Open AccessSystematic Review
Continuous Movement Monitoring at Home Through Wearable Devices: A Systematic Review
by
Gianmatteo Farabolini, Nicolò Baldini, Alessandro Pagano, Elisa Andrenelli, Lucia Pepa, Giovanni Morone, Maria Gabriella Ceravolo and Marianna Capecci
Sensors 2025, 25(16), 4889; https://doi.org/10.3390/s25164889 (registering DOI) - 8 Aug 2025
Abstract
Background: Wearable sensors are a promising tool for the remote, continuous monitoring of motor symptoms and physical activity, especially in individuals with neurological or chronic conditions. Despite many experimental trials, clinical adoption remains limited. A major barrier is the lack of awareness and
[...] Read more.
Background: Wearable sensors are a promising tool for the remote, continuous monitoring of motor symptoms and physical activity, especially in individuals with neurological or chronic conditions. Despite many experimental trials, clinical adoption remains limited. A major barrier is the lack of awareness and confidence among healthcare professionals in these technologies. Methods: This systematic review analyzed the use of wearable sensors for continuous motor monitoring at home, focusing on their purpose, type, feasibility, and effectiveness in neurological, musculoskeletal, or rheumatologic conditions. This review followed PRISMA guidelines and included studies from PubMed, Scopus, and Web of Science. Results: Seventy-two studies with 7949 participants met inclusion criteria. Neurological disorders, particularly Parkinson’s disease, were the most frequently studied. Common sensors included inertial measurement units (IMUs), accelerometers, and gyroscopes, often integrated into medical devices, smartwatches, or smartphones. Monitoring periods ranged from 24 h to over two years. Feasibility studies showed high patient compliance (≥70%) and good acceptance, with strong agreement with clinical assessments. However, only half of the studies were controlled trials, and just 5.6% were randomized. Conclusions: Wearable sensors offer strong potential for real-world motor function monitoring. Yet, challenges persist, including ethical issues, data privacy, standardization, and healthcare access. Artificial intelligence integration may boost predictive accuracy and personalized care.
Full article
►▼
Show Figures