, A. Gain and bandwidth enhancement of 2 × 2 square dense dielectric patch antenna array using a holey superstrate. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1808–1811. [Google Scholar]
- Zhu, Y.; Chen, K.; Tang, S.-Y.; Yu, C.; Hong, W. Ultrawideband strip-loaded slotted circular patch antenna array for millimeter-wave applications. IEEE Antennas Wireless Propag. Lett. 2023, 22, 2230–2234. [Google Scholar] [CrossRef]
- Wang, J.; Jin, S.; Liu, D.; Yang, Y.; Chen, T.; Fei, C.; Mei, C.; Zhou, B.; Huang, J.; Liu, L.; et al. Design of a low-sidelobe millimeter-wave microstrip array antenna. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 13–15 November 2023; pp. 1–3. [Google Scholar]
- Xing, K.; Liu, B.; Guo, Z.; Wei, X.; Zhao, R.; Ma, Y. Backlobe and sidelobe suppression of a Q-band patch antenna array by using substrate integrated coaxial line feeding technique. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3043–3046. [Google Scholar] [CrossRef]
- Hoseini, M.; Foororaghi, K.; Abdolali, A. A waveguide slot-fed patch antenna array. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2027–2031. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Ying, J.; Zhu, K.; Sun, H. A slot-coupling stacked patches antenna in package for a 64-elements W-band phased array. IEEE Antennas Wireless Propag. Lett. 2025, 24, 3208–3212. [Google Scholar] [CrossRef]
- Fu, X.; Yang, S.; Zhu, Z.; Fu, Y.; Liu, Y. Efficient beamforming based on high-transmittance conformal metasurface fed by slot-coupled patch antenna array. ACS Appl. Mater. Interfaces 2025, 17, 33098–33107. [Google Scholar] [CrossRef]
- Hamidi, S.M.; Razavi, S.M.J.; Armaki, S.H.M. High efficiency high gain low side lobe level and slant polarization monopulse antenna using cavity backed slot coupled patch antenna. Sci. Rep. 2025, 15, 1940. [Google Scholar] [CrossRef]
- Shepeleva, E.; Vilenskiy, A.; Evtyushkin, G.; Lukyanov, A. Sub-THz U-slot coupled stacked-patch radiating elements for dual-polarized MIMO array antennas. In Proceedings of the 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar]
- Salucci, M.; Oliveri, G.; Hannan, M.A.; Azaro, R.; Massa, A. Wide-band wide-beam circularly-polarized slot-coupled antenna for wide-angle beam scanning arrays. Sensors 2023, 23, 1123. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-H.; Chen, Y.-S. Broadband low-cost microstrip arrays for water-level radar with frequency-stable beams and side-sector sidelobe suppression. IEEE Access 2025, 13, 125348–125358. [Google Scholar] [CrossRef]
Element Index (from Center) | N = 8 | N = 7 | N = 6 | N = 5 | N = 4 | N = 3 | N = 2 | N = 1 |
---|---|---|---|---|---|---|---|---|
Uniform | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Dolph–Chebyshev | 1.00 | 0.98 | 0.94 | 0.89 | 0.82 | 0.74 | 0.65 | 0.55 |
Kaiser | 1.00 | 0.96 | 0.88 | 0.77 | 0.64 | 0.50 | 0.37 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.-H.; Chen, Y.-S. Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing. Sensors 2025, 25, 5904. https://doi.org/10.3390/s25185904
Huang K-H, Chen Y-S. Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing. Sensors. 2025; 25(18):5904. https://doi.org/10.3390/s25185904
Chicago/Turabian StyleHuang, Kuang-Hsuan, and Yen-Sheng Chen. 2025. "Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing" Sensors 25, no. 18: 5904. https://doi.org/10.3390/s25185904
APA StyleHuang, K.-H., & Chen, Y.-S. (2025). Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing. Sensors, 25(18), 5904. https://doi.org/10.3390/s25185904