Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics
Abstract
1. Introduction
2. Sources and Input Pathways of Soil Microplastics
2.1. Microplastic Inputs from Agricultural Activities
2.2. Microplastic Accumulation Pathways via Solid Waste Disposal and Utilization
2.3. Environmental Transport and Redistribution of Microplastics
3. Ecological Impacts of Microplastics in Soil Ecosystems
3.1. Alterations in Physical and Chemical Properties of Soil
3.2. Impacts on Soil Microbial Community and Its Functions
3.3. Physiological and Ecological Effects on Soil Fauna
3.4. Effects on Plant Growth and Material Cycling in Ecosystems
4. Recent Advances in Separation Technologies for Soil Microplastics
4.1. Density Separation
4.2. Organic Matter Digestion Pretreatment
4.3. Centrifugal Gradient Separation
4.4. Magnetic/Electrostatic Sorting
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastic pollution research—What have we learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.J.; Lechthaler, S. Plastics as a stratigraphic marker in fluvial deposits. Anthropocene 2021, 36, 100314. [Google Scholar] [CrossRef]
- Özgenç, E.; Keleş, E.; Buluş, E.; Buluş, G.S.; Töre, G.Y. Evaluating Ecological Impacts and Atmospheric Fate of Microplastics: Ecological Perspectives and Challenges. Environ. Eng. Manag. J. 2024, 23, 1285–1304. [Google Scholar] [CrossRef]
- Luna, Á.; Moreno, E.; Pinzolas, J.A.; Oliver, S.; Meyer, S.; Brodermann, O.; Merino, C.; Karaardıç, H.; da Silva, L.P.; Chatton, C.; et al. Anthropogenic debris as nest material in three swift species: New insights into the interactions of atmospheric pollution with wildlife. Sci. Total Environ. 2024, 949, 175171. [Google Scholar] [CrossRef]
- Pottinger, A.S.; Geyer, R.; Biyani, N.; Martinez, C.C.; Nathan, N.; Morse, M.R.; Liu, C.; Hu, S.; de Bruyn, M.; Boettiger, C.; et al. Pathways to reduce global plastic waste mismanagement and greenhouse gas emissions by 2050. Science 2024, 386, 1168–1173. [Google Scholar] [CrossRef]
- Bonyadinejad, G.; Salehi, M.; Herath, A. Investigating the sustainability of agricultural plastic products, combined influence of polymer characteristics and environmental conditions on microplastics aging. Sci. Total Environ. 2022, 839, 156385. [Google Scholar] [CrossRef]
- Berenstein, G.; Córdoba, P.; Díaz, Y.B.; González, N.; Ponce, M.B.; Montserrat, J.M. Macro, meso, micro and nanoplastics in horticultural soils in Argentina: Abundance, size distribution and fragmentation mechanism. Sci. Total Environ. 2024, 906, 167672. [Google Scholar] [CrossRef]
- Al-Maliki, S.; Al-Taey, D.K.A.; Al-Mammori, H.Z. Earthworms and eco-consequences: Considerations to soil biological indicators and plant function: A review. Acta Ecol. Sin. 2021, 41, 512–523. [Google Scholar] [CrossRef]
- Liu, Y.; He, B.; Xiao, Q.; Wang, X.; Lin, X.; Hu, J. Earthworms facilitated pepper (Capsicum annuum L.) growth via enhancing the population and function of arbuscular mycorrhizal fungi in a low-density polyethylene-contaminated soil. Chem. Biol. Technol. Agric. 2023, 10, 115. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, S.; Xu, W.; Liang, C.; Li, J.; Zhang, H.; Li, Y.; Liu, X.; Jones, D.L.; Chadwick, D.R.; et al. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis. J. Hazard. Mater. 2022, 435, 129065. [Google Scholar] [CrossRef]
- Harms, I.K.; Diekotter, T.; Troegel, S.; Lenz, M. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Sci. Total Environ. 2021, 758, 143615. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, K.; Hao, T.; Zhang, J.; Müller, C.; Florent, P.; Yan, H.; Ren, S.; Qu, K.; Ren, K.; et al. Long-term plastic film mulching promotes microplastic accumulation and alters gross nitrogen transformation in soil. Appl. Soil Ecol. 2025, 208, 106007. [Google Scholar] [CrossRef]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Xu, L.; Li, R.; Zhang, R.; Li, M.; Ran, C.; Rao, Z.; Wei, X.; Chen, M.; et al. Leaf absorption contributes to accumulation of microplastics in plants. Nature 2025, 614, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, X.; Leng, Y.; Wang, J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicol. Environ. Saf. 2020, 187, 109788. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Tian, J.; Niu, F.; Xing, Y.; Wu, Y.; Zhang, R.; Zheng, J.; Xu, L. Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China. Sci. Total Environ. 2022, 828, 154544. [Google Scholar] [CrossRef]
- Pérez-Reverón, R.; González-Sálamo, J.; Hernández-Sánchez, C.; González-Pleiter, M.; Hernández-Borges, J.; Díaz-Peña, F.J. Recycled wastewater as a potential source of microplastics in irrigated soils from an arid-insular territory (Fuerteventura, Spain). Sci. Total Environ. 2022, 817, 152830. [Google Scholar] [CrossRef]
- Szewc, K.; Graca, B.; Dołęga, A. Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Sci. Total Environ. 2021, 761, 143272. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Cao, X.; Yeh, T.-c.J.; Zhang, J.; Zhan, Z.; Cui, Y.; Li, H. Modeling of Microplastics Migration in Soil and Groundwater: Insights into Dispersion and Particle Property Effects. Environ. Sci. Technol. 2024, 58, 15224–15235. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, Y.; Marshall, M.R.; Zhao, J.; Gui, H.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci. Total Environ. 2021, 787, 147444. [Google Scholar] [CrossRef]
- Shirkhorshidi, B.; Ghanatghestani, M.D.; Moeinpour, F.; Parvaresh, H. Exploring the interaction between microplastics and heavy metals: Unveiling the impact of microplastics on lead sorption and desorption in soil. Environ. Monit. Assess. 2023, 195, 1017. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wu, D.; Liu, P.; Hu, W.; Xu, L.; Sun, Y.; Wu, Q.; Tian, K.; Huang, B.; Yoon, S.J.; et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Sci. Total Environ. 2021, 794, 148694. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef]
- Ragoobur, D.; Huerta-Lwanga, E.; Somaroo, G.D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. Sci. Total Environ. 2021, 798, 149326. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Li, R.; Xu, L.; Shen, Y.; Li, S.; Tu, C.; Wu, L.; Christie, P.; Luo, Y. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environ. Pollut. 2021, 289, 117943. [Google Scholar] [CrossRef]
- Li, X.-y.; Liu, H.-t.; Wang, L.-x.; Guo, H.-n.; Zhang, J.; Gao, D. Effects of typical sludge treatment on microplastics in China—Characteristics, abundance and micro-morphological evidence. Sci. Total Environ. 2022, 826, 154206. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Li, Z.; Huang, F.; Zhao, C.; Zhang, P.; Jia, Z. Plastic film mulch combined with adding biochar improved soil carbon budget, carbon footprint, and maize yield in a rainfed region. Field Crops Res. 2022, 284, 108574. [Google Scholar] [CrossRef]
- Li, W.; Wufuer, R.; Duo, J.; Wang, S.; Luo, Y.; Zhang, D.; Pan, X. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci. Total Environ. 2020, 749, 141420. [Google Scholar] [CrossRef]
- Long, B.; Li, F.; Wang, K.; Huang, Y.; Yang, Y.; Xie, D. Impact of plastic film mulching on microplastic in farmland soils in Guangdong province, China. Heliyon 2023, 9, e16587. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.Q.; Yan, C.R.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Cusworth, S.J.; Davies, W.J.; McAinsh, M.R.; Stevens, C.J. A nationwide assessment of microplastic abundance in agricultural soils: The influence of plastic crop covers within the United Kingdom. Plants People Planet 2024, 6, 304–314. [Google Scholar] [CrossRef]
- Mo, X.; Li, H.; Lian, Y.; Zheng, B.; Dong, J.; Lu, X. Estimation of soil microplastic input derived from plastic gauze using a simplified model. Sci. Total Environ. 2021, 793, 148577. [Google Scholar] [CrossRef] [PubMed]
- Saikia, S.; Prit, H.; Maturi, K.C.; Kalamdhad, A.S. Amendment of Nutrient-deficient Alluvial Soil by Municipal Solid Waste Char and Compost for the Remediation of Contaminants and Enhancement of Plant Growth. Water Air Soil Pollut. 2025, 236, 238. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Y.; Wang, J.; Chen, X.; Zhang, S.; Wu, D. Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environ. Pollut. 2021, 274, 116553. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, J.; Chen, H.; Zhao, X.; Wang, S.; Zhu, Y.; Wang, Y. Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil. Sci. Total Environ. 2022, 831, 154917. [Google Scholar] [CrossRef]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Huerta Lwanga, E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2021, 755, 142653. [Google Scholar] [CrossRef]
- He, P.; Chen, L.; Shao, L.; Zhang, H.; Lu, F. Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate. Water Res. 2019, 159, 38–45. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, X.; Liu, Q.; Hu, H.; Wu, C.; Xue, Q. Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environ. Pollut. 2022, 293, 118586. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, B.K.; Krause, S. Spatiotemporal distribution and ecological hazards of microplastic pollution in soil water resources around a wastewater treatment plant and municipal solid waste site. J. Contam. Hydrol. 2025, 269, 104515. [Google Scholar] [CrossRef]
- Lee, J.; Choi, Y.; Jeong, J.; Chae, K.J. Eye-glass polishing wastewater as significant microplastic source: Microplastic identification and quantification. J. Hazard. Mater. 2021, 403, 123991. [Google Scholar] [CrossRef]
- Shen, M.; Li, Y.; Song, B.; Zhou, C.; Gong, J.; Zeng, G. Smoked cigarette butts: Unignorable source for environmental microplastic fibers. Sci. Total Environ. 2021, 791, 148384. [Google Scholar] [CrossRef] [PubMed]
- Haixin, Z.; Yimei, H.; Shaoshan, A.; Haohao, L.; Xiaoqian, D.; Pan, W.; Mengyuan, F. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. J. Hazard. Mater. 2022, 426, 127806. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhou, S.; Qin, W.; Zhang, C.; Lv, C.; Zou, M. Effects of land use on the distribution of soil microplastics in the Lihe River watershed, China. Chemosphere 2023, 324, 138292. [Google Scholar] [CrossRef]
- Xu, L.; Li, K.; Bai, X.; Zhang, G.; Tian, X.; Tang, Q.; Zhang, M.; Hu, M.; Huang, Y. Microplastics in the atmosphere: Adsorb on leaves and their effects on the phyllosphere bacterial community. J. Hazard. Mater. 2024, 462, 132789. [Google Scholar] [CrossRef]
- Jia, Q.; Duan, Y.; Han, X.; Sun, X.; Munyaneza, J.; Ma, J.; Xiu, G. Atmospheric deposition of microplastics in the megalopolis (Shanghai) during rainy season: Characteristics, influence factors, and source. Sci. Total Environ. 2022, 847, 157609. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Tang, Y.; Wang, S.; Lu, X.; Cheng, Z.; Zhang, X.; Wu, P.; Chang, X.; Xia, Y. Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. Water Res. 2021, 204, 117580. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Liang, Y.; Lehmann, A.; Yang, G.; Leifheit, E.F.; Rillig, M.C. Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent. Front. Environ. Sci. 2021, 9, 650155. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, Y.; Li, J.; Liu, Y.; Xia, S.; Zhao, J. Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline. Chem. Eng. J. 2021, 404, 126412. [Google Scholar] [CrossRef]
- Lan, T.; Wang, T.; Cao, F.; Yu, C.; Chu, Q.; Wang, F. A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films. Ecotoxicol. Environ. Saf. 2021, 209, 111781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lei, Y.; Qian, J.; Qiao, Y.; Liu, J.; Li, S.; Dai, L.; Sun, K.; Guo, H.; Sui, G.; et al. Sorption of organochlorine pesticides on polyethylene microplastics in soil suspension. Ecotoxicol. Environ. Saf. 2021, 223, 112591. [Google Scholar] [CrossRef]
- Yu, Y.; Battu, A.K.; Varga, T.; Denny, A.C.; Zahid, T.M.; Chowdhury, I.; Flury, M. Minimal Impacts of Microplastics on Soil Physical Properties under Environmentally Relevant Concentrations. Environ. Sci. Technol. 2023, 57, 5296–5304. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.; Zhang, Z.; Cui, M. The positive effects of polypropylene and polyvinyl chloride microplastics on agricultural soil quality. J. Soils Sediments 2022, 23, 1304–1314. [Google Scholar] [CrossRef]
- Li, H.; Liu, L. Short-term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere 2022, 291, 132984. [Google Scholar] [CrossRef]
- Guo, Z.; Li, P.; Yang, X.; Wang, Z.; Lu, B.; Chen, W.; Wu, Y.; Li, G.; Zhao, Z.; Liu, G.; et al. Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics. Environ. Int. 2022, 165, 107293. [Google Scholar] [CrossRef]
- Aminzadeh, M.; Kokate, T.; Shokri, N. Microplastics in sandy soils: Alterations in thermal conductivity, surface albedo, and temperature. Environ. Pollut. 2025, 372, 125956. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Q.; Liu, Y.; Deng, Y.; Liu, S.; Nan, J.; Lyu, C. Polyethylene microplastic pollution changes the electrical resistance and thermal conductivity of loess soil. J. Environ. Manag. 2024, 371, 123127. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhang, F.X.; Li, X.T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, B.; Sun, Y.; Wang, F. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. J. Hazard. Mater. 2020, 388, 121775. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, X.; Feng, Z.; Xiao, M.; Ge, T.; Li, Y.; Yao, H. Polyethylene microplastics alter the microbial functional gene abundances and increase nitrous oxide emissions from paddy soils. J. Hazard. Mater. 2022, 432, 128721. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yue, L.; Zhao, Y.; Li, J.; Fu, Y.; Deng, H.; Feng, D.; Li, Q.; Yu, H.; Zhang, Y.; et al. Changes in bacterial community structures in soil caused by migration and aging of microplastics. Sci. Total Environ. 2022, 848, 157790. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, W.; Tian, H.; Zhang, K.; Li, B.; Du, Z.; Zhang, W.; Wang, J.; Wang, J.; Zhu, L. The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Chemosphere 2021, 267, 129219. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Effect of Polyvinyl Chloride Microplastics on Bacterial Community and Nutrient Status in Two Agricultural Soils. Bull. Environ. Contam. Toxicol. 2021, 107, 602–609. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, S.; Qiu, T.; Cui, Q.; Yang, Y.; Li, L.; Chen, J.; Huang, M.; Zhan, A.; Fang, L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. Sci. Total Environ. 2024, 918, 170281. [Google Scholar] [CrossRef]
- Shi, J.; Sun, Y.; Wang, X.; Wang, J. Microplastics reduce soil microbial network complexity and ecological deterministic selection. Environ. Microbiol. 2022, 24, 2157–2169. [Google Scholar] [CrossRef]
- Li, Y.; Qin, W.; Xin, X.; Tang, C.; Huang, Y.; He, X.; Chen, L.; Yu, G.; Yu, F. Dynamic impact of polyethylene terephthalate nanoplastics on antibiotic resistance and microplastics degradation genes in the rhizosphere of Oryza sativa L. J. Hazard. Mater. 2025, 487, 137173. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Xu, G.; Wang, Y.; Yu, Y. Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. Sci. Total Environ. 2021, 760, 144037. [Google Scholar] [CrossRef]
- Li, M.; Jia, H.; Gao, Q.; Han, S.; Yu, Y.; Sun, L. Influence of aged and pristine polyethylene microplastics on bioavailability of three heavy metals in soil: Toxic effects to earthworms (Eisenia fetida). Chemosphere 2023, 311, 136833. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; He, J.; Chen, X.; Dong, X.; Liu, S.; Anderson, C.W.N.; Zhou, M.; Gao, X.; Tang, X.; Zhao, D.; et al. Interactive effects of microplastics and cadmium on soil properties, microbial communities and bok choy growth. Sci. Total Environ. 2024, 955, 176831. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, G.; Yu, Y. Effects of polystyrene microplastics on accumulation of pyrene by earthworms. Chemosphere 2022, 296, 134059. [Google Scholar] [CrossRef]
- Xu, G.; Yang, Y.; Yu, Y. Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-)metals in earthworms. Environ. Pollut. 2021, 291, 118194. [Google Scholar] [CrossRef]
- Tang, R.; Ying, M.; Luo, Y.; El-Naggar, A.; Palansooriya, K.N.; Sun, T.; Cao, Y.; Diao, Z.; Zhang, Y.; Lian, Y.; et al. Microplastic pollution destabilized the osmoregulatory metabolism but did not affect intestinal microbial biodiversity of earthworms in soil. Environ. Pollut. 2023, 320, 121020. [Google Scholar] [CrossRef]
- Liu, J.; Qin, J.; Zhu, L.; Zhu, K.; Liu, Z.; Jia, H.; Lichtfouse, E. The protective layer formed by soil particles on plastics decreases the toxicity of polystyrene microplastics to earthworms (Eisenia fetida). Environ. Int. 2022, 162, 107158. [Google Scholar] [CrossRef]
- Chen, K.; Tang, R.; Luo, Y.; Chen, Y.; Ei-Naggar, A.; Du, J.; Bu, A.; Yan, Y.; Lu, X.; Cai, Y.; et al. Transcriptomic and metabolic responses of earthworms to contaminated soil with polypropylene and polyethylene microplastics at environmentally relevant concentrations. J. Hazard. Mater. 2022, 427, 128176. [Google Scholar] [CrossRef]
- Pinto-Poblete, A.; Retamal-Salgado, J.; Zapata, N.; Sierra-Almeida, A.; Schoebitz, M. Impact of polyethylene microplastics and copper nanoparticles: Responses of soil microbiological properties and strawberry growth. Appl. Soil Ecol. 2023, 184, 104773. [Google Scholar] [CrossRef]
- Yu, H.; Liu, M.; Gang, D.; Peng, J.; Hu, C.; Qu, J. Polyethylene microplastics interfere with the nutrient cycle in water-plant-sediment systems. Water Res. 2022, 214, 118191. [Google Scholar] [CrossRef]
- Zou, Z.; Li, S.; Wu, J.; Guo, S.; Zhang, Y.; Huang, M.; Valsami-Jones, E.; Lynch, I.; Liu, X.; Wang, J.; et al. Effects of nanopolystyrene addition on nitrogen fertilizer fate, gaseous loss of N from the soil, and soil microbial community composition. J. Hazard. Mater. 2022, 438, 129509. [Google Scholar] [CrossRef]
- Mojiri, A.; Vishkaei, M.N.; Zhou, J.L.; Trzcinski, A.P.; Lou, Z.; Kasmuri, N.; Rezania, S.; Gholami, A.; Vakili, M.; Kazeroon, R.A. Impact of polystyrene microplastics on the growth and photosynthetic efficiency of diatom Chaetoceros neogracile. Mar. Environ. Res. 2024, 194, 106343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Gao, N.; Li, Y.; Dou, S.; Liu, Z.; Chen, Y.; Ma, C.; Zhang, H. Responses of maize (Zea mays L.) seedlings growth and physiological traits triggered by polyvinyl chloride microplastics is dominated by soil available nitrogen. Ecotoxicol. Environ. Saf. 2023, 252, 114618. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Guo, T.; Feng, Z.; Li, B.; Cai, Y.; Ouyang, D.; Gustave, W.; Ying, C.; Zhang, H. Polyethylene and polyvinyl chloride microplastics promote soil nitrification and alter the composition of key nitrogen functional bacterial groups. J. Hazard. Mater. 2023, 453, 131391. [Google Scholar] [CrossRef] [PubMed]
- Stile, N.; Raguso, C.; Pedruzzi, A.; Cetojevic, E.; Lasagni, M.; Sanchez-Vidal, A.; Saliu, F. Extraction of microplastic from marine sediments: A comparison between pressurized solvent extraction and density separation. Mar. Pollut. Bull. 2021, 168, 112436. [Google Scholar] [CrossRef]
- Halbach, M.; Baensch, C.; Dirksen, S.; Scholz-Böttcher, B.M. Microplastic extraction from sediments established?–A critical evaluation from a trace recovery experiment with a custom-made density separator. Anal. Methods 2021, 13, 5299–5308. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.; Yu, J.; Ni, F.; Sheng, Y.; Scircle, A.; Cizdziel, J.V.; Zhou, Y. Separation and identification of microplastics in marine organisms by TGA-FTIR-GC/MS: A case study of mussels from coastal China. Environ. Pollut. 2021, 272, 115946. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, P.; Zhang, R.; Qu, C.; Yuan, Y.; Hui, K.; Sun, J.; Tan, W. Separation and degradation techniques for microplastics in soil environments. J. Water Process Eng. 2025, 71, 107302. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, B. Characteristic of Molecular Weight-Fractions of Soil Organic Matter from Calcareous Soil and Yellow Soil. Sustainability 2023, 15, 1537. [Google Scholar] [CrossRef]
- Schütze, B.; Thomas, D.; Kraft, M.; Brunotte, J.; Kreuzig, R. Comparison of different salt solutions for density separation of conventional and biodegradable microplastic from solid sample matrices. Environ. Sci. Pollut. Res. 2022, 29, 81452–81467. [Google Scholar] [CrossRef]
- Ren, S.; Graf, M.; Wang, K.; Zhang, J.; Zhang, H.; Liu, X.; Li, J.; Zhu, T.; Ren, K.; Sun, Y.; et al. Separation and Identification of Conventional Microplastics from Farmland Soils. JoVE 2025, 217, e67064. [Google Scholar] [CrossRef]
- Li, C.; Cui, Q.; Zhang, M.; Vogt, R.D.; Lu, X. A commonly available and easily assembled device for extraction of bio/non-degradable microplastics from soil by flotation in NaBr solution. Sci. Total Environ. 2021, 759, 143482. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Pearce, C.I.; Sanguinet, K.A.; Bary, A.I.; Chowdhury, I.; Eggleston, I.; Xing, B.; Flury, M. Accumulation of microplastics in soil after long-term application of biosolids and atmospheric deposition. Sci. Total Environ. 2024, 912, 168883. [Google Scholar] [CrossRef] [PubMed]
- Scopetani, C.; Chelazzi, D.; Mikola, J.; Leinio, V.; Heikkinen, R.; Cincinelli, A.; Pellinen, J. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Sci. Total Environ. 2020, 733, 139338. [Google Scholar] [CrossRef]
- Radford, F.; Zapata-Restrepo, L.M.; Horton, A.A.; Hudson, M.D.; Shaw, P.J.; Williams, I.D. Developing a systematic method for extraction of microplastics in soils. Anal. Methods 2021, 13, 1695–1705. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.-J.; Park, J.-W.; Jung, S.M. Repeatable separation of microplastics integrating mineral oil extraction and a PDMS-Ni foam adsorbent in real soil. Chem. Eng. J. 2022, 429, 132517. [Google Scholar] [CrossRef]
- Gupta, E.; Mishra, V.K.; Patel, A.; Srivastava, P.K. A modified methodology for extraction and quantification of microplastics in soil. NanoImpact 2024, 35, 100525. [Google Scholar] [CrossRef]
- Li, G.; Pei, Z.; Li, Y.; Yang, R.; Wang, P.; Liang, Y.; Zhang, J.; Zhang, Q.; Jiang, G. A high-precision, effective method for extraction and identification of small-sized microplastics from soil. Talanta 2024, 272, 125802. [Google Scholar] [CrossRef]
- Bottone, A.; Boily, J.F.; Shchukarev, A.; Andersson, P.; Klaminder, J. Sodium hypochlorite as an oxidizing agent for removal of soil organic matter before microplastics analyses. J. Environ. Qual. 2022, 51, 112–122. [Google Scholar] [CrossRef]
- Vermeiren, P.; Munoz, C.; Ikejima, K. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut. 2020, 262, 114298. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Onandia, G.; Maaß, S.; Zhao, T.; Rillig, M.C. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J. Appl. Ecol. 2021, 58, 988–996. [Google Scholar] [CrossRef]
- Liu, C.; Jiao, Y.; Yang, C.; Li, B.; Li, W.; Qian, T.; Liu, X. Interfacial interactions of submicron plastics with carbon dots: Insights into the interface properties of microplastic weathering. Water Res. 2025, 277, 123377. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge and future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Huang, Y.; Chen, Y.; He, X.; Chen, Z.; Lu, X.; Wu, M.; Wanger, T.C. Non-Destructive Extraction and Separation of Nano- and Microplastics from Environmental Samples by Density Gradient Ultracentrifugation. Anal. Chem. 2022, 94, 15280–15287. [Google Scholar] [CrossRef] [PubMed]
- Pfohl, P.; Roth, C.; Wohlleben, W. The power of centrifugation: How to extract microplastics from soil with high recovery and matrix removal efficiency. MethodsX 2024, 12, 102598. [Google Scholar] [CrossRef]
- Grause, G.; Kuniyasu, Y.; Chien, M.F.; Inoue, C. Separation of microplastic from soil by centrifugation and its application to agricultural soil. Chemosphere 2022, 288, 132654. [Google Scholar] [CrossRef]
- Ramage, S.; Pagaling, E.; Haghi, R.K.; Dawson, L.A.; Yates, K.; Prabhu, R.; Hillier, S.; Devalla, S. Rapid extraction of high- and low-density microplastics from soil using high-gradient magnetic separation. Sci. Total Environ. 2022, 831, 154912. [Google Scholar] [CrossRef]
- Wang, X.; Dan, Y.; Diao, Y.; Liu, F.; Wang, H.; Sang, W.; Zhang, Y. Transport characteristics of polystyrene microplastics in saturated porous media with biochar/Fe3O4-biochar under various chemical conditions. Sci. Total Environ. 2022, 847, 157576. [Google Scholar] [CrossRef]
- Ren, X.; Breadmore, M.C.; Maya, F. Magnetism-Assisted Density Gradient Separation of Microplastics. Anal. Chem. 2022, 94, 17947–17955. [Google Scholar] [CrossRef]
- Enders, K.; Tagg, A.S.; Labrenz, M. Evaluation of Electrostatic Separation of Microplastics From Mineral-Rich Environmental Samples. Front. Environ. Sci. 2020, 8, 112. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Mo, A.; Jiang, J.; He, D. Degradation of polylactic acid/polybutylene adipate films in different ratios and the response of bacterial community in soil environments. Environ. Pollut. 2022, 313, 120167. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, W.; Geng, Y.; Zhang, Y.; Gao, X.; Xu, J.; Liu, X. Integrating automated machine learning and metabolic reprogramming for the identification of microplastic in soil: A case study on soybean. J. Hazard. Mater. 2024, 478, 135555. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fan, Z.; Ye, C.; Zhang, Z.; Wang, J. A performance optimization method of multi-phase extraction for soil remediation based on multi-loops coordinated control. Environ. Eng. Res. 2025, 30, 163–179. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Santás-Miguel, V.; Rodríguez-Seijo, A. Current Methodology for Extraction, Separation, Identification, and Quantification of Microplastics in Terrestrial Systems. In Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2023; Volume 114, pp. 267–287. [Google Scholar]
Separation Technique | Principle | Key Reagents | Advantages | Limitations | References |
---|---|---|---|---|---|
Density-Based Methods | Leveraging density differences between MPs and soil | NaCl/NaBr/ZnCl2, Olive oil, canola oil | High recovery for specific polymers, simple operation | Poor for high-density MPs (PVC/PET), environmental risks of reagents | [89,90,91,92,93,94,95] |
Organic Digestion | Oxidative removal of soil organic matter (SOM) | H2O2, NaOCl, Fenton’s reagent | Effective SOM removal | MP degradation risk, incomplete humic acid complex breakdown | [96,97,98,99,100,101,102] |
Centrifugal Gradients | Separation via density gradients under centrifugal force | CsCl gradients, Fenton-assisted centrifugation | High precision for mixed polymers | High cost (equipment/energy), limited scalability for large samples | [103,104,105] |
Magnetic/Electrostatic | Surface tagging or adsorption via magnetic/electrostatic forces | Fe3O4 nanoparticles, electrostatic modifiers | Reduced chemical use, high recovery for tagged MPs | Size-dependent efficiency (<50 μm MPs poorly recovered), SOM interference | [106,107,108,109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.; Ma, Y.; Han, Y. Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics. Microplastics 2025, 4, 39. https://doi.org/10.3390/microplastics4030039
Chang K, Ma Y, Han Y. Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics. Microplastics. 2025; 4(3):39. https://doi.org/10.3390/microplastics4030039
Chicago/Turabian StyleChang, Kuan, Yong Ma, and Yulai Han. 2025. "Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics" Microplastics 4, no. 3: 39. https://doi.org/10.3390/microplastics4030039
APA StyleChang, K., Ma, Y., & Han, Y. (2025). Research Progress on Source Analysis, Ecological Effects, and Separation Technology of Soil Microplastics. Microplastics, 4(3), 39. https://doi.org/10.3390/microplastics4030039