Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. NanoPS
2.2. Zebrafish Husbandry
2.3. Experimental Set-Up
2.3.1. FET
2.3.2. Behavioural Tests
2.4. Statistical Analysis
3. Results
3.1. Sodium Azide
3.1.1. Sodium Azide Toxicity in FET
3.1.2. Sodium Azide Toxicity in Behavioural Tests
3.2. Nanopolystyrene
3.2.1. Nanopolystyrene Toxicity in FET
3.2.2. Nanopolystyrene Toxicity in Behavioural Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFT | Acute Fish Toxicity Test |
FET | Fish Embryo Toxicity Test |
hpf | Hours post-fertilization |
MP | microplastic |
NP | nanoplastic |
OECD | Organization for Economic Co-operation and Development |
PA | Polyamide |
PE | Polyethylene |
PP | Polypropylene |
PS | Polystyrene |
PVC | Polyvinyl chloride |
ROS | Reactive Oxygen Species |
References
- Kurach, Ł.; Chłopaś-Konowałek, A.; Budzyńska, B.; Zawadzki, M.; Szpot, P.; Boguszewska-Czubara, A. Etazene induces developmental toxicity in vivo Danio rerio and in silico studies of new synthetic opioid derivative. Sci. Rep. 2021, 11, 24269. [Google Scholar] [CrossRef]
- OECD. 203: Fish, Acute Toxicity Test. In OECD Guidelines for the Testing of Chemicals; OCED Publishing: Paris, France, 1992; Volume 2. [Google Scholar]
- OECD. 236: Fish embryo acute toxicity (FET) test. In OECD Guidelines for the Testing of Chemicals; OCED Publishing: Paris, France, 2013; Volume 2, pp. 1–22. [Google Scholar]
- Busquet, F.; Strecker, R.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T.; Carr, G.J.; Cenijn, P.; Fochtman, P.; Gourmelon, A.; Hübler, N.; et al. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul. Toxicol. Pharmacol. 2014, 69, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Oger, M.J.L.; Vermeulen, O.; Lambert, J.; Madanu, T.L.; Kestemont, P.; Cornet, V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. Environ. Pollut. 2024, 351, 124094. [Google Scholar] [CrossRef] [PubMed]
- Mak, C.W.; Ching-Fong Yeung, K.; Chan, K.M. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf. 2019, 182, 109442. [Google Scholar] [CrossRef]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef] [PubMed]
- Rainieri, S.; Conlledo, N.; Larsen, B.K.; Granby, K.; Barranco, A. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environ. Res. 2018, 162, 135–143. [Google Scholar] [CrossRef]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef]
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef]
- Zhao, Y.; Bao, Z.; Wan, Z.; Fu, Z.; Jin, Y. Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Sci. Total Environ. 2020, 710, 136279. [Google Scholar] [CrossRef]
- Xie, P.; Ommati, M.M.; Chen, D.; Chen, W.; Han, L.; Zhao, X.; Wang, H.; Xu, S.; Sun, P. Hepatotoxic effects of environmentally relevant concentrations of polystyrene microplastics on senescent Zebrafish (Danio rerio): Patterns of stress response and metabolomic alterations. Aquat. Toxicol. 2025, 279, 107252. [Google Scholar] [CrossRef]
- Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.-H.; Liang, S.-T.; Chen, J.-R.; Chen, K.H.-C.; Hsiao, C.-D. Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure. Int. J. Mol. Sci. 2020, 21, 1410. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.S.; Levin, E.D.; Di Giulio, R.T. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Sci. Total Environ. 2018, 643, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Mortimer, M.; Richter, J.; Rani-Borges, B.; Yu, Z.; Heinlaan, M.; Lin, S.; Ivask, A. Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. Sci. Total Environ. 2022, 853, 158560. [Google Scholar] [CrossRef]
- Ompala, C.; Renault, J.-P.; Taché, O.; Cournède, É.; Devineau, S.; Chivas-Joly, C. Stability and dispersibility of microplastics in experimental exposure medium and their dimensional characterization by SMLS, SAXS, Raman microscopy, and SEM. J. Hazard. Mater. 2024, 469, 134083. [Google Scholar] [CrossRef]
- Liu, X.; Shi, H.; Xie, B.; Dionysiou, D.D.; Zhao, Y. Microplastics as Both a Sink and a Source of Bisphenol A in the Marine Environment. Environ. Sci. Technol. 2019, 53, 10188–10196. [Google Scholar] [CrossRef] [PubMed]
- Sökmen, T.Ö.; Sulukan, E.; Türkoğlu, M.; Baran, A.; Özkaraca, M.; Ceyhun, S.B. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). NeuroToxicology 2020, 77, 51–59. [Google Scholar] [CrossRef]
- Veneman, W.J.; Spaink, H.P.; Brun, N.R.; Bosker, T.; Vijver, M.G. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquat. Toxicol. 2017, 190, 112–120. [Google Scholar] [CrossRef]
- Li, W.; Zu, B.; Li, L.; Li, J.; Li, J.; Mei, X. Desorption of bisphenol A from microplastics under simulated gastrointestinal conditions. Front. Mar. Sci. 2023, 10, 1195964. [Google Scholar] [CrossRef]
- Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 185–194. [Google Scholar] [CrossRef]
- van Pomeren, M.; Brun, N.R.; Peijnenburg, W.J.G.M.; Vijver, M.G. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquat. Toxicol. 2017, 190, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Parenti, C.C.; Ghilardi, A.; Della Torre, C.; Magni, S.; Del Giacco, L.; Binelli, A. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects. Environ. Pollut. 2019, 254, 112947. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ruiz, M.; de Alba González, M.; Morales, M.; Martin-Folgar, R.; González, M.C.; Cañas-Portilla, A.I.; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ. 2023, 874, 162406. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Cheng, J. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2019, 176, 226–233. [Google Scholar] [CrossRef]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ. 2017, 584–585, 1022–1031. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, C.; Zhou, J.; Shen, M.; Wang, X.; Fu, Z.; Jin, Y. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere 2019, 217, 646–658. [Google Scholar] [CrossRef]
- Chang, S.; Lamm, S.H. Human Health Effects of Sodium Azide Exposure: A Literature Review and Analysis. Int. J. Toxicol. 2003, 22, 175–186. [Google Scholar] [CrossRef]
- Faqi, A.S.; Richards, D.; Hauswirth, J.W.; Schroeder, R. Maternal and developmental toxicity study of sodium azide in rats. Regul. Toxicol. Pharmacol. 2008, 52, 158–162. [Google Scholar] [CrossRef]
- Pearce, L.L.; Garrett, K.K.; Bae, Y.; Frawley, K.L.; Totoni, S.C.; Peterson, J. A Potential Antidote for Both Azide and Cyanide Poisonings. J. Pharmacol. Exp. Ther. 2024, 388, 596–604. [Google Scholar] [CrossRef]
- Jones, J.A.; Starkey, J.R.; Kleinhofs, A. Toxicity and mutagenicity of sodium azide in mammalian cell cultures. Mutat. Res./Genet. Toxicol. 1980, 77, 293–299. [Google Scholar] [CrossRef]
- El-Shenawy, N.S.; AL-Harbi, M.S.; Hamza, R.Z. Effect of vitamin E and selenium separately and in combination on biochemical, immunological and histological changes induced by sodium azide in male mice. Exp. Toxicol. Pathol. 2015, 67, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Betterton, E.A.; Lowry, J.; Ingamells, R.; Venner, B. Kinetics and mechanism of the reaction of sodium azide with hypochlorite in aqueous solution. J. Hazard. Mater. 2010, 182, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, H.; Wang, Y.; Duan, Z.; Cui, W.; Shi, Y.; Qin, L. Influence of Functional Group Modification on the Toxicity of Nanoplastics. Front. Mar. Sci. 2022, 8, 800782. [Google Scholar] [CrossRef]
- Klüver, N.; König, M.; Ortmann, J.; Massei, R.; Paschke, A.; Kühne, R.; Scholz, S. Fish Embryo Toxicity Test: Identification of Compounds with Weak Toxicity and Analysis of Behavioral Effects To Improve Prediction of Acute Toxicity for Neurotoxic Compounds. Environ. Sci. Technol. 2015, 49, 7002–7011. [Google Scholar] [CrossRef]
- Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ. 2020, 728, 138707. [Google Scholar] [CrossRef]
- Delov, V.; Muth-Köhne, E.; Schäfers, C.; Fenske, M. Transgenic fluorescent zebrafish Tg(fli1:EGFP)y1 for the identification of vasotoxicity within the zFET. Aquat. Toxicol. 2014, 150, 189–200. [Google Scholar] [CrossRef]
- Lee, W.S.; Cho, H.-J.; Kim, E.; Huh, Y.H.; Kim, H.-J.; Kim, B.; Kang, T.; Lee, J.-S.; Jeong, J. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 2019, 11, 3173–3185. [Google Scholar] [CrossRef]
- Duan, Z.; Duan, X.; Zhao, S.; Wang, X.; Wang, J.; Liu, Y.; Peng, Y.; Gong, Z.; Wang, L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. J. Hazard. Mater. 2020, 395, 122621. [Google Scholar] [CrossRef]
- Ali, S.; van Mil, H.G.J.; Richardson, M.K. Large-Scale Assessment of the Zebrafish Embryo as a Possible Predictive Model in Toxicity Testing. PLoS ONE 2011, 6, e21076. [Google Scholar] [CrossRef]
- Rock, S.; Rodenburg, F.; Schaaf, M.J.M.; Tudorache, C. Detailed Analysis of Zebrafish Larval Behaviour in the Light Dark Challenge Assay Shows That Diel Hatching Time Determines Individual Variation. Front. Physiol. 2022, 13, 827282. [Google Scholar] [CrossRef]
- Maciąg, M.; Michalak, A.; Skalicka-Woźniak, K.; Zykubek, M.; Ciszewski, A.; Budzyńska, B. Zebrafish and mouse models for anxiety evaluation—A comparative study with xanthotoxin as a model compound. Brain Res. Bull. 2020, 165, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Saint-Amant, L.; Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 1998, 37, 622–632. [Google Scholar] [CrossRef]
- Lacchetti, I.; Cristiano, W.; Kevin, D.D.; Carere, M.; Mancini, L. Coiling tail activity in zebrafish embryo: A protocol for an early warning system of neurotoxic substances. Fresenius Environ. Bull. 2022, 8427–8434. [Google Scholar]
- Zindler, F.; Beedgen, F.; Brandt, D.; Steiner, M.; Stengel, D.; Baumann, L.; Braunbeck, T. Analysis of tail coiling activity of zebrafish (Danio rerio) embryos allows for the differentiation of neurotoxicants with different modes of action. Ecotoxicol. Environ. Saf. 2019, 186, 109754. [Google Scholar] [CrossRef] [PubMed]
- von Hellfeld, R.; Gade, C.; Baumann, L.; Leist, M.; Braunbeck, T. The sensitivity of the zebrafish embryo coiling assay for the detection of neurotoxicity by compounds with diverse modes of action. Environ. Sci. Pollut. Res. 2023, 30, 75281–75299. [Google Scholar] [CrossRef]
- Peeters, B.W.M.M.; Moeskops, M.; Veenvliet, A.R.J. Color Preference in Danio rerio: Effects of Age and Anxiolytic Treatments. Zebrafish 2016, 13, 330–334. [Google Scholar] [CrossRef]
- Park, J.-S.; Ryu, J.-H.; Choi, T.-I.; Bae, Y.-K.; Lee, S.; Kang, H.J.; Kim, C.-H. Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses. Mol. Cells 2016, 39, 750–755. [Google Scholar] [CrossRef]
- Siregar, P.; Juniardi, S.; Audira, G.; Lai, Y.-H.; Huang, J.-C.; Chen, K.H.-C.; Chen, J.-R.; Hsiao, C.-D. Method Standardization for Conducting Innate Color Preference Studies in Different Zebrafish Strains. Biomedicines 2020, 8, 271. [Google Scholar] [CrossRef]
- Hwang, K.-S.; Son, Y.; Kim, S.S.; Shin, D.-S.; Lim, S.H.; Yang, J.Y.; Jeong, H.N.; Lee, B.H.; Bae, M.A. Size-Dependent Effects of Polystyrene Nanoparticles (PS-NPs) on Behaviors and Endogenous Neurochemicals in Zebrafish Larvae. Int. J. Mol. Sci. 2022, 23, 10682. [Google Scholar] [CrossRef]
- Ríos, J.M.; Tesitore, G.; de Mello, F.T. Does color play a predominant role in the intake of microplastics fragments by freshwater fish: An experimental approach with Psalidodon eigenmanniorum. Environ. Sci. Pollut. Res. Int. 2022, 29, 49457–49464. [Google Scholar] [CrossRef]
Concentration [μM] | 1000 | 500 | 250 | 50 | 10 | 2 | 0 |
---|---|---|---|---|---|---|---|
24 hpf | |||||||
Coagulation [%] | 8.3 | 0 | 8.3 | 4.2 | 0 | 4.2 | 3.1 |
Tail detached [%] * | 54.5 | 0 | 90.9 | 100 | 100 | 100 | 100 |
48 hpf | |||||||
Pigmentation | none | none | weak | normal | normal | normal | normal |
Hatching rate [%] * | 0 | 0 | 0 | 13.0 | 58.3 | 47.8 | 58.1 |
72 hpf | |||||||
Heartbeat | none | none | observed | observed | observed | observed | observed |
Pigmentation | very weak | none | weak | normal | normal | normal | normal |
96 hpf | |||||||
Development | dead | dead | 9.1% dead; 22.7% blood clots; 100% pericardial, yolk oedema | normal | normal | normal | normal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowska, W.; Kurach, Ł.; Dąbrowska, A. Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation. Microplastics 2025, 4, 45. https://doi.org/10.3390/microplastics4030045
Komorowska W, Kurach Ł, Dąbrowska A. Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation. Microplastics. 2025; 4(3):45. https://doi.org/10.3390/microplastics4030045
Chicago/Turabian StyleKomorowska, Wanda, Łukasz Kurach, and Agnieszka Dąbrowska. 2025. "Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation" Microplastics 4, no. 3: 45. https://doi.org/10.3390/microplastics4030045
APA StyleKomorowska, W., Kurach, Ł., & Dąbrowska, A. (2025). Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation. Microplastics, 4(3), 45. https://doi.org/10.3390/microplastics4030045