Next Issue
Volume 6, March
Previous Issue
Volume 5, September
 
 

Wind, Volume 5, Issue 4 (December 2025) – 14 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 3127 KB  
Article
Design of Low-Power Vertical-Axis Wind Turbine Based on Parametric Method
by F. Díaz-Canul, J. O. Aguilar, N. Rosado-Hau, E. Simá and O. A. Jaramillo
Wind 2025, 5(4), 35; https://doi.org/10.3390/wind5040035 - 10 Dec 2025
Viewed by 329
Abstract
The parametric design of a low-power (<1 kW) H-type vertical-axis wind turbine tailored to the wind conditions of the Yucatán Peninsula is presented. Nine airfoils were evaluated using the Double Multiple Streamtube method and Qblade Lifting-Line Theory numerical simulations, considering variations in solidity [...] Read more.
The parametric design of a low-power (<1 kW) H-type vertical-axis wind turbine tailored to the wind conditions of the Yucatán Peninsula is presented. Nine airfoils were evaluated using the Double Multiple Streamtube method and Qblade Lifting-Line Theory numerical simulations, considering variations in solidity (σ = 0.20–0.30), aspect ratio (Ar = H/R = 2.6–3.0), number of blades (2–5), and a swept-area constraint of 4 m2. The parametric study shows that fewer blades increase Cp, although a three-blade rotor improves start-up torque, vibration mitigation, and load smoothing. The recommended configuration—three blades, Ar = 2.6, σ = 0.30 and S1046 (or NACA 0018) operated near λ ≈ 3.75—balances efficiency and start-up performance. For the representative mean wind velocity of 5 m/s, typical of the Yucatán Peninsula, the VAWT achieves a maximum output of 136 W at 220 rpm. Under higher-wind conditions observed in specific sites within the region, the predicted maximum output increases to 932 W at 380 rpm. Full article
Show Figures

Graphical abstract

18 pages, 3195 KB  
Article
Enhancing Dynamic Voltage Stability of Wind Farm Based Microgrids Using FACTS Devices and Flexible Control Strategy
by Huzaifah Zahid, Muhammad Rashad and Naveed Ashraf
Wind 2025, 5(4), 34; https://doi.org/10.3390/wind5040034 - 1 Dec 2025
Viewed by 254
Abstract
Voltage instability and power quality degradation represent critical barriers to the reliable operation of modern wind farm-based microgrids. As the share of distributed wind generation continues to grow, fluctuating wind speeds and variable reactive power demands increasingly challenge grid stability. This study proposes [...] Read more.
Voltage instability and power quality degradation represent critical barriers to the reliable operation of modern wind farm-based microgrids. As the share of distributed wind generation continues to grow, fluctuating wind speeds and variable reactive power demands increasingly challenge grid stability. This study proposes an adaptive decentralized framework integrating a Dynamic Distribution Static Compensator (DSTATCOM) with an Artificial Neuro-Fuzzy Inference System (ANFIS)-based control strategy to enhance dynamic voltage and frequency stability in wind farm microgrids. Unlike conventional centralized STATCOM configurations, the proposed system employs parallel wind turbine modules that can be selectively switched based on voltage feedback to maintain optimal grid conditions. Each turbine is connected to a capacitive circuit for real-time voltage monitoring, while the ANFIS controller adaptively adjusts compensation signals to ensure minimal voltage deviation and reduced harmonic distortion. The framework was modeled and validated in the MATLAB/Simulink R2023a environment using the Simscape Power Systems toolbox. Simulation results demonstrated superior transient response, voltage recovery, and power factor correction compared with traditional PI and fuzzy-based controllers, achieving a total harmonic distortion below 2.5% and settling times under 0.5 s. The findings confirm that the proposed decentralized DSTATCOM–ANFIS approach provides an effective, scalable, and cost-efficient solution for maintaining dynamic stability and high power quality in wind farm based microgrids. Full article
Show Figures

Figure 1

26 pages, 5155 KB  
Article
Integrated CFD and ANN Approach for Predicting Blade Deformation and Aerodynamic Response
by Hudhaifa Hamzah, Ali Alkhabbaz, Aisha Koprulu, Laith M. Jasim, Ibrahim K. Alzubaidi, Abdulelah Hameed Yaseen, Ho-Seong Yang and Young-Ho Lee
Wind 2025, 5(4), 33; https://doi.org/10.3390/wind5040033 - 1 Dec 2025
Viewed by 243
Abstract
The growing demand for renewable energy has amplified the need for efficient and reliable wind turbine technologies, where understanding aerodynamic performance and aeroelastic behavior plays a critical role. In this study, a high-fidelity computational fluid dynamics (CFD) model was developed to analyze the [...] Read more.
The growing demand for renewable energy has amplified the need for efficient and reliable wind turbine technologies, where understanding aerodynamic performance and aeroelastic behavior plays a critical role. In this study, a high-fidelity computational fluid dynamics (CFD) model was developed to analyze the aerodynamic loads and structural responses of a 2 kW horizontal-axis wind turbine, while an artificial neural network (ANN) was trained using CFD-generated data to predict power output and aeroelastic characteristics. The work combines ANN predictions and CFD simulations to determine the feasibility of machine learning as a surrogate model, which is much less expensive in terms of computational costs and time, with no negative effects on the accuracy. Findings indicate ANN predictions are closely comparable to CFD results with under 5–7% deviation at optimal blade pitch angles, which was shown to be very reliable in capturing nonlinear aerodynamic trends at different wind speeds and blade pitch angles. In addition, the obtained result emphasizes the example of the trade-off between aerodynamic efficiency and structural safety, where the largest power coefficient (0.42) was achieved at 0° pitch and the tip deflections were reduced by almost 60% as the pitch was raised to 5°. Such results substantiate the usefulness of ANN-based methods in the rapid aerodynamic and aeroelastic simulation of wind turbines and provide a prospective direction for effectively designed wind power generation and optimization. Full article
Show Figures

Figure 1

22 pages, 8399 KB  
Article
Wind Resource Assessment over Extremely Diverse Terrain
by Jay Prakash Goit
Wind 2025, 5(4), 32; https://doi.org/10.3390/wind5040032 - 26 Nov 2025
Viewed by 351
Abstract
The current study investigates the effect of terrain features on wind resources in a region with extremely diverse terrain. To that end, a case study of Nepal based on annual wind data collected from 10 different sites is performed. The evaluation of mean [...] Read more.
The current study investigates the effect of terrain features on wind resources in a region with extremely diverse terrain. To that end, a case study of Nepal based on annual wind data collected from 10 different sites is performed. The evaluation of mean wind speeds using Weibull probability density functions (PDFs) shows that complex-terrain sites exhibit greater variability in 10-min average wind speeds relative to the annual average wind speeds. This pattern is also evident in comparisons of short- and long-term average wind speeds. At the complex-terrain sites, the wind speeds exhibited strong short-term variations, suggesting that local terrain effects dominate over seasonal wind variation. Terrain complexity also strongly affected turbulence. The flat-terrain sites showed turbulence intensities below the lowest IEC category turbulence profile, while the complex-terrain sites exceeded the highest IEC profile. This indicates that the IEC standard may require modification based on site complexity parameters, such as the standard deviation of elevation fluctuations. The power law exponent (α), used to extrapolate wind speeds to higher elevations, deviated notably from the typical 1/7 value, even in flat terrain. Finally, a power potential analysis indicated that three sites with higher mean wind speeds achieved higher capacity factors. Full article
Show Figures

Figure 1

33 pages, 11216 KB  
Article
Comparative Performance Evaluation of Wind Energy Systems Using Doubly Fed Induction Generator and Permanent Magnet Synchronous Generator
by Areeg Ebrahiem Elngar, Asmaa Sobhy Sabik, Ahmed Hassan Adel and Adel S. Nada
Wind 2025, 5(4), 31; https://doi.org/10.3390/wind5040031 - 21 Nov 2025
Viewed by 552
Abstract
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly [...] Read more.
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly Fed Induction Generator (DFIG) and the Permanent Magnet Synchronous Generator (PMSG) dominate commercial applications; however, a comprehensive comparative assessment under diverse grid and fault scenarios is still limited. This study addresses this gap by systematically evaluating the performance of DFIG- and PMSG-based WECSs across three operating stages: (i) normal operation at constant speed, (ii) variable wind speed operation, and (iii) grid fault conditions including single-line-to-ground, line-to-line, and three-phase faults. To enhance fault resilience, a DC-link Braking Chopper is integrated into both systems, ensuring a fair evaluation of transient stability and compliance with low-voltage ride-through (LVRT) requirements. The analysis, performed using MATLAB/Simulink, focuses on active and reactive power, rotor speed, pitch angle, and DC-link voltage dynamics. The results reveal that PMSG exhibits smoother transient responses and lower overshoot compared to DFIG. Under fault conditions, the DC-link Braking Chopper effectively suppresses voltage spikes in both systems, with DFIG achieving faster reactive power recovery in line with grid code requirements, while PMSG ensures more stable rotor dynamics with lower oscillations. The findings highlight the complementary strengths of both technologies and provide useful insights for selecting appropriate WECS configurations to improve grid integration and fault ride-through capability. Full article
(This article belongs to the Topic Wind Energy in Multi Energy Systems)
Show Figures

Figure 1

16 pages, 3727 KB  
Article
MW-Level Performance Comparison of Contra Rotating Generators for Wind Power Applications
by Mehroz Fatima, Wasiq Ullah, Faisal Khan and U. B. Akuru
Wind 2025, 5(4), 30; https://doi.org/10.3390/wind5040030 - 6 Nov 2025
Viewed by 694
Abstract
The scaling effect of machines from kW to MW greatly affects electromagnetic performance and needs to be investigated for different machines. Therefore, this paper presents a comprehensive comparative study on the intriguing electromagnetic performance of contra-rotating permanent-magnet vernier machines and dual-port, wound-field-excited, flux-switching [...] Read more.
The scaling effect of machines from kW to MW greatly affects electromagnetic performance and needs to be investigated for different machines. Therefore, this paper presents a comprehensive comparative study on the intriguing electromagnetic performance of contra-rotating permanent-magnet vernier machines and dual-port, wound-field-excited, flux-switching machines at the MW power level for contra-rotating wind turbine applications. The analysis evaluates both machines across various slot/pole combinations while maintaining constant key design parameters. The electromagnetic performance analysis reveals that the permanent-magnet vernier machine (PMVM) exhibits superior torque and power, with minimal cogging torque compared to the wound-field flux-switching machine (WFFSM). Conversely, the WFFSM outperforms the PMVM in terms of power factor and efficiency. This study provides valuable perspectives on the strengths and weaknesses of each machine, highlighting their potential for contra-rotating turbine and wind power generation. Finally, to justify the findings of the finite element analysis and the proof of concept, an experimental prototype is tested to validate the study. Full article
Show Figures

Figure 1

35 pages, 1293 KB  
Systematic Review
A Systematic Review of Wind Energy Forecasting Models Based on Deep Neural Networks
by Edgar A. Manzano, Ruben E. Nogales and Alberto Rios
Wind 2025, 5(4), 29; https://doi.org/10.3390/wind5040029 - 3 Nov 2025
Viewed by 1244
Abstract
The present study focuses on wind power forecasting (WPF) models based on deep neural networks (DNNs), aiming to evaluate current approaches, identify gaps, and provide insights into their importance for the integration of Renewable Energy Sources (RESs). The systematic review was conducted following [...] Read more.
The present study focuses on wind power forecasting (WPF) models based on deep neural networks (DNNs), aiming to evaluate current approaches, identify gaps, and provide insights into their importance for the integration of Renewable Energy Sources (RESs). The systematic review was conducted following the methodology of Kitchenham and Charters, including peer-reviewed articles from 2020 to 2024 that focused on WPF using deep learning (DL) techniques. Searches were conducted in the ACM Digital Library, IEEE Xplore, ScienceDirect, Springer Link, and Wiley Online Library, with the last search updated in April 2024. After the first phase of screening and then filtering using inclusion and exclusion criteria, risk of bias was assessed using a Likert-scale evaluation of methodological quality, validity, and reporting. Data extraction was performed for 120 studies. The synthesis established that the state of the art is dominated by hybrid architectures (e.g., CNN-LSTM) integrated with signal decomposition techniques like VMD and optimization algorithms such as GWO and PSO, demonstrating high predictive accuracy for short-term horizons. Despite these advancements, limitations include the variability in datasets, the heterogeneity of model architectures, and a lack of standardization in performance metrics, which complicate direct comparisons across studies. Overall, WPF models based on DNNs demonstrate substantial promise for renewable energy integration, though future work should prioritize standardization and reproducibility. This review received no external funding and was not prospectively registered. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

22 pages, 2200 KB  
Article
Gated Lag and Feature Selection for Day-Ahead Wind Power Forecasting Using On-Site SCADA Data
by Inajara Rutyna
Wind 2025, 5(4), 28; https://doi.org/10.3390/wind5040028 - 3 Nov 2025
Viewed by 479
Abstract
Day-ahead wind power forecasting is often limited to on-site Supervisory Control and Data Acquisition (SCADA) datasets without Numerical Weather Prediction (NWP) information. In this regime, practitioners extend autoregressive windows over many variables, so the input size grows with both features and lags. Many [...] Read more.
Day-ahead wind power forecasting is often limited to on-site Supervisory Control and Data Acquisition (SCADA) datasets without Numerical Weather Prediction (NWP) information. In this regime, practitioners extend autoregressive windows over many variables, so the input size grows with both features and lags. Many lag–feature pairs are redundant, increasing the training time and overfitting risk. A lightweight, differentiable joint gate over the lag–feature plane trained with a temperature-annealed sigmoid is proposed. Sparsity is induced by capped penalties that (i) bound the total open mass to the top-M features and (ii), within each selected feature, bound the mass to the top-k lags. An additional budget-aware off-state term pushes unused logits negative in proportion to the excess density over the (M×k) budget. A lightweight, per-feature softmax pooling head supplies the forecasting loss during selection. After training, the learned probabilities are converted into compact, non-contiguous lag–feature subsets (top-M features; per-feature top-k lags) and reused by downstream predictors. Tests on the Offshore Renewable Energy (ORE) Catapult Platform for Operational Data (POD) from the Levenmouth Demonstration Turbine (LDT) dataset show that the joint gate reduces the input dimensionality and training time while improving accuracy and stability relative to Pearson’s correlation, mutual information, and cross-correlation function selectors. Full article
Show Figures

Figure 1

28 pages, 6562 KB  
Article
Advancing Bridge Aerodynamics: Open-Jet Testing, Reynolds Number Effects, and Sustainable Mitigation Through Green Energy Integration
by Aly Mousaad Aly and Hannah DiLeo
Wind 2025, 5(4), 27; https://doi.org/10.3390/wind5040027 - 21 Oct 2025
Viewed by 639
Abstract
Bridges, as critical transportation infrastructure, are highly vulnerable to aerodynamic forces, particularly vortex-induced vibrations (VIV), which severely compromise their structural integrity and operational safety. These low-frequency, high-amplitude vibrations are a primary challenge to serviceability and fatigue life. Ensuring the resilience of these structures [...] Read more.
Bridges, as critical transportation infrastructure, are highly vulnerable to aerodynamic forces, particularly vortex-induced vibrations (VIV), which severely compromise their structural integrity and operational safety. These low-frequency, high-amplitude vibrations are a primary challenge to serviceability and fatigue life. Ensuring the resilience of these structures demands advanced understanding and robust mitigation strategies. This paper comprehensively addresses the multifaceted challenges of bridge aerodynamics, presenting an in-depth analysis of contemporary testing methodologies and innovative solutions. We critically examine traditional wind tunnel modeling, elucidating its advantages and inherent limitations, such as scale effects, Reynolds number dependence, and boundary interference, which can lead to inaccurate predictions of aerodynamic forces and vibration amplitudes. This scale discrepancy is critical, as demonstrated by peak pressure coefficients being underestimated by up to 64% in smaller-scale wind tunnel environments compared to high-Reynolds-number open-jet testing. To overcome these challenges, the paper details the efficacy of open-jet testing at facilities like the Windstorm Impact, Science, and Engineering (WISE) Laboratory, demonstrating its superior capability in replicating realistic atmospheric boundary layer flow conditions and enabling larger-scale, high-Reynolds-number testing for more accurate insights into bridge behavior under dynamic wind loads. Furthermore, we explore the design principles and applications of various aerodynamic mitigation devices, including handrails, windshields, guide vanes, and spoilers, which are essential for altering airflow patterns and suppressing vortex-induced vibrations. The paper critically investigates the innovative integration of green energy solutions, specifically solar panels, with bridge structures. This study presents the application of solar panel arrangements to provide both renewable energy production and verifiable aerodynamic mitigation. This strategic incorporation is shown not only to harness renewable energy but also to actively improve aerodynamic performance and mitigate wind-induced vibrations, thereby fostering both bridge safety and sustainable infrastructure development. Unlike previous studies focusing primarily on wind loads on PV arrays, this work demonstrates how the specific geometric integration of solar panels can serve as an active aerodynamic mitigation device for bridge decks. This dual functionality—harnessing renewable energy while simultaneously serving as a passive geometric countermeasure to vortex-induced vibrations—marks a novel advancement over single-purpose mitigation technologies. Through this interdisciplinary approach, the paper seeks to advance bridge engineering towards more resilient, efficient, and environmentally responsible solutions. Full article
Show Figures

Figure 1

24 pages, 3499 KB  
Article
Modernizing Wind Load Standards for Ireland
by David Cunningham, Rubina Ramponi, Reamonn MacReamoinn and Jennifer Keenahan
Wind 2025, 5(4), 26; https://doi.org/10.3390/wind5040026 - 17 Oct 2025
Viewed by 1400
Abstract
In anticipation of the implementation of the Second-Generation Eurocodes, evaluating the suitability of these standards is necessary to ensure the structural safety and sustainable design of Ireland’s future building stock. This paper provides a detailed comparative analysis of the wind loading codes of [...] Read more.
In anticipation of the implementation of the Second-Generation Eurocodes, evaluating the suitability of these standards is necessary to ensure the structural safety and sustainable design of Ireland’s future building stock. This paper provides a detailed comparative analysis of the wind loading codes of practice relevant to Ireland: The Irish National Annex to EN1991-1-4 (2005) and the draft version of the Second-Generation Eurocode, EN1991-1-4 (2025). Quantitative evaluation is conducted across a range of building typologies, with calculations performed for various sites and structural geometries. The findings reveal marked differences in wind load predictions between the codes, particularly affecting base shear values and net pressure coefficients. Areas of concern regarding structural design efficiency and safety for future building structures in Ireland are outlined. The significant inconsistencies between provisions within the codes of practice are identified and critically evaluated from both theoretical and practical perspectives, providing insight into the optimal solution for implementation in Irish engineering practice. Full article
(This article belongs to the Special Issue Wind Effects on Civil Infrastructure)
Show Figures

Figure 1

27 pages, 10871 KB  
Article
Lift-Based Rotor Optimization of HAWTs via Blade Element Momentum Theory and CFD
by Rossen Iliev
Wind 2025, 5(4), 25; https://doi.org/10.3390/wind5040025 - 13 Oct 2025
Viewed by 718
Abstract
This article presents a methodology for the synthesis of horizontal-axis wind turbines operating on the principle of lift. The profile geometry is synthesized using the Vortex–source distribution method following Glauert’s approach. The blade shape is developed using the Blade Element Momentum Theory. Efficiency [...] Read more.
This article presents a methodology for the synthesis of horizontal-axis wind turbines operating on the principle of lift. The profile geometry is synthesized using the Vortex–source distribution method following Glauert’s approach. The blade shape is developed using the Blade Element Momentum Theory. Efficiency is determined with Computational Fluid Dynamics. The methodology uses a multifactor numerical experiment, with the objective function defined as maximizing lift-to-drag ratio of the blade profile. Validation of the obtained power curves is performed with QBlade and XFoil and confirmed experimentally on a laboratory test bench. The proposed methodology demonstrates improved accuracy in predicting the power coefficient and the optimal operation regime of horizontal-axis wind turbines at low Reynolds numbers. Full article
Show Figures

Figure 1

17 pages, 4052 KB  
Article
Incorporating the Effect of Windborne Debris on Wind Pressure Calculation of ASCE 7 Provisions
by Karim Farokhnia
Wind 2025, 5(4), 24; https://doi.org/10.3390/wind5040024 - 13 Oct 2025
Viewed by 671
Abstract
Windborne debris generated during tornadoes and hurricanes plays a critical role in building damage. This damage occurs either through direct impact on structural and nonstructural components or indirectly by increasing internal pressure when debris penetrates openings (e.g., windows and doors) or creates new [...] Read more.
Windborne debris generated during tornadoes and hurricanes plays a critical role in building damage. This damage occurs either through direct impact on structural and nonstructural components or indirectly by increasing internal pressure when debris penetrates openings (e.g., windows and doors) or creates new ones. These breaches can significantly raise internal pressure, even at lower wind speeds compared to debris-free conditions. Current provisions in ASCE 7, the nationally adopted standard for wind load calculations in the United States, account for factors such as building geometry, location, and exposure category. However, they do not consider the effects of windborne debris on internal pressure coefficients. This study proposes an enhancement to ASCE 7 by incorporating debris effects through the use of a more conservative enclosure classification. Real-world damage observations from three tornado-impacted residential buildings are presented, followed by a failure mechanism analysis, supporting analytical fragility data, and numerical simulations of debris effects on building damage. The findings suggest that treating buildings as Partially Enclosed under ASCE 7 can more accurately reflect debris-induced internal pressures and improve building resilience under extreme wind events. Full article
Show Figures

Figure 1

17 pages, 3270 KB  
Article
Structural Topology Optimisation of a Composite Wind Turbine Blade Under Various Constraints
by Mohamed Noufel Ajmal Khan and Mertol Tüfekci
Wind 2025, 5(4), 23; https://doi.org/10.3390/wind5040023 - 28 Sep 2025
Viewed by 1329
Abstract
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while [...] Read more.
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while maintaining or improving mechanical performance. The optimisation process incorporates modal characterisation of the first ten natural frequencies and a detailed static stress analysis. Results indicate that the optimised designs achieve a notable increase in the fundamental natural frequency of the blade—from 2.32 Hz to 2.99 Hz—and reduce the overall mass by approximately 49%, lowering it from 4.55 × 105 kg to around 2.34 × 105 kg compared to the original configuration. In particular, the optimised geometry offers improved stiffness and a more uniform stress distribution, especially in the flapwise bending and torsional modes. Higher-order torsional frequencies remain well-separated from typical excitation sources, minimising resonance risks. These findings highlight the effectiveness of constraint-driven topology optimisation in enhancing structural performance and reducing material usage in wind turbine blade design. Full article
Show Figures

Figure 1

18 pages, 5263 KB  
Systematic Review
Current Status and Sustainable Utilization of Wind Energy Resources in Mexico: A Systematic Review
by Uriel Castilla Batun, Mohamed E. Zayed, Mohamed Ghazy and Shafiqur Rehman
Wind 2025, 5(4), 22; https://doi.org/10.3390/wind5040022 - 24 Sep 2025
Cited by 1 | Viewed by 2132
Abstract
Mexico holds significant potential for wind energy development, owing to its strategic geographic location and extensive coastlines. This review article systematically explores the technical, environmental, and economic aspects of wind energy in five different climatic zones in Mexico, reviewing potential zones for wind [...] Read more.
Mexico holds significant potential for wind energy development, owing to its strategic geographic location and extensive coastlines. This review article systematically explores the technical, environmental, and economic aspects of wind energy in five different climatic zones in Mexico, reviewing potential zones for wind energy development, with the focus on the key case studies, ongoing project, and wind power performance metrics. It also critically examines the key challenges and opportunities within Mexico’s wind energy portfolio, with a focus on social, economic, environmental, and regulatory dimensions that influence the sector’s development and long-term sustainability. The results indicate that Oaxaca leads Mexico’s onshore wind potential with a power density of 761 W/m2, followed by strong resources in Tamaulipas and Baja California, where wind speeds exceed 6 m/s. For offshore wind potential, Isthmus of Tehuantepec demonstrates outstanding offshore potential, with wind power densities exceeding 1000 W/m2 and wind speeds above 8 m/s. Major challenges include inconsistent or unclear governmental policies regarding renewable energy incentives, regulatory uncertainties, and social resistance from local communities concerned about environmental impacts and land use. These obstacles underline the need for integrated, transparent policies and inclusive engagement strategies to carry out the full potential of wind energy in Mexico. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop