Previous Issue
Volume 21, March-2
ijms-logo

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 21, Issue 7 (April-1 2020) – 132 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Suppression of Superficial Microglial Activation by Spinal Cord Stimulation Attenuates Neuropathic Pain Following Sciatic Nerve Injury in Rats
Int. J. Mol. Sci. 2020, 21(7), 2390; https://doi.org/10.3390/ijms21072390 (registering DOI) - 30 Mar 2020
Abstract
We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects [...] Read more.
We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects of SCS and intraperitoneal minocycline administration on plantar mechanical sensitivity, microglial activation, and neuronal excitability in the L4 dorsal horn were assessed on day 3 after SNI. The somatosensory cortical responses to electrical stimulation of the hind paw on day 3 following SNI were examined by using in vivo optical imaging with a voltage-sensitive dye. On day 3 after SNI, plantar mechanical hypersensitivity and enhanced microglial activation were suppressed by minocycline or SCS, and L4 dorsal horn nociceptive neuronal hyperexcitability was suppressed by SCS. In vivo optical imaging also revealed that electrical stimulation of the hind paw-activated areas in the somatosensory cortex was decreased by SCS. The present findings suggest that SCS could suppress plantar SNI-induced neuropathic pain via inhibition of microglial activation in the L4 dorsal horn, which is involved in spinal neuronal hyperexcitability. SCS is likely to be a potential alternative and complementary medicine therapy to alleviate neuropathic pain following nerve injury. Full article
Open AccessArticle
Effective Cellular Transport of Ortho-Halogenated Sulfonamide Derivatives of Metformin Is Related to Improved Antiproliferative Activity and Apoptosis Induction in MCF-7 Cells
Int. J. Mol. Sci. 2020, 21(7), 2389; https://doi.org/10.3390/ijms21072389 (registering DOI) - 30 Mar 2020
Abstract
Metformin is a substrate for plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs); therefore, the expression of these transporters and interactions between them may affect the uptake of metformin into tumor cells and its anticancer efficacy. The aim of this study [...] Read more.
Metformin is a substrate for plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs); therefore, the expression of these transporters and interactions between them may affect the uptake of metformin into tumor cells and its anticancer efficacy. The aim of this study was to evaluate how chemical modification of metformin scaffold into benzene sulfonamides with halogen substituents (compounds 19) may affect affinity towards OCTs, cellular uptake in two breast cancer cell lines (MCF-7 and MDA-MB-231) and antiproliferative efficacy of metformin. The uptake of most sulfonamides was more efficient in MCF-7 cells than in MDA-MB-231 cells. The presence of a chlorine atom in the aromatic ring contributed to the highest uptake in MCF-7 cells. For instance, the uptake of compound 1 with o-chloro substituent in MCF-7 cells was 1.79 ± 0.79 nmol/min/mg protein, while in MDA-MB-231 cells, the uptake was considerably lower (0.005 ± 0.0005 nmol/min/mg protein). The elevated uptake of tested compounds in MCF-7 was accompanied by high antiproliferative activity, with compound 1 being the most active (IC50 = 12.6 ± 1.2 µmol/L). Further studies showed that inhibition of MCF-7 growth is associated with the induction of early and late apoptosis and cell cycle arrest at the G0/G1 phase. In summary, the chemical modification of the biguanide backbone into halogenated sulfonamides leads to improved transporter-mediated cellular uptake in MCF-7 and contributes to the greater antiproliferative potency of studied compounds through apoptosis induction and cell cycle arrest. Full article
Open AccessReview
Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies
Int. J. Mol. Sci. 2020, 21(7), 2388; https://doi.org/10.3390/ijms21072388 (registering DOI) - 30 Mar 2020
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the [...] Read more.
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Open AccessReview
The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies
Int. J. Mol. Sci. 2020, 21(7), 2387; https://doi.org/10.3390/ijms21072387 (registering DOI) - 30 Mar 2020
Abstract
Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a [...] Read more.
Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a tremendous number of safety assessments and a very large number of animals would be required. For this reason, it is necessary to consider the use of alternative testing strategies or methods that reduce, refine, or replace (3Rs) the use of animals for assessing the toxicity of NMs. Autophagy is considered an early indicator of NM interactions with cells and has been recently recognized as an important form of cell death in nanoparticle-induced toxicity. Impairment of autophagy is related to the accelerated pathogenesis of diseases. By using mechanism-based high-throughput screening in vitro, we can predict the NMs that may lead to the generation of disease outcomes in vivo. Thus, a tiered testing strategy is suggested that includes a set of standardized assays in relevant human cell lines followed by critical validation studies carried out in animals or whole organism models such as C. elegans (Caenorhabditis elegans), zebrafish (Danio rerio), and Drosophila (Drosophila melanogaster)for improved screening of NM safety. A thorough understanding of the mechanisms by which NMs perturb biological systems, including autophagy induction, is critical for a more comprehensive elucidation of nanotoxicity. A more profound understanding of toxicity mechanisms will also facilitate the development of prevention and intervention policies against adverse outcomes induced by NMs. The development of a tiered testing strategy for NM hazard assessment not only promotes a more widespread adoption of non-rodent or 3R principles but also makes nanotoxicology testing more ethical, relevant, and cost- and time-efficient. Full article
(This article belongs to the Special Issue Nanotoxicology and Nanosafety 2.0)
Show Figures

Figure 1

Open AccessReview
TMEM16A: An Alternative Approach to Restoring Airway Anion Secretion in Cystic Fibrosis?
Int. J. Mol. Sci. 2020, 21(7), 2386; https://doi.org/10.3390/ijms21072386 (registering DOI) - 30 Mar 2020
Abstract
The concept that increasing airway hydration leads to improvements in mucus clearance and lung function in cystic fibrosis has been clinically validated with osmotic agents such as hypertonic saline and more convincingly with cystic fibrosis transmembrane conductance regulator (CFTR) repair therapies. Although rapidly [...] Read more.
The concept that increasing airway hydration leads to improvements in mucus clearance and lung function in cystic fibrosis has been clinically validated with osmotic agents such as hypertonic saline and more convincingly with cystic fibrosis transmembrane conductance regulator (CFTR) repair therapies. Although rapidly becoming the standard of care in cystic fibrosis (CF), current CFTR modulators do not treat all patients nor do they restore the rate of decline in lung function to normal levels. As such, novel approaches are still required to ensure all with CF have effective therapies. Although CFTR plays a fundamental role in the regulation of fluid secretion across the airway mucosa, there are other ion channels and transporters that represent viable targets for future therapeutics. In this review article we will summarise the current progress with CFTR-independent approaches to restoring mucosal hydration, including epithelial sodium channel (ENaC) blockade and modulators of SLC26A9. A particular emphasis is given to modulation of the airway epithelial calcium-activated chloride channel (CaCC), TMEM16A, as there is controversy regarding whether it should be positively or negatively modulated. This is discussed in light of a recent report describing for the first time bona fide TMEM16A potentiators and their positive effects upon epithelial fluid secretion and mucus clearance. Full article
(This article belongs to the Special Issue Therapeutic Approaches for Cystic Fibrosis)
Open AccessArticle
Genome and Transcriptome Sequencing of casper and roy Zebrafish Mutants Provides Novel Genetic Clues for Iridophore Loss
Int. J. Mol. Sci. 2020, 21(7), 2385; https://doi.org/10.3390/ijms21072385 (registering DOI) - 30 Mar 2020
Abstract
casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are [...] Read more.
casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are poorly defined. To identify the potential genetic basis of this fascinating morphological phenotype, we constructed genome maps by performing genome sequencing of 28 zebrafish individuals including wild-type AB strain, roy orbison (roy), and casper mutants. A total of 4.3 million high-quality and high-confidence homozygous single nucleotide polymorphisms (SNPs) were detected in the present study. We also identified a 6.0-Mb linkage disequilibrium block specifically in both roy and casper that was composed of 39 functional genes, of which the mpv17 gene was potentially involved in the regulation of iridophore formation and maintenance. This is the first report of high-confidence genomic mutations in the mpv17 gene of roy and casper that potentially leads to defective splicing as one major molecular clue for the iridophore loss. Additionally, comparative transcriptomic analyses of skin tissues from the AB, roy and casper groups revealed detailed transcriptional changes of several core genes that may be involved in melanophore and iridophore degeneration. In summary, our updated genome and transcriptome sequencing of the casper and roy mutants provides novel genetic clues for the iridophore loss. These new genomic variation maps will offer a solid genetic basis for expanding the zebrafish mutant database and in-depth investigation into pigmentation of animals. Full article
(This article belongs to the Special Issue Exploring the Genotype–Phenotype Map: Regulatory Pathways)
Open AccessArticle
Expression of a NGATHA1 Gene from Medicago truncatula Delays Flowering Time and Enhances Stress Tolerance
Int. J. Mol. Sci. 2020, 21(7), 2384; https://doi.org/10.3390/ijms21072384 (registering DOI) - 30 Mar 2020
Abstract
Shoot branching is one of the most variable determinants of crop yield, and the signaling pathways of plant branches have become a hot research topic. As an important transcription factor in the B3 family, NGATHA1 (NGA1), plays an important role in regulating plant [...] Read more.
Shoot branching is one of the most variable determinants of crop yield, and the signaling pathways of plant branches have become a hot research topic. As an important transcription factor in the B3 family, NGATHA1 (NGA1), plays an important role in regulating plant lateral organ development and hormone synthesis and transport, but few studies of the role of this gene in the regulation of plant growth and stress tolerance have been reported. In this study, the NGA1 gene was isolated from Medicago truncatula (Mt) and its function was characterized. The cis-acting elements upstream of the 5′ end of MtNGA1 and the expression pattern of MtNGA1 were analyzed, and the results indicated that the gene may act as a regulator of stress resistance. A plant expression vector was constructed and transgenic Arabidopsis plants were obtained. Transgenic Arabidopsis showed delayed flowering time and reduced branching phenotypes. Genes involved in the regulation of branching and flowering were differentially expressed in transgenic plants compared with wild-type plants. Furthermore, transgenic plants demonstrated strong tolerances to salt- and mannitol-induced stresses, which may be due to the upregulated expression of NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3) by the MtNGA1 gene. These results provide useful information for the exploration and genetic modification use of MtNGA1 in the future. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Open AccessArticle
Chitosan Modified Zeolite Molecular Sieve Particles as a Filter for Ammonium Nitrogen Removal from Water
Int. J. Mol. Sci. 2020, 21(7), 2383; https://doi.org/10.3390/ijms21072383 (registering DOI) - 30 Mar 2020
Abstract
Drinking water containing a high amount of ammonium-nitrogen (NH4+-N) is not effectively removed by conventional treatment processes and can cause eutrophication. In this research, a composite adsorbent based on chitosan crosslink with zeolite molecular sieve (CTS-ZMS) was prepared for NH [...] Read more.
Drinking water containing a high amount of ammonium-nitrogen (NH4+-N) is not effectively removed by conventional treatment processes and can cause eutrophication. In this research, a composite adsorbent based on chitosan crosslink with zeolite molecular sieve (CTS-ZMS) was prepared for NH4+-N removal through dynamic adsorption filter experiments. Effect of bed depth (30, 50 and 70 cm), flow rate (32, 49 and 65 mL/min), initial pH value (4.5, 6.5 and 8.5) and influent NH4+-N concentration (3, 5 and 7 mg/L) was examined by using a filter column packed with CTS-ZMS particles. The Thomas model was applied to study the breakthrough curves and adsorption capacity. The optimal process parameters of the aforementioned factors were obtained at bed depth of 70 cm, flow rate of 32 mL/min, pH of 6.5 and initial NH4+-N concentration of 7 mg/L. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were investigated to analyze the structure and morphology of the CTS-ZMS adsorbents before and after 3 months running. The EDS and FTIR results showed Na+ and the active functional groups of -OH, -NH2 and -COO on CTS-ZMS adsorbent particles reacted with ammonium nitrogen. The results of this study supported the use of CTS-ZMS to improve drinking water filtration processes by increasing ammonium nitrogen reductions. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

Open AccessArticle
Novel Mutations in the TMPRSS3 Gene may Contribute to Taiwanese Patients with Nonsyndromic Hearing Loss
Int. J. Mol. Sci. 2020, 21(7), 2382; https://doi.org/10.3390/ijms21072382 (registering DOI) - 30 Mar 2020
Abstract
A previous study indicated that mutations in the transmembrane protease serine 3 (TMPRSS3) gene, which encodes a transmembrane serine protease, cause nonsyndromic hearing loss (NSHL). This was the first description of a serine protease involved in hearing loss (HL). In Taiwan, however, data [...] Read more.
A previous study indicated that mutations in the transmembrane protease serine 3 (TMPRSS3) gene, which encodes a transmembrane serine protease, cause nonsyndromic hearing loss (NSHL). This was the first description of a serine protease involved in hearing loss (HL). In Taiwan, however, data on the TMPRSS3 gene’s association with NSHL is still insufficient. In this study, we described 10 mutations of TMPRSS3 genes found in 14 patients after screening 230 children with NSHL. The prevalence of the TMPRSS3 mutation appeared to be 6.09% (14/230). Of the 10 mutations, three were missense mutations: c.239G>A (p.R80H), c.551T>C (p.L184S), and 1253C>T (p.A418V); three were silent mutations, and four were mutations in introns. To determine the functional importance of TMPRSS3 mutations, we constructed plasmids carrying TMPRSS3 mutations of p.R80H, p.L184S, and p.A418V. TMPRSS3 function can be examined by secretory genetic assay for site-specific proteolysis (sGASP) and Xenopus oocyte expression system. Our results showed that p.R80H, p.L184S, and p.A418V TMPRSS3 mutations gave ratios of 19.4%, 13.2%, and 27.6%, respectively, via the sGASP system. Moreover, these three TMPRSS3 mutations failed to activate the epithelial sodium channel (ENaC) in the Xenopus oocyte expression system. These results indicate that the p.R80H, p.L184S, and p.A418V missense mutations of TMPRSS3 resulted in greatly diminishing the proteolytic activity of TMPRSS3. Our study provides information for understanding the importance of TMPRSS3 in the NSHL of Taiwanese children and provides a novel molecular explanation for the role of TMPRSS3 in HL. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Open AccessReview
The Genetics of Alzheimer’s Disease in the Chinese Population
Int. J. Mol. Sci. 2020, 21(7), 2381; https://doi.org/10.3390/ijms21072381 (registering DOI) - 30 Mar 2020
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. In China, the number of AD patients is growing rapidly, which poses a considerable burden on society and families. In recent years, through the advancement of genome-wide association [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. In China, the number of AD patients is growing rapidly, which poses a considerable burden on society and families. In recent years, through the advancement of genome-wide association studies, second-generation gene sequencing technology, and their application in AD genetic research, more genetic loci associated with the risk for AD have been discovered, including KCNJ15, TREM2, and GCH1, which provides new ideas for the etiology and treatment of AD. This review summarizes three early-onset AD causative genes (APP, PSEN1, and PSEN2) and some late-onset AD susceptibility genes and their mutation sites newly discovered in China, and briefly introduces the potential mechanisms of these genetic susceptibilities in the pathogenesis of AD, which would help in understanding the genetic mechanisms underlying this devastating disease. Full article
(This article belongs to the Special Issue Molecular Genetic of Alzheimer's Disease)
Show Figures

Figure 1

Open AccessCorrection
Correction: Kędzierska, H., et al. Decreased Expression of SRSF2 Splicing Factor Inhibits Apoptotic Pathways in Renal Cancer. Int. J. Mol. Sci. 2016, 17, 1598.
Int. J. Mol. Sci. 2020, 21(7), 2380; https://doi.org/10.3390/ijms21072380 (registering DOI) - 30 Mar 2020
Abstract
The authors wish to make the following corrections to this paper [1]: in Figure 4 the same gel
scans were mistakenly pasted to illustrate splicing changes of: i) BIM in KIJ-265T and KIJ308T cells,
and ii) MCL-1 in UOK171 and KIJ-265T
[...] Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Open AccessArticle
ThymicPeptides Reverse Immune Exhaustion in Patients with Reactivated Human Alphaherpesvirus1 Infections
Int. J. Mol. Sci. 2020, 21(7), 2379; https://doi.org/10.3390/ijms21072379 (registering DOI) - 30 Mar 2020
Abstract
Recurrent infection with human alphaherpesvirus 1 (HHV-1) may be associated with immune exhaustion that impairs virus elimination. Thymic peptides enhance immune function and thus could overcome immune exhaustion. In this study, we investigated whether reactivation of herpes infections was associated with immune exhaustion. [...] Read more.
Recurrent infection with human alphaherpesvirus 1 (HHV-1) may be associated with immune exhaustion that impairs virus elimination. Thymic peptides enhance immune function and thus could overcome immune exhaustion. In this study, we investigated whether reactivation of herpes infections was associated with immune exhaustion. Moreover, we examined the impact of treatment with thymostimulin on the expression of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on T and B lymphocytes in patients suffering from recurrent HHV-1 reactivation. We also assessed the effector function of peripheral blood mononuclear cells (PBMCs) after stimulation with thymic peptides. We enrolled 50 women with reactivated HHV-1 infections and healthy volunteers. We measured the expression of various activation and exhaustion markers on the surface of PBMCs using flow cytometry. In ex vivo experiments, we measured the secretion of inflammatory cytokines by PBMCs cultured with thymostimulin. Compared with controls, patients with reactivated HHV-1 infections had increased percentages of CD3+ co-expressing CD25, an activation marker (p < 0.001). Moreover, these patients had increased percentages of CD4+ and CD8+ cells co-expressing the inhibitory markers PD-1 and PD-L1. In cultures of PBMCs from the patients, thymostimulin increased the secretion of interferon gamma (p < 0.001) and interleukin (IL)-2 (p = 0.023), but not IL-4 or IL-10.Two-month thymostimulin therapy resulted in no reactivation of HHV-1 infection during this period and the reduction of PD-1 and PD-L1 expression on the surface of T and B lymphocytes (p < 0.001). In conclusion, reactivation of herpes infection is associated with immune exhaustion, which could be reversed by treatment with thymic peptides. Full article
(This article belongs to the Special Issue Natural Products against Viral Infections II)
Show Figures

Figure 1

Open AccessReview
Molecular T-Cell Repertoire Analysis as Source of Prognostic and Predictive Biomarkers for Checkpoint Blockade Immunotherapy
Int. J. Mol. Sci. 2020, 21(7), 2378; https://doi.org/10.3390/ijms21072378 (registering DOI) - 30 Mar 2020
Abstract
The T cells are key players of the response to checkpoint blockade immunotherapy (CBI) and monitoring the strength and specificity of antitumor T-cell reactivity remains a crucial but elusive component of precision immunotherapy. The entire assembly of T-cell receptor (TCR) sequences accounts for [...] Read more.
The T cells are key players of the response to checkpoint blockade immunotherapy (CBI) and monitoring the strength and specificity of antitumor T-cell reactivity remains a crucial but elusive component of precision immunotherapy. The entire assembly of T-cell receptor (TCR) sequences accounts for antigen specificity and strength of the T-cell immune response. The TCR repertoire hence represents a “footprint” of the conditions faced by T cells that dynamically evolves according to the challenges that arise for the immune system, such as tumor neo-antigenic load. Hence, TCR repertoire analysis is becoming increasingly important to comprehensively understand the nature of a successful antitumor T-cell response, and to improve the success and safety of current CBI. Full article
Show Figures

Figure 1

Open AccessArticle
Array-Based Screening of Silver Nanoparticle Mineralization Peptides
Int. J. Mol. Sci. 2020, 21(7), 2377; https://doi.org/10.3390/ijms21072377 (registering DOI) - 30 Mar 2020
Abstract
The use of biomolecules in nanomaterial synthesis has received increasing attention, because they can function as a medium to produce inorganic materials in ambient conditions. Short peptides are putative ligands that interact with metallic surfaces, as they have the potential to control the [...] Read more.
The use of biomolecules in nanomaterial synthesis has received increasing attention, because they can function as a medium to produce inorganic materials in ambient conditions. Short peptides are putative ligands that interact with metallic surfaces, as they have the potential to control the synthesis of nanoscale materials. Silver nanoparticle (AgNP) mineralization using peptides has been investigated; however, further comprehensive analysis must be carried out, because the design of peptide mediated-AgNP properties is still highly challenging. Herein, we employed an array comprising 200 spot synthesis-based peptides, which were previously isolated as gold nanoparticle (AuNP)-binding and/or mineralization peptides, and the AgNP mineralization activity of each peptide was broadly evaluated. Among 10 peptides showing the highest AgNP-synthesis activity (TOP10), nine showed the presence of EE and E[X]E (E: glutamic acid, and X: any amino acid), whereas none of these motifs were found in the WORST25 (25 peptides showing the lowest AgNP synthesis activity) peptides. The size and morphology of the particles synthesized by TOP3 peptides were dependent on their sequences. These results suggested not only that array-based techniques are effective for the peptide screening of AgNP mineralization, but also that AgNP mineralization regulated by peptides has the potential for the synthesis of AgNPs, with controlled morphology in environmentally friendly conditions. Full article
(This article belongs to the Special Issue Silver Nano/Microparticles: Modification and Applications 2.0)
Show Figures

Figure 1

Open AccessArticle
Nanogels of a Succinylated Glycol Chitosan-Succinyl Prednisolone Conjugate: Release Behavior, Gastrointestinal Distribution, and Systemic Absorption
Int. J. Mol. Sci. 2020, 21(7), 2376; https://doi.org/10.3390/ijms21072376 (registering DOI) - 30 Mar 2020
Abstract
Recently, the potential of nanoparticles (NPs) in ulcerative colitis (UC) therapy has been increasingly demonstrated. Namely, anionic NPs have been found to be accumulated efficiently to the UC damaged area due to epithelial enhanced permeability and retention (eEPR) effect. Previously, a novel anionic [...] Read more.
Recently, the potential of nanoparticles (NPs) in ulcerative colitis (UC) therapy has been increasingly demonstrated. Namely, anionic NPs have been found to be accumulated efficiently to the UC damaged area due to epithelial enhanced permeability and retention (eEPR) effect. Previously, a novel anionic nanogel system (NG(S)) was prepared, and evaluated for the efficacy and toxicity. In the present study, release behaviors and biodistribution were investigated in detail to elucidate the functional mechanisms. Rats with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC) were used as biomodels. In vitro release was examined with or without the contents of the cecum or distal colon. Gastrointestinal distribution and plasma concentrations were investigated after the intragastric administration of 10 mg prednisolone (PD) eq./kg. At pH 1.2 and 6.8, release behaviors were slow, but controlled. Overall release was not markedly different irrespective of coexistence of intestinal contents. In in vivo studies, a large amount of PD was distributed in the lower parts of the gastrointestinal tract 6 and 12 h after administration with NG(S). PD accumulated well in the colonic parts, and prolonged release was noted. The systemic absorption of PD with NG(S) was hardly found. NG(S) concentrated the drug in the colon and showed controlled release. These behaviors were considered to lead to the previously reported good results, promotion of effectiveness and suppression of toxic side effects. Full article
Show Figures

Graphical abstract

Open AccessReview
Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure
Int. J. Mol. Sci. 2020, 21(7), 2375; https://doi.org/10.3390/ijms21072375 (registering DOI) - 30 Mar 2020
Abstract
Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread [...] Read more.
Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread commercial and biomedical application of nanosilver include its use as a catalyst and an optical receptor in cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health. In the present review, after giving an overview of ENMs, we discuss the current advances on the physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs. Though there has been an increase in the number of studies in this area, more investigations are required to understand the mechanisms of toxicity following various modes of exposure to AgNPs. Full article
(This article belongs to the Special Issue Nanotoxicology and Nanosafety 2.0)
Show Figures

Figure 1

Open AccessArticle
Genetic and Clinical Heterogeneity in Thirteen New Cases with Aceruloplasminemia. Atypical Anemia as a Clue for an Early Diagnosis
Int. J. Mol. Sci. 2020, 21(7), 2374; https://doi.org/10.3390/ijms21072374 (registering DOI) - 30 Mar 2020
Abstract
Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) [...] Read more.
Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Position and Complex Genomic Architecture of Plant T-DNA Insertions Revealed by 4SEE
Int. J. Mol. Sci. 2020, 21(7), 2373; https://doi.org/10.3390/ijms21072373 (registering DOI) - 30 Mar 2020
Abstract
The integration of T-DNA in plant genomes is widely used for basic research and agriculture. The high heterogeneity in the number of integration events per genome, their configuration, and their impact on genome integrity highlight the critical need to detect the genomic locations [...] Read more.
The integration of T-DNA in plant genomes is widely used for basic research and agriculture. The high heterogeneity in the number of integration events per genome, their configuration, and their impact on genome integrity highlight the critical need to detect the genomic locations of T-DNA insertions and their associated chromosomal rearrangements, and the great challenge in doing so. Here, we present 4SEE, a circular chromosome conformation capture (4C)-based method for robust, rapid, and cost-efficient detection of the entire scope of T-DNA locations. Moreover, by measuring the chromosomal architecture of the plant genome flanking the T-DNA insertions, 4SEE outlines their associated complex chromosomal aberrations. Applying 4SEE to a collection of confirmed T-DNA lines revealed previously unmapped T-DNA insertions and chromosomal rearrangements such as inversions and translocations. Uncovering such events in a feasible, robust, and cost-effective manner by 4SEE in any plant of interest has implications for accurate annotation and phenotypic characterization of T-DNA insertion mutants and transgene expression in basic science applications as well as for plant biotechnology. Full article
(This article belongs to the Special Issue Chromatin, Epigenetics and Plant Physiology)
Show Figures

Figure 1

Open AccessArticle
Mapping of QTLs Associated with Yield and Yield Related Traits in Durum Wheat (Triticum durum Desf.) Under Irrigated and Drought Conditions
Int. J. Mol. Sci. 2020, 21(7), 2372; https://doi.org/10.3390/ijms21072372 (registering DOI) - 30 Mar 2020
Abstract
Global durum wheat consumption (Triticum durum Desf.) is ahead of its production. One reason for this is abiotic stress, e.g., drought. Breeding for resistance to drought is complicated by the lack of fast, reproducible screening techniques and the inability to routinely create [...] Read more.
Global durum wheat consumption (Triticum durum Desf.) is ahead of its production. One reason for this is abiotic stress, e.g., drought. Breeding for resistance to drought is complicated by the lack of fast, reproducible screening techniques and the inability to routinely create defined and repeatable water stress conditions. Here, we report the first analysis of dissection of yield and yield-related traits in durum wheat in Pakistan, seeking to elucidate the genetic components of yield and agronomic traits. Analysis of several traits revealed a total of 221 (160 with logarithm of odds (LOD) > 2 ≤ 3 and 61 with LOD > 3) quantitative trait loci (QTLs) distributed on all fourteen durum wheat chromosomes, of which 109 (78 with LOD > 2 ≤ 3 and 31 with LOD > 3) were observed in 2016-17 (S1) and 112 (82 with LOD > 2 ≤ 3 and 30 with LOD > 3) were observed in 2017-18 (S2). Allelic profiles of yield QTLs on chromosome 2A and 7B indicate that allele A of Xgwm895 and allele B of Xbarc276 can enhance the Yd up to 6.16% in control and 5.27% under drought. Moreover, if combined, a yield gain of up to 11% would be possible. Full article
(This article belongs to the collection Genetics and Molecular Breeding in Plants)
Show Figures

Graphical abstract

Open AccessArticle
Proteomic Analysis of Renal Biomarkers of Kidney Allograft Fibrosis—A Study in Renal Transplant Patients
Int. J. Mol. Sci. 2020, 21(7), 2371; https://doi.org/10.3390/ijms21072371 (registering DOI) - 30 Mar 2020
Abstract
Renal transplantation is the preferred treatment of end stage renal disease, but allograft survival is limited by the development of interstitial fibrosis and tubular atrophy in response to various stimuli. Much effort has been put into identifying new protein markers of fibrosis to [...] Read more.
Renal transplantation is the preferred treatment of end stage renal disease, but allograft survival is limited by the development of interstitial fibrosis and tubular atrophy in response to various stimuli. Much effort has been put into identifying new protein markers of fibrosis to support the diagnosis. In the present work, we performed an in-depth quantitative proteomics analysis of allograft biopsies from 31 prevalent renal transplant patients and correlated the quantified proteins with the volume fraction of fibrosis as determined by a morphometric method. Linear regression analysis identified four proteins that were highly associated with the degree of interstitial fibrosis, namely Coagulation Factor XIII A chain (estimate 18.7, adjusted p < 0.03), Uridine Phosphorylase 1 (estimate 19.4, adjusted p < 0.001), Actin-related protein 2/3 subunit 2 (estimate 34.2, adjusted p < 0.05) and Cytochrome C Oxidase Assembly Factor 6 homolog (estimate −44.9, adjusted p < 0.002), even after multiple testing. Proteins that were negatively associated with fibrosis (p < 0.005) were primarily related to normal metabolic processes and respiration, whereas proteins that were positively associated with fibrosis (p < 0.005) were involved in catabolic processes, cytoskeleton organization and the immune response. The identified proteins may be candidates for further validation with regards to renal fibrosis. The results support the notion that cytoskeleton organization and immune responses are prevalent processes in renal allograft fibrosis. Full article
Show Figures

Figure 1

Open AccessArticle
Photobiomodulation Mediates Neuroprotection against Blue Light Induced Retinal Photoreceptor Degeneration
Int. J. Mol. Sci. 2020, 21(7), 2370; https://doi.org/10.3390/ijms21072370 (registering DOI) - 30 Mar 2020
Abstract
Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is [...] Read more.
Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy. Full article
(This article belongs to the Special Issue CNS Drug Action in Neurodegenerative Diseases)
Show Figures

Graphical abstract

Open AccessArticle
Modulatory Effects of Silymarin on Benzo[a]pyrene-Induced Hepatotoxicity
Int. J. Mol. Sci. 2020, 21(7), 2369; https://doi.org/10.3390/ijms21072369 (registering DOI) - 30 Mar 2020
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a group 1 carcinogen that introduces mutagenic DNA adducts into the genome. In this study, we investigated the molecular mechanisms underlying the involvement of silymarin in the reduction of DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), induced [...] Read more.
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a group 1 carcinogen that introduces mutagenic DNA adducts into the genome. In this study, we investigated the molecular mechanisms underlying the involvement of silymarin in the reduction of DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), induced by B[a]P. B[a]P exhibited toxicity in HepG2 cells, whereas co-treatment of the cells with B[a]P and silymarin reduced the formation of BPDE-DNA adducts, thereby increasing cell viability. Determination of the level of major B[a]P metabolites in the treated cells showed that BPDE levels were reduced by silymarin. Nuclear factor erythroid 2-related factor 2 (Nrf2) and pregnane X receptor (PXR) were found to be involved in the activation of detoxifying genes against B[a]P-mediated toxicity. Silymarin did not increase the expression of these major transcription factors, but greatly facilitated their nuclear translocation. In this manner, treatment of HepG2 cells with silymarin modulated detoxification enzymes through NRF2 and PXR to eliminate B[a]P metabolites. Knockdown of Nrf2 abolished the preventive effect of silymarin on BPDE-DNA adduct formation, indicating that activation of the Nrf2 pathway plays a key role in preventing B[a]P-induced genotoxicity. Our results suggest that silymarin has anti-genotoxic effects, as it prevents BPDE-DNA adduct formation by modulating the Nrf2 and PXR signaling pathways. Full article
Show Figures

Figure 1

Open AccessArticle
Analysis of Intracellular Magnesium and Mineral Depositions during Osteogenic Commitment of 3D Cultured Saos2 Cells
Int. J. Mol. Sci. 2020, 21(7), 2368; https://doi.org/10.3390/ijms21072368 (registering DOI) - 30 Mar 2020
Abstract
In this study, we explore the behaviour of intracellular magnesium during bone phenotype modulation in a 3D cell model built to mimic osteogenesis. In addition, we measured the amount of magnesium in the mineral depositions generated during osteogenic induction. A two-fold increase of [...] Read more.
In this study, we explore the behaviour of intracellular magnesium during bone phenotype modulation in a 3D cell model built to mimic osteogenesis. In addition, we measured the amount of magnesium in the mineral depositions generated during osteogenic induction. A two-fold increase of intracellular magnesium content was found, both at three and seven days from the induction of differentiation. By X-ray microscopy, we characterized the morphology and chemical composition of the mineral depositions secreted by 3D cultured differentiated cells finding a marked co-localization of Mg with P at seven days of differentiation. This is the first experimental evidence on the presence of Mg in the mineral depositions generated during biomineralization, suggesting that Mg incorporation occurs during the bone forming process. In conclusion, this study on the one hand attests to an evident involvement of Mg in the process of cell differentiation, and, on the other hand, indicates that its multifaceted role needs further investigation. Full article
(This article belongs to the Special Issue Magnesium in Differentiation and Development)
Show Figures

Graphical abstract

Open AccessReview
Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma
Int. J. Mol. Sci. 2020, 21(7), 2367; https://doi.org/10.3390/ijms21072367 (registering DOI) - 30 Mar 2020
Abstract
Although melanoma is one of the most immunogenic tumors, it has an ability to evade anti-tumor immune responses by exploiting tolerance mechanisms, including negative immune checkpoint molecules. The most extensively studied checkpoints represent cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein [...] Read more.
Although melanoma is one of the most immunogenic tumors, it has an ability to evade anti-tumor immune responses by exploiting tolerance mechanisms, including negative immune checkpoint molecules. The most extensively studied checkpoints represent cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Immune checkpoint inhibitors (ICI), which were broadly applied for melanoma treatment in the past decade, can unleash anti-tumor immune responses and result in melanoma regression. Patients responding to the ICI treatment showed long-lasting remission or disease control status. However, a large group of patients failed to respond to this therapy, indicating the development of resistance mechanisms. Among them are intrinsic tumor properties, the dysfunction of effector cells, and the generation of immunosuppressive tumor microenvironment (TME). This review discusses achievements of ICI treatment in melanoma, reasons for its failure, and promising approaches for overcoming the resistance. These methods include combinations of different ICI with each other, strategies for neutralizing the immunosuppressive TME and combining ICI with other anti-cancer therapies such as radiation, oncolytic viral, or targeted therapy. New therapeutic approaches targeting other immune checkpoint molecules are also discussed. Full article
Show Figures

Figure 1

Open AccessCommunication
A Molecular Basis for Reciprocal Regulation between Pheromones and Hormones in Response to Dietary Cues in C. elegans
Int. J. Mol. Sci. 2020, 21(7), 2366; https://doi.org/10.3390/ijms21072366 (registering DOI) - 29 Mar 2020
Viewed by 166
Abstract
Under stressful conditions, the early larvae of C. elegans enter dauer diapause, a non-aging period, driven by the seemingly opposite influence of ascaroside pheromones (ASCRs) and steroid hormone dafachronic acids (DAs). However, the molecular basis of how these small molecules engage in competitive [...] Read more.
Under stressful conditions, the early larvae of C. elegans enter dauer diapause, a non-aging period, driven by the seemingly opposite influence of ascaroside pheromones (ASCRs) and steroid hormone dafachronic acids (DAs). However, the molecular basis of how these small molecules engage in competitive crosstalk in coordination with insulin/IGF-1 signaling (IIS) remains elusive. Here we report a novel transcriptional regulatory pathway that seems to operate between the ASCR and DA biosynthesis under ad libitum (AL) feeding conditions or bacterial deprivation (BD). Although expression of the ASCR and DA biosynthetic genes reciprocally inhibit each other, ironically and interestingly, such dietary cue-mediated modulation requires the presence of the competitors. Under BD, induction of ASCR biosynthetic gene expression required DA, while ASCR suppresses the expression of the DA biosynthetic gene daf-36. The negative regulation of DA by ASCR was IIS-dependent, whereas daf-36 regulation appeared to be independent of IIS. These observations suggest that the presence of ASCR determines the IIS-dependency of DA gene expression regardless of dietary conditions. Thus, our work defines a molecular basis for a novel reciprocal gene regulation of pheromones and hormones to cope with stressful conditions during development and aging. Full article
(This article belongs to the Special Issue Central and Peripheral Molecular Mechanisms of Metabolism Regulation)
Show Figures

Figure 1

Open AccessCommunication
Expression and Role of IL-1β Signaling in Chondrocytes Associated with Retinoid Signaling during Fracture Healing
Int. J. Mol. Sci. 2020, 21(7), 2365; https://doi.org/10.3390/ijms21072365 (registering DOI) - 29 Mar 2020
Viewed by 171
Abstract
The process of fracture healing consists of an inflammatory reaction and cartilage and bone tissue reconstruction. The inflammatory cytokine interleukin-1β (IL-1β) signal is an important major factor in fracture healing, whereas its relevance to retinoid receptor (an RAR inverse agonist, which promotes endochondral [...] Read more.
The process of fracture healing consists of an inflammatory reaction and cartilage and bone tissue reconstruction. The inflammatory cytokine interleukin-1β (IL-1β) signal is an important major factor in fracture healing, whereas its relevance to retinoid receptor (an RAR inverse agonist, which promotes endochondral bone formation) remains unclear. Herein, we investigated the expressions of IL-1β and retinoic acid receptor gamma (RARγ) in a rat fracture model and the effects of IL-1β in the presence of one of several RAR inverse agonists on chondrocytes. An immunohistochemical analysis revealed that IL-1β and RARγ were expressed in chondrocytes at the fracture site in the rat ribs on day 7 post-fracture. In chondrogenic ATDC5 cells, IL-1β decreases the levels of aggrecan and type II collagen but significantly increased the metalloproteinase-13 (Mmp13) mRNA by real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. An RAR inverse agonist (AGN194310) inhibited IL-1β-stimulated Mmp13 and Ccn2 mRNA in a dose-dependent manner. Phosphorylated extracellular signal regulated-kinases (pERK1/2) and p-p38 mitogen-activated protein kinase (MAPK) were increased time-dependently by IL-1β treatment, and the IL-1β-induced p-p38 MAPK was inhibited by AGN194310. Experimental p38 inhibition led to a drop in the IL-1β-stimulated expressions of Mmp13 and Ccn2 mRNA. MMP13, CCN2, and p-p38 MAPK were expressed in hypertrophic chondrocytes near the invaded vascular endothelial cells. As a whole, these results point to role of the IL-1β via p38 MAPK as important signaling in the regulation of the endochondral bone formation in fracture healing, and to the actions of RAR inverse agonists as potentially relevant modulators of this process. Full article
(This article belongs to the Special Issue Molecular Processes in Chondrocyte Biology)
Show Figures

Figure 1

Open AccessReview
Curcumin and Colorectal Cancer: From Basic to Clinical Evidences
Int. J. Mol. Sci. 2020, 21(7), 2364; https://doi.org/10.3390/ijms21072364 (registering DOI) - 29 Mar 2020
Viewed by 168
Abstract
Curcumin diffuses through cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it exerts actions, as an antioxidant property. Therefore, its use has been advocated for chemopreventive, antimetastatic, and anti-angiogenic purposes. We conducted a literature review to summarize studies investigating the relationship [...] Read more.
Curcumin diffuses through cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it exerts actions, as an antioxidant property. Therefore, its use has been advocated for chemopreventive, antimetastatic, and anti-angiogenic purposes. We conducted a literature review to summarize studies investigating the relationship between curcumin and colorectal cancer (CRC). In vitro studies, performed on human colon cancer cell lines, showed that curcumin inhibited cellular growth through cycle arrest at the G2/M and G1 phases, as well as stimulated apoptosis by interacting with multiple molecular targets. In vivo studies have been performed in inflammatory and genetic CRC animal models with a chemopreventive effect. To improve curcumin bioavailability, it has been associated with small particles that increase its absorption when orally administered with excellent results on both inflammation and carcinogenesis. Curcumin has been used, moreover, as a component of dietetic formulations for CRC chemoprevention. These combinations showed in vitro and in vivo anticarcinogenetic properties in inflammation-related and genetic CRC. A synergic effect was suggested using an individual constituent dosage, which was lower than that experimentally used “in vivo” for single components. In conclusion, curcumin falls within the category of plant origin substances able to prevent CRC in animals. This property offers promising expectations in humans. Full article
(This article belongs to the Special Issue Curcumin in Health and Disease: New Knowledge)
Open AccessArticle
The Subcellular Localization and Oligomerization Preferences of NME1/NME2 upon Radiation-Induced DNA Damage
Int. J. Mol. Sci. 2020, 21(7), 2363; https://doi.org/10.3390/ijms21072363 (registering DOI) - 29 Mar 2020
Viewed by 172
Abstract
Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA damage repair. Although eukaryotic NDPKs are active only [...] Read more.
Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA damage repair. Although eukaryotic NDPKs are active only as hexamers, it is unclear whether other NME functions require the hexameric form, and how the isoenzyme composition varies in different cellular compartments. To examine the effect of DNA damage on intracellular localization of NME1 and NME2 and the composition of NME oligomers in the nucleus and the cytoplasm, we used live-cell imaging and the FRET/FLIM technique. We showed that exogenous NME1 and NME2 proteins co-localize in the cytoplasm of non-irradiated cells, and move simultaneously to the nucleus after gamma irradiation. The FRET/FLIM experiments imply that, after DNA damage, there is a slight shift in the homomer/heteromer balance between the nucleus and the cytoplasm. Collectively, our results indicate that, after irradiation, NME1 and NME2 engage in mutual functions in the nucleus, possibly performing specific functions in their homomeric states. Finally, we demonstrated that fluorophores fused to the N-termini of NME polypeptides produce the largest FRET effect and thus recommend this orientation for use in similar studies. Full article
Show Figures

Figure 1

Open AccessReview
Towards a New Understanding of Decision-Making by Hematopoietic Stem Cells
Int. J. Mol. Sci. 2020, 21(7), 2362; https://doi.org/10.3390/ijms21072362 (registering DOI) - 29 Mar 2020
Viewed by 134
Abstract
Cells within the hematopoietic stem cell compartment selectively express receptors for cytokines that have a lineage(s) specific role; they include erythropoietin, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and the ligand for the fms-like tyrosine kinase 3. These hematopoietic cytokines can [...] Read more.
Cells within the hematopoietic stem cell compartment selectively express receptors for cytokines that have a lineage(s) specific role; they include erythropoietin, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and the ligand for the fms-like tyrosine kinase 3. These hematopoietic cytokines can instruct the lineage fate of hematopoietic stem and progenitor cells in addition to ensuring the survival and proliferation of cells that belong to a particular cell lineage(s). Expression of the receptors for macrophage colony-stimulating factor and granulocyte colony-stimulating factor is positively autoregulated and the presence of the cytokine is therefore likely to enforce a lineage bias within hematopoietic stem cells that express these receptors. In addition to the above roles, macrophage colony-stimulating factor and granulocyte/macrophage colony-stimulating factor are powerful chemoattractants. The multiple roles of some hematopoietic cytokines leads us towards modelling hematopoietic stem cell decision-making whereby these cells can ‘choose’ just one lineage fate and migrate to a niche that both reinforces the fate and guarantees the survival and expansion of cells as they develop. Full article
(This article belongs to the collection Feature Papers in Molecular Biology)
Show Figures

Figure 1

Open AccessArticle
Fluoride Affects Dopamine Metabolism and Causes Changes in the Expression of Dopamine Receptors (D1R and D2R) in Chosen Brain Structures of Morphine-Dependent Rats
Int. J. Mol. Sci. 2020, 21(7), 2361; https://doi.org/10.3390/ijms21072361 (registering DOI) - 29 Mar 2020
Viewed by 158
Abstract
Disturbances caused by excess or shortages of certain elements can affect the cerebral reward system and may therefore modulate the processes associated with the development of dependence as was confirmed by behavioural studies on animals addicted to morphine. Earlier publications demonstrated and proved [...] Read more.
Disturbances caused by excess or shortages of certain elements can affect the cerebral reward system and may therefore modulate the processes associated with the development of dependence as was confirmed by behavioural studies on animals addicted to morphine. Earlier publications demonstrated and proved the neurodegenerative properties of both low and high doses of fluoride ions in animal experiments and in epidemiological and clinical studies. The aim of the experiments conducted in the course of the present study was to analyse the effect of pre- and postnatal exposure to 50 ppm F on the initiation/development of morphine dependence. For this purpose, the following were conducted: behavioural studies, the analysis of concentrations of dopamine and its metabolites, and the analyses of mRNA expression and dopamine receptor proteins D1 and D2 in the prefrontal cortex, striatum, hippocampus, and cerebellum of rats. In this study, it was observed for the first time that pre- and postnatal exposure to fluoride ions influenced the phenomenon of morphine dependence in a model expressing withdrawal symptoms. Behavioural, molecular, and neurochemical studies demonstrated that the degenerative changes caused by toxic activity of fluoride ions during the developmental period of the nervous system may impair the functioning of the dopaminergic pathway due to changes in dopamine concentration and in dopamine receptors. Moreover, the dopaminergic disturbances within the striatum and the cerebellum played a predominant role as both alterations of dopamine metabolism and profound alterations in striatal D1 and D2 receptors were discovered in these structures. The present study provides a new insight into a global problem showing direct associations between environmental factors and addictive disorders. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop