Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches
Abstract
1. Introduction
2. Review Methodology
3. Nanoplastics: Definition, Distribution, Detection, and Risk Analysis
3.1. Definition and Sources
3.2. Environmental Presence
3.2.1. Distribution
3.2.2. Environmental Sampling
3.2.3. Detection, Characterization, and Quantification
3.3. Potential Risks
3.4. Ecological and Health Risk
3.4.1. Ecological Risks
3.4.2. Human Health Risks
Area of Concern | Potential Risks | Mechanism Description | Potential Sources | References |
---|---|---|---|---|
Ecological Systems |
|
|
| [72,73] |
|
|
| [73,74] | |
|
|
| [67,68] | |
Human Health |
|
|
| [75] |
|
|
| [35,76] | |
|
|
| [77,78] |
3.4.3. Mitigation Strategies
4. Fate and Impacts of NPs
4.1. Pathways and Impacts on the Ecosystem
4.1.1. Aquatic Pathways
4.1.2. Terrestrial Pathways
4.1.3. Atmospheric Pathways
5. Ecological Impacts of NPs
5.1. Accumulation and Trophic Transfer of NPs
5.1.1. Bioaccumulation
5.1.2. Biomagnification
5.2. Mechanisms of Toxicity
5.2.1. Physical and Chemical Properties Affecting Toxicity
5.2.2. Molecular Mechanisms of NP Toxicity
6. Mitigation Pathways
6.1. Policy and Regulation
6.1.1. Current Policies
6.1.2. Recommended Policies
6.2. Technological Innovations
6.2.1. Alternative Materials
6.2.2. Advanced Recycling
6.3. Waste Management Strategies
6.4. Public Awareness and Education
7. Gaps in Knowledge and Future Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson, R.C.; Moore, C.J.; Vom Saal, F.S.; Swan, S.H. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.A. Microplastics–occurrence, fate, and behavior in the environment. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 75, pp. 1–24. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC); Health Canada. Draft Science Assessment of Plastic Pollution; Government of Canada: Ottawa, ON, Canada, 2020; Available online: https://publications.gc.ca/collections/collection_2020/eccc/En14-424-2020-eng.pdf (accessed on 15 January 2020).
- European Commission (EC). Environmental and Health Risks of Microplastic Pollution; Publications Office of the European Union: Luxembourg, 2019; Available online: https://op.europa.eu/en/publication-detail/-/publication/ea4fba6f-70cb-11e9-9f05-01aa75ed71a1/language-en (accessed on 22 July 2019).
- Boyle, K.; Örmeci, B. Microplastics and nanoplastics in the freshwater and terrestrial environment: A review. Water 2020, 12, 2633. [Google Scholar] [CrossRef]
- European Union (EU). European Strategy for Plastics in a Circular Economy; Publications Office of the European Union: Luxembourg, 2018; Available online: https://ec.europa.eu/environment/plastics-strategy (accessed on 20 August 2018).
- American Chemical Society (ACS). The History of Plastics. 1993. Available online: https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/bakelite.html (accessed on 1 June 1993).
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Institute of Marine Affairs (IMA). Twenty Thousand Microplastics in the Sea. 2018. Available online: https://www.ima.gov.tt (accessed on 18 July 2018).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global human-made mass exceeds all living biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Lechner, K.; Zeeshan, M.; Noack, M.; Ali, H.; Neurath, M.F.; Weigmann, B. Small but powerful: Will nanoparticles be the future state-of-the-art therapy for IBD? Expert Opin. Drug Deliv. 2022, 19, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- Lusher, A.L.; Tirelli, V.; O’Connor, I.; Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 2015, 5, 14947. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Bellerby, R.; Zhang, F.; Sun, X.; Li, D. The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution. Water Res. 2020, 168, 115121. [Google Scholar] [CrossRef]
- Citterich, F.; Lo Giudice, A.; Azzaro, M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef]
- Provencher, J.F.; Ammendolia, J.; Rochman, C.M.; Mallory, M.L. Assessing plastic debris in aquatic food webs: What we know and don’t know about uptake and trophic transfer. Environ. Rev. 2019, 27, 304–317. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Author Correction: Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 679. [Google Scholar] [CrossRef]
- Pradel, A.; Catrouillet, C.; Gigault, J. The environmental fate of nanoplastics: What we know and what we need to know about aggregation. NanoImpact 2023, 29, 100453. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAOU). Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; FAO Fisheries and Aquaculture Technical Paper No. 615; FAO: Rome, Italy, 2012; Available online: https://www.fao.org/in-action/globefish/fishery-information/resource-detail/en/c/1043135/ (accessed on 1 February 2012).
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Zhang, C.; Syed, T.N.; Wang, B.; Zhou, R.; et al. Plastic pollution in agriculture as a threat to food security, the ecosystem, and the environment: An overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Malins, C.; Dumas, P.; Baldock, D.; Glauber, J.; Jayne, T.; Huang, J.; Marenya, P. Revising Public Agricultural Support to Mitigate Climate Change. World Bank. 2020. Available online: https://openknowledge.worldbank.org/handle/10986/34043 (accessed on 25 October 2020).
- Alam, G.M.; Khatun, M.N. Impact of COVID-19 on vegetable supply chain and food security: Empirical evidence from Bangladesh. PLoS ONE 2021, 16, e0248120. [Google Scholar] [CrossRef]
- Okolie, C.C.; Ogundeji, A.A. Effect of COVID-19 on agricultural production and food security: A scientometric analysis. Humanit. Soc. Sci. Commun. 2022, 9, 64. [Google Scholar] [CrossRef]
- Hofmann, T.; Ghoshal, S.; Tufenkji, N.; Adamowski, J.F.; Bayen, S.; Chen, Q.; Demokritou, P.; Flury, M.; Hüffer, T.; Ivleva, N.P.; et al. Plastics can be used more sustainably in agriculture. Commun. Earth Environ. 2023, 4, 332. [Google Scholar] [CrossRef]
- Hachem, A.; Vox, G.; Convertino, F. Prospective scenarios for addressing the agricultural plastic waste issue: Results of a territorial analysis. Appl. Sci. 2023, 13, 612. [Google Scholar] [CrossRef]
- Gavigan, J.; Kefela, T.; Macadam-Somer, I.; Suh, S.; Geyer, R. Synthetic microfiber emissions to land rival those to waterbodies and are growing. PLoS ONE 2020, 15, e0237839. [Google Scholar] [CrossRef] [PubMed]
- Gigault, J.; Pedrono, B.; Maxit, B.; Ter Halle, A. Marine plastic litter: The unanalyzed nano-fraction. Environ. Sci. Nano 2016, 3, 346–350. [Google Scholar] [CrossRef]
- Atugoda, T.; Piyumali, H.; Wijesekara, H.; Sonne, C.; Lam, S.S.; Mahatantila, K.; Vithanage, M. Nanoplastic occurrence, transformation, and toxicity: A review. Environ. Chem. Lett. 2023, 21, 363–381. [Google Scholar] [CrossRef]
- Mattsson, K.; Jocic, S.; Doverbratt, I.; Hansson, L.A. Nanoplastics in the aquatic environment. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 379–399. [Google Scholar] [CrossRef]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef]
- Allan, I.J.; Samanipour, S.; Manoli, K.; Gigault, J.; Fatta-Kassinos, D. Examining the relevance of the microplastic-associated additive fraction in environmental compartments. ACS EST Water 2022, 2, 405–413. [Google Scholar] [CrossRef]
- Paul, M.B.; Stock, V.; Cara-Carmona, J.; Lisicki, E.; Shopova, S.; Fessard, V.; Braeuning, A.; Sieg, H.; Böhmert, L. Micro-and nanoplastics–current state of knowledge with the focus on oral uptake and toxicity. Nanoscale Adv. 2020, 2, 4350–4367. [Google Scholar] [CrossRef]
- Kershaw, P.J. Sources, Fate, and Effects of Microplastics in the Marine Environment: A Global Assessment. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). 2015. Available online: https://www.genevaenvironmentnetwork.org/wp-content/uploads/2022/01/UNEP_EMG-REPORT_Marine-Litter-Microplastics.pdf (accessed on 3 December 2015).
- Koelmans, B.; Pahl, S.; Backhaus, T.; Bessa, F.; van Calster, G.; Contzen, N.; Cronin, R.; Galloway, T.; Hart, A.; Henderson, L.; et al. A Scientific Perspective on Microplastics in Nature and Society; SAPEA: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Gonzalez, M.T.; Perez-Alvarez, E.P.; Hernandez, C.E. Microplastics in freshwater environments: Occurrence and environmental impacts. Environ. Sci. Technol. 2020, 54, 4300–4310. [Google Scholar] [CrossRef]
- Dong, Z.; Zhu, L.; Zhang, W.; Huang, R.; Lv, X.; Jing, X.; Yang, Z.; Wang, J.; Qiu, Y. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand. Environ. Pollut. 2019, 255, 113177. [Google Scholar] [CrossRef]
- Takada, H.; Karapanagioti, H.K.; Thompson, R.C. Microplastics in marine environments: Distribution, interactions, and effects. Environ. Sci. Technol. 2019, 53, 9589–9600. [Google Scholar]
- Frias, J.P.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.J.; Hong, S.H.; Eo, S. Marine microplastics: Abundance, distribution, and composition. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–26. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Lagarde, F.; Chassenieux, C.; Nicolai, T. Quantification of Very Low Concentrations of Colloids with Light Scattering Applied to Micro (Nano) Plastics in Seawater. Microplastics 2023, 2, 202–214. [Google Scholar] [CrossRef]
- Bianco, A.; Carena, L.; Peitsaro, N.; Sordello, F.; Vione, D.; Passananti, M. Rapid detection of nanoplastics and small microplastics by Nile-Red staining and flow cytometry. Environ. Chem. Lett. 2023, 21, 647–653. [Google Scholar] [CrossRef]
- Mendes, A.S.S. Analysis of Micro and Nanoplastics with X-Ray Photoelectron Spectroscopy. 2022. Available online: http://hdl.handle.net/10362/155126 (accessed on 1 September 2022).
- Ivleva, N.P.; Wiesheu, A.C.; Niessner, R. Microplastic in aquatic ecosystems. Angew. Chem. Int. Ed. 2017, 56, 1720–1739. [Google Scholar] [CrossRef]
- Pei, W.; Hu, R.; Liu, H.; Wang, L.; Lai, Y. Advanced Raman spectroscopy for nanoplastics analysis: Progress and perspective. TrAC Trends Anal. Chem. 2023, 166, 117188. [Google Scholar] [CrossRef]
- Shorny, A.; Steiner, F.; Hörner, H.; Skoff, S.M. Imaging and identification of single nanoplastic particles and agglomerates. Sci. Rep. 2023, 13, 10275. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Pröfrock, D.; Prange, A. Inductively coupled plasma–mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: A review of challenges, solutions, and trends. Appl. Spectrosc. 2012, 66, 843–868. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Gowen, A.; Xu, W.; Xu, J. Analyzing micro-and nanoplastics with cutting-edge infrared spectroscopy techniques: A critical review. Anal. Methods 2024, 16, 2177–2197. [Google Scholar] [CrossRef] [PubMed]
- Behera, A.; Mahapatra, S.R.; Majhi, S.; Misra, N.; Sharma, R.; Singh, J.; Singh, R.P.; Pandey, S.S.; Singh, K.R.; Kerry, R.G. Gold nanoparticle-assisted colorimetric biosensors for rapid polyethylene terephthalate (PET) sensing for a sustainable environment to monitor microplastics. Environ. Res. 2023, 234, 116556. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Law, S.; Leung, A.W.; Xu, C. Severe acute respiratory syndrome (SARS) and coronavirus disease-2019 (COVID-19): From causes to preventions in Hong Kong. Int. J. Infect. Dis. 2020, 94, 156–163. [Google Scholar] [CrossRef]
- Kaur, M.; Sharma, A.; Bhatnagar, P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol. Lett. 2024, 396, 48–69. [Google Scholar] [CrossRef]
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Lwanga, E.H.; Beriot, N.; Corradini, F.; Silva, V.; Yang, X.; Baartman, J.; Rezaei, M.; van Schaik, L.; Riksen, M.; Geissen, V. Review of microplastic sources, transport pathways and correlations with other soil stressors: A journey from agricultural sites into the environment. Chem. Biol. Technol. Agric. 2022, 9, 20. [Google Scholar] [CrossRef]
- Gomes, T.; Bour, A.; Coutris, C.; Almeida, A.C.; Bråte, I.L.; Wolf, R.; Bank, M.S.; Lusher, A.L. Ecotoxicological impacts of micro-and nanoplastics in terrestrial and aquatic environments. In Microplastic in the Environment: Pattern and Process; Springer: Berlin/Heidelberg, Germany, 2022; pp. 199–260. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. Perspectives on the Toxic Effects of Micro-and Nanoplastics on the Environment: A Bibliometric Analysis of the 2014 to 2023 Period. Toxics 2024, 12, 676. [Google Scholar] [CrossRef]
- Oeji-Olorumtoba, O.; Ajidigbi, T.S.; Jang, M. Micro plastics and nanoplastics contamination in foods: Current understanding of the health impact on human and potential solutions. Eur. J. Nutr. Food Saf. 2024, 16, 11–31. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Lv, M.; Li, J.; Zhao, X.; Song, Z.; Wang, X.; You, J.; Wang, Y.; Chen, L. Marine micro (nano) plastics determination and its environmental toxicity evaluation. TrAC Trends Anal. Chem. 2023, 168, 117332. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, J.; Wei, W.; Ngo, H.H.; Guo, W.; Ni, B.J. Emerging adsorbents for micro/nanoplastics removal from contaminated water: Advances and perspectives. J. Clean. Prod. 2022, 371, 133676. [Google Scholar] [CrossRef]
- Li, Y.; Lin, X.; Xu, G.; Yan, Q.; Yu, Y. Toxic effects and mechanisms of engineered nanoparticles and nanoplastics on lettuce (Lactuca sativa L.). Sci. Total Environ. 2024, 908, 168421. [Google Scholar] [CrossRef]
- Facciolà, A.; Visalli, G.; Pruiti Ciarello, M.; Di Pietro, A. Newly emerging airborne pollutants: Current knowledge of health impact of micro and nanoplastics. Int. J. Environ. Res. Public Health 2021, 18, 2997. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.; Min, W.; Zhong, H.; Yan, X.; Gao, Y.; Wang, J.; Zhou, H.; Yan, B. Inflammatory responses induced by synergistic actions between nanoplastics and typical heavy metal ions in human cells. Environ. Sci. Nano 2023, 10, 1599–1613. [Google Scholar] [CrossRef]
- Kim, H.; Ilyas, S. Laws, regulations, or policy tools to govern macroplastics, mesoplastics, microplastics and nanoplastics. In Microplastics; CRC Press: Boca Raton, FL, USA, 2022; pp. 31–74. [Google Scholar]
- Singh, R.; Cheng, S.; Singh, S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech 2020, 10, 66. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef]
- Sandil, S.; Záray, G. Impact of Microplastics and Nanoplastics in the Aquatic Environment; Springer: Cham, Switzerland, 2024; pp. 25–68. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Schell, T.; Rico, A.; Vighi, M. Occurrence, fate and fluxes of plastics and microplastics in terrestrial and freshwater ecosystems. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 250, pp. 1–43. [Google Scholar] [CrossRef]
- Heinze, W.M. Nanoplastic Transport in Soils by Advection and Bioturbation. 2019. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-s-10964 (accessed on 20 February 2019).
- Babele, P.K.; Bhatia, R.K. Nanoplastics in agroecosystem and phytotoxicity: An evaluation of cytogenotoxicity and epigenetic regulation. In Impact of Engineered Nanomaterials in Genomics and Epigenomics; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 83–97. [Google Scholar] [CrossRef]
- Ilyas, S.; Kim, H.; Hwang, G. Impacts of Microplastics and Nanoplastics on Biota. In Microplastics. CRC Press: Boca Raton, FL, USA, 2022; pp. 111–139. [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Tuoriniemi, J. New Single Particle Methods for Detection and Characterization of Nanoparticles in Environmental Samples; University of Gothenburg: Gothenburg, Sweden, 2013; Available online: https://gupea.ub.gu.se/bitstream/2077/33677/1/gupea_2077_33677_1.pdf (accessed on 22 July 2025).
- Ribeiro, F.; Pavlaki, M.D.; Loureiro, S.; Sarmento, R.A.; Soares, A.M.; Tourinho, P.S. Systematic Review of Nano-and Microplastics’(NMP) Influence on the Bioaccumulation of Environmental Contaminants: Part II—Freshwater Organisms. Toxics 2023, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, G.; Bhagwat, G.; Palanisami, T.; Yang, Y.; Liu, W.; Zhang, Q. Nanoplastics alter ecosystem multifunctionality and may increase global warming potential. Glob. Chang. Biol. 2023, 29, 3895–3909. [Google Scholar] [CrossRef]
- Gupta, G.S.; Dhawan, A. Fate and potential hazards of nanoparticles in the environment. In Nanoparticle Therapeutics; Academic Press: Cambridge, MA, USA, 2022; pp. 581–602. [Google Scholar] [CrossRef]
- Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015, 44, 8410–8423. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, Q.; Lu, T.; Ke, M.; Zhu, Y.; Zhang, M.; Zhang, Z.; Du, B.; Pan, X.; Sun, L.; et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environ. Pollut. 2018, 243, 1106–1112. [Google Scholar] [CrossRef]
- Mousazadehgavan, M.; Khademi, S.; Naeini, A.M.; Yoosefdoost, I.; Vashisht, V.; Hashemi, M.; Manouchehri, M.; Hashim, K. Fate of micro-and nanoplastics in water bodies: A critical review of current challenges, the next generation of advanced treatment techniques and removal mechanisms with a special focus on stormwater. J. Water Process Eng. 2024, 67, 106159. [Google Scholar] [CrossRef]
- Choi, S.; Lee, S.; Kim, M.K.; Yu, E.S.; Ryu, Y.S. Challenges and recent analytical advances in micro/nanoplastic detection. Anal. Chem. 2024, 96, 8846–8854. [Google Scholar] [CrossRef]
- Santini, G.; Castiglia, D.; Perrotta, M.M.; Landi, S.; Maisto, G.; Esposito, S. Plastic in the environment: A modern type of abiotic stress for plant physiology. Plants 2023, 12, 3717. [Google Scholar] [CrossRef] [PubMed]
- Ekvall, M.T.; Stábile, F.; Hansson, L.A. Nanoplastics rewire freshwater food webs. Commun. Earth Environ. 2024, 5, 486. [Google Scholar] [CrossRef]
- Palaniappan, S.; Sadacharan, C.M.; Rostama, B. Polystyrene and polyethylene microplastics decrease cell viability and dysregulate inflammatory and oxidative stress markers of MDCK and L929 cells in vitro. Expo. Health 2022, 14, 75–85. [Google Scholar] [CrossRef]
- Tourinho, P.S.; Loureiro, S.; Pavlaki, M.D.; Mocova, K.A.; Ribeiro, F. A Systematic Review of Nano-and Microplastic (NMP) Influence on the Bioaccumulation of Environmental Contaminants: Part I—Soil Organisms. Toxics 2023, 11, 154. [Google Scholar] [CrossRef]
- Scaria, S.S.; Balasubramanian, B.; Dandin, V.S.; Meyyazhagan, A.; Pappuswamy, M.; Sattanathan, G.; Liu, W.-C.; Sebastian, J.K.; Park, S. Review on impacts of micro- and nano-plastic on aquatic ecosystems and mitigation strategies. Aquat. Toxicol. 2023, 265, 106759. [Google Scholar] [CrossRef]
- Bhat, M.A.; Gedik, K.; Gaga, E.O. Atmospheric micro (nano) plastics: Future growing concerns for human health. Air Qual. Atmos. Health 2023, 16, 233–262. [Google Scholar] [CrossRef]
- Karkanorachaki, K.; Tsiota, P.; Dasenakis, G.; Syranidou, E.; Kalogerakis, N. Nanoplastic generation from secondary PE microplastics: Microorganism-induced fragmentation. Microplastics 2022, 1, 85–101. [Google Scholar] [CrossRef]
- Lin, P.; Liu, L.; Ma, Y.; Du, R.; Yi, C.; Li, P.; Xu, Y.; Yin, H.; Sun, L.; Li, Z.-H. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). Environ. Pollut. 2024, 356, 124334. [Google Scholar] [CrossRef]
- Trevisan, R.; Ranasinghe, P.; Jayasundara, N.; Di Giulio, R.T. Nanoplastics in aquatic environments: Impacts on aquatic species and interactions with environmental factors and pollutants. Toxics 2022, 10, 326. [Google Scholar] [CrossRef]
- Venel, Z.; Tabuteau, H.; Pradel, A.; Pascal, P.Y.; Grassl, B.; El Hadri, H.; Baudrimont, M.; Gigault, J. Environmental fate modeling of nanoplastics in a salinity gradient using a lab-on-a-chip: Where does the nanoscale fraction of plastic debris accumulate? Environ. Sci. Technol. 2021, 55, 3001–3008. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, R.; Krishnaswamy, V.G. Microplastics in the ecosystem and methods to identify them. Microb. Degrad. Detoxif. Pollut. 2023, 2, 205. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Silva, S.A.; Duarte, A.; Barceló, D.; Rocha-Santos, T. Analytical methodologies used for screening micro (nano) plastics in (eco) toxicity tests. Green Anal. Chem. 2022, 3, 100037. [Google Scholar] [CrossRef]
- Han, M.; Zhu, T.; Liang, J.; Wang, H.; Zhu, C.; Abdullah, A.L.B.; Rubinstein, J.; Worthington, R.; George, A.; Li, Y.; et al. Nano-plastics and gastric health: Decoding the cytotoxic mechanisms of polystyrene nano-plastics size. Environ. Int. 2024, 183, 108380. [Google Scholar] [CrossRef] [PubMed]
- McConnel, G.; Kasuske, Z.A.; Mazariegos-Ortíz, C.; Muñoz, S.R.; Cañas-Carrell, J.E. A systems perspective of terrestrial, aquatic, and human health impacts of non-polystyrene-based nanoplastics. Curr. Opin. Environ. Sci. Health 2024, 39, 100557. [Google Scholar] [CrossRef]
- Okoye, C.O.; Addey, C.I.; Oderinde, O.; Okoro, J.O.; Uwamungu, J.Y.; Ikechukwu, C.K.; Okeke, E.; Ejeromedoghene, O.; Odii, E.C. Toxic Chemicals and Persistent Organic Pollutants Associated with Micro- and Nanoplastics Pollution. Chem. Eng. J. Adv. 2022, 11, 100310. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Wang, P.; Jian, X.; Liao, X.; Chen, W.Q. China’s roadmap to plastic waste management and associated economic costs. J. Environ. Manag. 2022, 309, 114686. [Google Scholar] [CrossRef]
- Deng, L.; Cheung, S.; Liu, J.; Chen, J.; Chen, F.; Zhang, X.; Liu, H. Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. Environ. Pollut. 2024, 350, 123960. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Hettiarachchi, M.C. A path to a reduction in micro and nanoplastics pollution. Int. J. Environ. Res. Public Health 2023, 20, 5555. [Google Scholar] [CrossRef] [PubMed]
- Ouda, M.; Banat, F.; Hasan, S.W.; Karanikolos, G.N. Recent advances on nanotechnology-driven strategies for remediation of microplastics and nanoplastics from aqueous environments. J. Water Process Eng. 2023, 52, 103543. [Google Scholar] [CrossRef]
- Yuan, W.; Xu, E.G.; Li, L.; Zhou, A.; Peijnenburg, W.J.; Grossart, H.P.; Liu, W.; Yang, Y. Tracing and trapping micro-and nanoplastics: Untapped mitigation potential of aquatic plants? Water Res. 2023, 242, 120249. [Google Scholar] [CrossRef]
- El-Kurdi, N.; ElBaghdady, K.; El-Shatoury, S.; Hammad, S.; Ghazy, M. Sustainable Removal of Nanoplastics: Exploiting the Lipolytic Activity of Pseudomonas aeruginosa O6 Isolated from Mariout Wetland, Egypt. Egypt. J. Aquat. Biol. Fish. 2024, 28, 247–272. [Google Scholar] [CrossRef]
- Abomohra, A.; Hanelt, D. Recent advances in micro-/nanoplastic (MNPs) removal by microalgae and possible integrated routes of energy recovery. Microorganisms 2022, 10, 2400. [Google Scholar] [CrossRef]
- Nieto-Sandoval, J.; Ammar, R.; Sans, C. Enhancing nanoplastics removal by metal ion-catalyzed ozonation. Chem. Eng. J. Adv. 2024, 19, 100621. [Google Scholar] [CrossRef]
- Pawak, V.S.; Loganathan, V.A.; Sabapathy, M. Efficient removal of nanoplastics from synthetic wastewater using electrocoagulation. arXiv 2023, arXiv:2302.08451. [Google Scholar]
- Vohl, S.; Kristl, M.; Stergar, J. Harnessing magnetic nanoparticles for the effective removal of micro-and nanoplastics: A critical review. Nanomaterials 2024, 14, 1179. [Google Scholar] [CrossRef] [PubMed]
- Velikov, D.I.; Jancik-Prochazkova, A.; Pumera, M. On-the-fly monitoring of the capture and removal of nanoplastics with nanorobots. ACS Nanosci. Au 2024, 4, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Mohan, B.; Singh, K.; Gupta, R.K.; Kumar, A.; Pombeiro, A.J.; Ren, P. Water purification advances with metal–organic framework-based materials for micro/nanoplastic removal. Sep. Purif. Technol. 2024, 343, 126987. [Google Scholar] [CrossRef]
- Liu, M.Y.; Liu, X.Y.; Guo, Y.Y.; Ma, J.Y.; Duan, J.L.; Zhang, M.; Han, Y.; Sun, X.-D.; Sun, Y.-C.; Wang, Y.; et al. Nitrogen forms regulate the response of Microcystis aeruginosa to nanoplastics at environmentally relevant nitrogen concentrations. ACS Nano 2024, 18, 11828–11836. [Google Scholar] [CrossRef] [PubMed]
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev. Environ. Sci. Bio/Technol. 2022, 21, 169–203. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Li, W.; Lv, Z.; Song, S.; Wang, Y.; Zhang, H. Engineering “Trojan Horse” disguised by cancer cell membranes for mitochondrial targeting and amplified immunotherapy. Chem. Eng. J. 2024, 480, 147961. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.; Albahnasawi, A.; Al-Maskari, O.; Ali, G.A.; Eyvaz, M.; Abujazar, M.S.S.; Abu Amr, S.S.; Nassani, D.E. Microplastic in the environment: Identification, occurrence, and mitigation measures. Desalination Water Treat. 2022, 272, 233–247. [Google Scholar] [CrossRef]
- Rasmussen, K.; Schoonjans, R.; Jantunen, P.; Rauscher, H. European Union Legislation Addressing Environment, Health and Safety Aspects of Nanomaterials; Royal Society of Chemistry: London, UK, 2022. [Google Scholar] [CrossRef]
- Kamble, S.B.; Bhore, R.K. Versatile nanomaterials for remediation of microplastics from the environment. In Advances in Nano and Biochemistry; Academic Press: Cambridge, MA, USA, 2023; pp. 107–126. [Google Scholar] [CrossRef]
- Yadav, M.; Pandey, A.; Nghiem, X.-H. Policy and Regulatory Approaches to Mitigating Micro- and Nano Plastic Pollution. In Advances in Environmental Engineering and Green Technologies Book Series; IGI Global: Hershey, PA, USA, 2024; pp. 309–330. [Google Scholar] [CrossRef]
- Kumar, D.; Seth, C.S. Green-synthesis, characterization, and applications of nanoparticles (NPs): A mini review. Int. J. Plant Environ. 2021, 7, 91–95. [Google Scholar] [CrossRef]
- Kumar, A.; Yu, Z.G.; Thakur, T.K. Microplastic pollutants in terrestrial and aquatic environment. Environ. Sci. Pollut. Res. 2023, 30, 107296–107299. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Wang, Q.; Huang, Y.; Wang, Y.; Xing, B. Key knowledge gaps for One Health approach to mitigate nanoplastic risks. Eco-Environ. Health 2022, 1, 11–22. [Google Scholar] [CrossRef]
- Sorensen, R.M.; Kanwar, R.S.; Jovanovi, B. Past, present, and possible future policies on plastic use in the United States, particularly microplastics and nanoplastics: A review. Integr. Environ. Assess. Manag. 2023, 19, 474–488. [Google Scholar] [CrossRef]
- Australian Government. Ban on Single-Use Plastics. Department of Home Affairs. 8 December 2020. Available online: https://www.homeaffairs.gov.au/ (accessed on 21 July 2024).
- Ministry of the Environment, Japan. The Act on the Evaluation of Chemical Substances and Regulation of Their Manufacture, etc. 29 March 2019. Available online: https://www.japan.go.jp/ (accessed on 21 July 2024).
- Lee, Y.; Cho, J.; Sohn, J.; Kim, C. Health effects of microplastic exposures: Current issues and perspectives in South Korea. Yonsei Med. J. 2023, 64, 301. [Google Scholar] [CrossRef] [PubMed]
- Okoye, F.; Kakar, F.L.; Onyedibe, V.; Hamza, R.; Dhar, B.R.; Elbeshbishy, E. Social aspects of microplastics and nanoplastics. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 447–461. [Google Scholar] [CrossRef]
- Sorensen, P.; Selck, H.; Hansen, S.F. Microplastics in food and beverages: Food safety aspects and analytical challenges. Food Control 2022, 132, 108484. [Google Scholar] [CrossRef]
- Joksimovic, N.; Selakovic, D.; Jovicic, N.; Jankovic, N.; Pradeepkumar, P.; Eftekhari, A.; Rosic, G. Nanoplastics are an invisible threat to humans and the environment. J. Nanomater. 2022, 2022, 6707819. [Google Scholar] [CrossRef]
- Gupta, B.; Ambekar, R.S.; Tromer, R.M.; Ghosal, P.S.; Sinha, R.; Majumder, A.; Kumbhakar, P.; Ajayan, P.M.; Galvao, D.S.; Gupta, A.K.; et al. Development of a schwarzite-based moving bed 3D printed water treatment system for nanoplastic remediation. RSC Adv. 2021, 11, 19788–19796. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, K.R. (Eds.) Nanomaterials in Bionanotechnology: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Awada, A.; Potter, M.; Wijerathne, D.; Gauld, J.W.; Mutus, B.; Rondeau-Gagné, S. Conjugated polymer nanoparticles as a universal high-affinity probe for the selective detection of microplastics. ACS Appl. Mater. Interfaces 2022, 14, 46562–46568. [Google Scholar] [CrossRef]
- Petrović, M.; Mihajlović, I.; Tubić, A.; Novaković, M. Microplastics in municipal solid waste landfills. Curr. Opin. Environ. Sci. Health 2023, 31, 100428. [Google Scholar] [CrossRef]
- Myojo, T.; Nagata, T.; Verbeek, J. The effectiveness of specific risk mitigation techniques used in the production and handling of manufactured nanomaterials: A systematic review. J. UOEH 2017, 39, 187–199. [Google Scholar] [CrossRef]
- Song, J.S.; Kim, D.M.; Lee, S.H. A Study on the Application of Standards for Clearance of Metal Waste Generated During the Decommissioning of NPP by Using the RESRAD-RECYCLE. J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 2016, 14, 305–320. [Google Scholar] [CrossRef]
- Santillán-Saldivar, J.; Cimprich, A.; Shaikh, N.; Laratte, B.; Young, S.B.; Sonnemann, G. How recycling mitigates supply risks of critical raw materials: Extension of the geopolitical supply risk methodology applied to information and communication technologies in the European Union. Resour. Conserv. Recycl. 2021, 164, 105108. [Google Scholar] [CrossRef]
- Brar, K.K.; Magdouli, S.; Othmani, A.; Ghanei, J.; Narisetty, V.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Awasthi, M.K.; Pandey, A. Green route for recycling low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)—A review. Environ. Res. 2022, 207, 112202. [Google Scholar] [CrossRef]
- Creadore, L.T.; Castaldi, M.J. Quantitative Comparison of Life Cycle Assessments of Advanced Recycling Technologies for End-of-Life Plastics. J. Energy Resour. Technol. 2023, 145, 042201. [Google Scholar] [CrossRef]
- Ubaldini, S. Advanced Technologies in Bio/Hydrometallurgy for Recovery and Recycling of Metals. Metals 2023, 13, 1105. [Google Scholar] [CrossRef]
- Turan, N.B.; Engin, G.O.; Bilgili, M.S. Nanoparticles in solid waste: Impact and management strategies. Compr. Anal. Chem. 2022, 99, 241–260. [Google Scholar] [CrossRef]
- Zhang, B.; Chao, J.; Chen, L.; Liu, L.; Yang, X.; Wang, Q. Research progress of nanoplastics in freshwater. Sci. Total Environ. 2021, 757, 143791. [Google Scholar] [CrossRef]
- Dale, E.; Nobe, M.C.; Clevenger, C.; Cross, J. Community-based social marketing: An application to facilities management. In ICSDEC 2012: Developing the Frontier of Sustainable Design, Engineering, and Construction; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 552–560. [Google Scholar] [CrossRef]
- Madrigal, A.N.; Iyer-Raniga, U.; Yang, R.J. Exploring PV waste management solutions using circular strategies. J. Sustain. Res. 2023, 5, e230008. [Google Scholar] [CrossRef]
- Ryan, C.; Ise, J.; Wolf, K. Nonpoint Source Pollution Programs: Assessing Methods and Behavioral Effectiveness. University of Washington Water Center. 2000. Available online: http://hdl.handle.net/1773/17083 (accessed on 31 March 2000).
- Saptutyningsih, E.; Kamiel, B.P. Raising public awareness of air pollution and how to mitigate the health risk. J. War. LPM 2021, 24, 55–63. [Google Scholar]
- Sola, A.O. Environmental education and public awareness. J. Educ. Soc. Res. 2014, 4, 333–337. [Google Scholar] [CrossRef]
- Okumah, M.; Chapman, P.J.; Martin-Ortega, J.; Novo, P. Mitigating agricultural diffuse pollution: Uncovering the evidence base of the awareness–behaviour–water quality pathway. Water 2018, 11, 29. [Google Scholar] [CrossRef]
- Ramirez, L.; Ramseier Gentile, S.; Zimmermann, S.; Stoll, S. Behavior of TiO2 and CeO2 nanoparticles and polystyrene nanoplastics in bottled mineral, drinking and Lake Geneva waters. Impact of water hardness and natural organic matter on nanoparticle surface properties and aggregation. Water 2019, 11, 721. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, Y.; Liu, L. Recent advancements in the identification and quantification of nanoparticles in environmental samples using Raman imaging and hyperspectral analysis. Environ. Res. Lett. 2023, 18, 104–112. [Google Scholar]
- Piyathilake, R.; Khan, S.; Jamal, K. The role of machine learning in plastic-type classification within environmental samples. Environ. Pollut. 2023, 300, 118340. [Google Scholar]
- Regasa, A.H. Integration of spectroscopic and thermal methods for improved nanoparticle analysis. Anal. Chem. 2024, 96, 1029–1037. [Google Scholar]
- Yu, Y.; Xie, L.; Li, S. Environmental fate and transport of nanoparticles: A comprehensive review. Sci. Total Environ. 2023, 792, 148462. [Google Scholar] [CrossRef]
- Rilling, J.I.; Acuña, J.J.; Nannipieri, P.; Cassan, F.; Maruyama, F.; Jorquera, M.A. Current opinion and perspectives on the methods for tracking and monitoring plant growth–promoting bacteria. Soil Biol. Biochem. 2019, 130, 205–219. [Google Scholar] [CrossRef]
- Olatunji, O.O.; Daramola, M.O.; Olayanju, T.M. Cardiovascular and liver toxicity of nanoparticles: Mechanisms of action and implications for human health. Toxicol. Lett. 2024, 366, 22–30. [Google Scholar]
- Chiang, Y.; Tan, A.; Lee, M.H. Mechanisms underlying oxidative stress and inflammation due to nanoparticle exposure: Implications for health outcomes. Nanotoxicology 2024, 18, 17–29. [Google Scholar]
- Lai, J.; Wang, X.; Zhang, Y. Advances in waste management practices for reducing nanoparticle pollution. J. Hazard. Mater. 2022, 438, 129295. [Google Scholar] [CrossRef]
- Rashed, M.N.; Alhaji, A.O.; Salama, A.K. Strategies for reducing nanoparticle pollution: The role of policy and regulation. Environ. Int. 2023, 163, 107194. [Google Scholar] [CrossRef]
- Chen, C.S.; Le, C.; Chiu, M.H.; Chin, W.C. The impact of nanoplastics on marine dissolved organic matter assembly. Sci. Total Environ. 2018, 634, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.; Mazloff, M.R.; Gille, S.T.; Giglio, D.; Bitz, C.M.; Heimbach, P.; Matsuyoshi, K. Machine learning for daily forecasts of Arctic Sea ice motion: An attribution assessment of model predictive skill. Artif. Intell. Earth Syst. 2023, 2, 230004. [Google Scholar] [CrossRef]
- Lebordais, M.; Gutierrez-Villagomez, J.M.; Gigault, J.; Baudrimont, M.; Langlois, V.S. Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus). Chemosphere 2021, 277, 130331. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
Technique | Detection Principle | Advantages | Limitations | Reference |
---|---|---|---|---|
Microscopy |
|
|
| [54] |
Spectroscopy |
|
|
| [55] |
Thermal Analysis |
|
|
| [56] |
Flow Cytometry |
|
|
| [50] |
Dynamic Light Scattering (DLS) |
|
|
| [49] |
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) |
|
|
| [57] |
Atomic Force Microscopy with Infrared Spectroscopy (AfFIRM) |
|
|
| [58] |
Biosensors |
|
|
| [59] |
Country/Location | Year Implemented | Policy/Regulation Details | Reference |
---|---|---|---|
European Union | 2006 (REACH), Future ban on MPs/NPs by 2021 |
| [135] |
USA | Proposed in 2023 |
| [139] |
Canada | 2020 |
| [6] |
Australia | 2020 |
| [140] |
Japan | 2019 |
| [141] |
South Korea | 2019 |
| [142] |
China | 2020 |
| [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jani, V.; Wu, S. Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches. Microplastics 2025, 4, 48. https://doi.org/10.3390/microplastics4030048
Jani V, Wu S. Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches. Microplastics. 2025; 4(3):48. https://doi.org/10.3390/microplastics4030048
Chicago/Turabian StyleJani, Vyoma, and Shenghua Wu. 2025. "Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches" Microplastics 4, no. 3: 48. https://doi.org/10.3390/microplastics4030048
APA StyleJani, V., & Wu, S. (2025). Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches. Microplastics, 4(3), 48. https://doi.org/10.3390/microplastics4030048