materials-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 11300 KiB  
Review
A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials—Recent Advances and Future Perspectives
by Alicja Balcerak-Woźniak, Monika Dzwonkowska-Zarzycka and Janina Kabatc-Borcz
Materials 2024, 17(17), 4255; https://doi.org/10.3390/ma17174255 - 28 Aug 2024
Cited by 13 | Viewed by 6041
Abstract
Today, smart materials are commonly used in various fields of science and technology, such as medicine, electronics, soft robotics, the chemical industry, the automotive field, and many others. Smart polymeric materials hold good promise for the future due to their endless possibilities. This [...] Read more.
Today, smart materials are commonly used in various fields of science and technology, such as medicine, electronics, soft robotics, the chemical industry, the automotive field, and many others. Smart polymeric materials hold good promise for the future due to their endless possibilities. This group of advanced materials can be sensitive to changes or the presence of various chemical, physical, and biological stimuli, e.g., light, temperature, pH, magnetic/electric field, pressure, microorganisms, bacteria, viruses, toxic substances, and many others. This review concerns the newest achievements in the area of smart polymeric materials. The recent advances in the designing of stimuli-responsive polymers are described in this paper. Full article
(This article belongs to the Special Issue The 15th Anniversary of Materials—Recent Advances in Soft Matter)
Show Figures

Graphical abstract

17 pages, 5827 KiB  
Article
Hydrogen Embrittlement Detection Technology Using Nondestructive Testing for Realizing a Hydrogen Society
by Yamato Abiru, Hiroshi Nishiguchi, Masato Maekawa, Takara Nagata, Toshiya Itaya, Michie Koga and Toshiomi Nishi
Materials 2024, 17(17), 4237; https://doi.org/10.3390/ma17174237 - 27 Aug 2024
Cited by 3 | Viewed by 1333
Abstract
Crack detection in high-pressure hydrogen gas components, such as pipes, is crucial for ensuring the safety and reliability of hydrogen infrastructure. This study conducts the nondestructive testing of crack propagation in steel piping under cyclic compressive loads in the presence of hydrogen in [...] Read more.
Crack detection in high-pressure hydrogen gas components, such as pipes, is crucial for ensuring the safety and reliability of hydrogen infrastructure. This study conducts the nondestructive testing of crack propagation in steel piping under cyclic compressive loads in the presence of hydrogen in the material. The specimens were hydrogen-precharged through immersion in a 20 mass% ammonium thiocyanate solution at 40 °C for 72 h. The crack growth rate in hydrogen-precharged specimens was approximately 10 times faster than that in uncharged specimens, with cracks propagating from the inner to outer surfaces of the pipe. The fracture surface morphology differed significantly, with flat surfaces in hydrogen-precharged materials and convex or concave surfaces in uncharged materials. Eddy current and hammering tests revealed differences in the presence of large cracks between the two materials. By contrast, hammering tests revealed differences in the presence of a half size crack between the two materials. These findings highlight the effect of hydrogen precharging on crack propagation in steel piping and underscore the importance of early detection methods. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 4717 KiB  
Review
Polysaccharide-Based Composite Systems in Bone Tissue Engineering: A Review
by Karina Niziołek, Dagmara Słota and Agnieszka Sobczak-Kupiec
Materials 2024, 17(17), 4220; https://doi.org/10.3390/ma17174220 - 27 Aug 2024
Cited by 7 | Viewed by 2571
Abstract
In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability [...] Read more.
In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability as well as bioactivity, have emerged as promising candidates for scaffolds or composite systems in BTE. Polymers combined with bioactive ceramics can support osteointegration. Calcium phosphate (CaP) ceramics can be a broad choice as an inorganic phase that stimulates the formation of new apatite layers. This review provides a comprehensive analysis of composite systems based on selected polysaccharides used in bone tissue engineering, highlighting their synthesis, properties and applications. Moreover, the applicability of the produced biocomposites has been analyzed, as well as new trends in modifying biomaterials and endowing them with new functionalizations. The effects of these composites on the mechanical properties, biocompatibility and osteoconductivity were critically analyzed. This article summarizes the latest manufacturing methods as well as new developments in polysaccharide-based biomaterials for bone and cartilage regeneration applications. Full article
(This article belongs to the Special Issue Bone Tissue Engineering Materials: From Preparation to Properties)
Show Figures

Figure 1

12 pages, 3635 KiB  
Article
Finite Element Analysis of the Structure and Working Principle of Solid-State Shear Milling (S3M) Equipment
by Lingfei Wei, Chao Wang, Ruoxuan Duan, Zehang Zhou and Canhui Lu
Materials 2024, 17(17), 4210; https://doi.org/10.3390/ma17174210 - 26 Aug 2024
Cited by 1 | Viewed by 1102
Abstract
Solid-state shear milling (S3M) equipment is an evolution from traditional stone mills, enabling the processing of polymer materials and fillers through crushing, mixing, and mechanochemical reactions at ambient temperature. Due to the complex structure of the mill-pan, empirical data alone are insufficient to [...] Read more.
Solid-state shear milling (S3M) equipment is an evolution from traditional stone mills, enabling the processing of polymer materials and fillers through crushing, mixing, and mechanochemical reactions at ambient temperature. Due to the complex structure of the mill-pan, empirical data alone are insufficient to give a comprehensive understanding of the physicochemical interactions during the milling process. To provide an in-depth insight of the working effect and mechanism of S3M equipment, finite element method (FEM) analysis is employed to simulate the milling dynamics, which substantiates the correlation between numerical outcomes and experimental observations. A model simplification strategy is proposed to optimize calculation time without compromising accuracy. The findings in this work demonstrate the S-S bond breakage mechanism behind stress-induced devulcanization and suggest the structural optimizations for enhancing the devulcanization and pulverization efficiency of S3M equipment, thereby providing a theoretical foundation for its application in material processing. Full article
(This article belongs to the Special Issue Advances in Bio-Polymer and Polymer Composites)
Show Figures

Figure 1

15 pages, 8923 KiB  
Article
Bio-Inspired Curved-Elliptical Lattice Structures for Enhanced Mechanical Performance and Deformation Stability
by Zhengmiao Guo, Fan Yang, Lingbo Li and Jiacheng Wu
Materials 2024, 17(17), 4191; https://doi.org/10.3390/ma17174191 - 24 Aug 2024
Cited by 1 | Viewed by 2303
Abstract
Lattice structures, characterized by their lightweight nature, high specific mechanical properties, and high design flexibility, have found widespread applications in fields such as aerospace and automotive engineering. However, the lightweight design of lattice structures often presents a trade-off between strength and stiffness. To [...] Read more.
Lattice structures, characterized by their lightweight nature, high specific mechanical properties, and high design flexibility, have found widespread applications in fields such as aerospace and automotive engineering. However, the lightweight design of lattice structures often presents a trade-off between strength and stiffness. To tackle this issue, a bio-inspired curved-elliptical (BCE) lattice is proposed to enhance the mechanical performance and deformation stability of three-dimensional lattice structures. BCE lattice specimens with different parameters were fabricated using selective laser melting (SLM) technology, followed by quasi-static compression tests. Finite element (FE) numerical simulations were also carried out for validation. The results demonstrate that the proposed BCE lattice structures exhibit stronger mechanical performance and more stable deformation modes that can be adjusted through parameter tuning. Specifically, by adjusting the design parameters, the BCE lattice structure can exhibit a bending-dominated delocalized deformation mode, avoiding catastrophic collapse during deformation. The specific energy absorption (SEA) can reach 24.6 J/g at a relative density of only 8%, with enhancements of 48.5% and 297.6% compared with the traditional energy-absorbing lattices Octet and body-center cubic (BCC), respectively. Moreover, the crushing force efficiency (CFE) of the BCE lattice structure surpasses those of Octet and BCC by 34.9% and 15.8%, respectively. Through a parametric study of the influence of the number of peaks N and the curve amplitude A on the compression performance of the BCE lattice structure, the compression deformation mechanism is further analyzed. The results indicate that the curve amplitude A and the number of peaks N have significant impacts on the deformation mode of the BCE lattice. By adjusting the parameters N and A, a structure with a combination of high energy absorption, high stiffness, and strong fracture resistance can be obtained, integrating the advantages of tensile-dominated and bending-dominated lattice structures. Full article
Show Figures

Figure 1

11 pages, 4251 KiB  
Article
Evaluating Optical Properties of Mixed-Phase 2D MoSe2/Poly(vinyl alcohol) Nanocomposite Film
by Suman Chhetri, Anh Tuan Nguyen, Nicolas Gaillard and Woochul Lee
Materials 2024, 17(17), 4178; https://doi.org/10.3390/ma17174178 - 23 Aug 2024
Cited by 1 | Viewed by 1036
Abstract
Highly solar light-absorbing poly(vinyl alcohol) (PVA) nanocomposite films have garnered wide attention in fields such as flexible optoelectronics, solar energy harvesting, and photothermal therapy. However, fabricating PVA nanocomposite films with a broad spectrum of solar absorption using cost-effective and non-toxic nanofillers remains challenging. [...] Read more.
Highly solar light-absorbing poly(vinyl alcohol) (PVA) nanocomposite films have garnered wide attention in fields such as flexible optoelectronics, solar energy harvesting, and photothermal therapy. However, fabricating PVA nanocomposite films with a broad spectrum of solar absorption using cost-effective and non-toxic nanofillers remains challenging. Herein, nanocomposite films of PVA incorporating various concentrations of mixed-phase 2D MoSe2 nanosheets (i.e., a combination of the 2H and 1T phase) were prepared using a solution casting technique. Scanning electron microscopy (SEM) shows homogenous dispersion of MoSe2 nanosheets in the PVA matrix even at higher concentrations, while atomic force microscopy (AFM) reveals increasing surface roughness with increasing MoSe2 content, reaching a plateau after 20 wt%. With the increase in the concentration of MoSe2, the nanocomposite films exhibit interesting light absorption characteristics reaching their highest absorption (average 94.9%) at 40 wt% MoSe2. The incorporated mixed-phase MoSe2 nanosheets induce a significant change in the energy levels of the PVA matrix, which is reflected in the reduced optical band gap energy (2.63 eV) at 40 wt% MoSe2 against pure PVA (5.28 eV). The excellent light absorption of PVA nanocomposite films across the entire range from 250 nm to 2500 nm is attributed to the thin 2D structure of MoSe2 and the presence of its mixed phase. Full article
Show Figures

Figure 1

19 pages, 2385 KiB  
Article
Characterization and Modeling of Out-of-Plane Behavior of Fiber-Based Materials: Numerical Illustration of Wrinkle in Deep Drawing
by Cedric W. Sanjon, Yuchen Leng, Yi Yan, Peter Groche, Marek Hauptmann, Nicole Ludat and Jens-Peter Majschak
Materials 2024, 17(17), 4177; https://doi.org/10.3390/ma17174177 - 23 Aug 2024
Cited by 1 | Viewed by 946
Abstract
The characterization and modeling of the out-of-plane behavior of fiber-based materials is essential for understanding their mechanical properties and improving their performance in various applications, especially in the forming process. Despite this, research on paper and paperboard has mainly focused on its in-plane [...] Read more.
The characterization and modeling of the out-of-plane behavior of fiber-based materials is essential for understanding their mechanical properties and improving their performance in various applications, especially in the forming process. Despite this, research on paper and paperboard has mainly focused on its in-plane behavior rather than its out-of-plane behavior. However, for accurate material characterization and modeling, it is critical to consider the out-of-plane behavior. In particular, delamination occurs during forming processes such as creasing, folding, and deep drawing. In this study, three material models for paperboard are presented: a single all-material continuum model and two composite models using different cohesion methods. The two composite models decouple in-plane and out-of-plane behavior and consist of continuum models describing the behavior of individual layers and cohesive interface models connecting the layers. Material characterization experiments are performed to derive the model parameters and verify the models. The models are validated using three-point bending and bulge tests and show good agreement. A case study is also conducted on the application of the three models in the simulation of a deep drawing process with respect to wrinkle formation. By comparing the simulation results of wrinkle formation in the deep drawing process, the composite models, especially the cohesive interface composite model, show greater accuracy in replicating the experimental results, indicating that a single continuum model can also be used to represent wrinkles. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

11 pages, 1960 KiB  
Article
Silicon Carbide Nanowire Based Integrated Electrode for High Temperature Supercapacitors
by Shiyu Sha, Chang Liang, Songyang Lv, Lin Xu, Defu Sun, Jiayue Yang, Lei Zhang and Shouzhi Wang
Materials 2024, 17(16), 4161; https://doi.org/10.3390/ma17164161 - 22 Aug 2024
Cited by 3 | Viewed by 1652
Abstract
Silicon carbide (SiC) single crystals have great prospects for high-temperature energy storage due to their robust structural stability, ultrahigh power output, and superior temperature stability. However, energy density is an essential challenge for SiC-based devices. Herein, a facile two-step strategy is proposed for [...] Read more.
Silicon carbide (SiC) single crystals have great prospects for high-temperature energy storage due to their robust structural stability, ultrahigh power output, and superior temperature stability. However, energy density is an essential challenge for SiC-based devices. Herein, a facile two-step strategy is proposed for the large-scale synthesis of a unique architecture of SiC nanowires incorporating MnO2 for enhanced supercapacitors (SCs), arising from the synergy effect between the SiC nanowires as a highly conductive skeleton and the MnO2 with numerous active sites. The SiC@MnO2 integrated electrode-based SCs with ionic liquid (IL) electrolytes were assembled and delivered outstanding energy and power density, as well as a great lifespan at 150 °C. This impressive work offers a novel avenue for the practical application of SiC-based electrochemical energy storage devices with high energy density under high temperatures. Full article
(This article belongs to the Special Issue Research Progress of Advanced Crystals: Growth and Doping)
Show Figures

Figure 1

11 pages, 4618 KiB  
Article
Modeling Study of Si3N4 Waveguides on a Sapphire Platform for Photonic Integration Applications
by Diandian Zhang, Shui-Qing Yu, Gregory J. Salamo, Richard A. Soref and Wei Du
Materials 2024, 17(16), 4148; https://doi.org/10.3390/ma17164148 - 22 Aug 2024
Cited by 10 | Viewed by 2152
Abstract
Sapphire has various applications in photonics due to its broadband transparency, high-contrast index, and chemical and physical stability. Photonics integration on the sapphire platform has been proposed, along with potentially high-performance lasers made of group III–V materials. In parallel with developing active devices [...] Read more.
Sapphire has various applications in photonics due to its broadband transparency, high-contrast index, and chemical and physical stability. Photonics integration on the sapphire platform has been proposed, along with potentially high-performance lasers made of group III–V materials. In parallel with developing active devices for photonics integration applications, in this work, silicon nitride optical waveguides on a sapphire substrate were analyzed using the commercial software Comsol Multiphysics in a spectral window of 800~2400 nm, covering the operating wavelengths of III–V lasers, which could be monolithically or hybridly integrated on the same substrate. A high confinement factor of ~90% near the single-mode limit was obtained, and a low bending loss of ~0.01 dB was effectively achieved with the bending radius reaching 90 μm, 70 μm, and 40 μm for wavelengths of 2000 nm, 1550 nm, and 850 nm, respectively. Furthermore, the use of a pedestal structure or a SiO2 bottom cladding layer has shown potential to further reduce bending losses. The introduction of a SiO2 bottom cladding layer effectively eliminates the influence of the substrate’s larger refractive index, resulting in further improvement in waveguide performance. The platform enables tightly built waveguides and small bending radii with high field confinement and low propagation losses, showcasing silicon nitride waveguides on sapphire as promising passive components for the development of high-performance and cost-effective PICs. Full article
Show Figures

Figure 1

15 pages, 6460 KiB  
Article
Evaluation of the Properties of 3D-Printed Onyx–Fiberglass Composites
by Jong-Hwan Yun, Gun-Woong Yoon, Yu-Jae Jeon and Min-Soo Kang
Materials 2024, 17(16), 4140; https://doi.org/10.3390/ma17164140 - 21 Aug 2024
Cited by 1 | Viewed by 1807
Abstract
This study evaluated the properties of 3D-printed Onyx–fiberglass composites. These composites were 3D-printed with zero, one, two, three, and four layers of fiberglass. Ten samples of each configuration were printed for the tensile and flexural tests. The average tensile strength of the Onyx [...] Read more.
This study evaluated the properties of 3D-printed Onyx–fiberglass composites. These composites were 3D-printed with zero, one, two, three, and four layers of fiberglass. Ten samples of each configuration were printed for the tensile and flexural tests. The average tensile strength of the Onyx specimens was calculated to be 44.79 MPa, which increased linearly by approximately 20–25 MPa with each additional fiberglass layer. The elastic moduli calculated from the micromechanics models were compared with the experimental values obtained from the tensile tests. The experimental elastic modulus increased more significantly than the model prediction when more fiberglass layers were added. The flexural modulus of Onyx was 17.6 GPa, which increased with each additional fiberglass layer. This quantitative analysis of composites fabricated using 3D printing highlights their potential for commercialization and industrial applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 10491 KiB  
Article
In Situ Synthesis of (Mo,Cr)Si2 Composites by Spark Plasma Sintering
by Yue-Yao Wang and Guo-Hua Zhang
Materials 2024, 17(16), 4105; https://doi.org/10.3390/ma17164105 - 19 Aug 2024
Cited by 1 | Viewed by 1115
Abstract
This research investigated the impact of Cr content on the properties of (Mo,Cr)Si2 composites. Composites with CrSi2 molar fractions ranging from 0% to 10% were fabricated using spark plasma sintering (SPS). The study undertook a systematic analysis of the surface morphology, [...] Read more.
This research investigated the impact of Cr content on the properties of (Mo,Cr)Si2 composites. Composites with CrSi2 molar fractions ranging from 0% to 10% were fabricated using spark plasma sintering (SPS). The study undertook a systematic analysis of the surface morphology, phase composition, mechanical properties, and high-temperature oxidation resistance of the sintered samples across different compositions. Notably, the (Mo95,Cr5)Si2 composite sintered at 1400 °C exhibited enhanced properties, including a Vickers hardness of 11.6 GPa, a fracture toughness of 4.6 MPa·m1/2, and a flexural strength of 397 MPa. Upon oxidation at 1500 °C, the (Mo,Cr)Si2 composites formed a protective oxide layer comprised of SiO2 and Cr2O3. It was found that the generation and thickening of the protective oxide layer was promoted by the addition of moderate amounts of Cr to MoSi2. Full article
(This article belongs to the Special Issue Sintering of Ceramic Materials)
Show Figures

Figure 1

24 pages, 13126 KiB  
Article
Forced-Vibration Characteristics of Bowtie-Shaped Honeycomb Composite Sandwich Panel with Viscoelastic Damping Layer
by Siqi Miao, Yifeng Zhong, Mingtao Zhang and Rong Liu
Materials 2024, 17(16), 4067; https://doi.org/10.3390/ma17164067 - 16 Aug 2024
Cited by 3 | Viewed by 1215
Abstract
The incorporation of viscoelastic layers in laminates can markedly enhance the damped dynamic characteristics. This study focuses on integrating viscoelastic layers into the composite facesheet of the bowtie-shaped honeycomb core composite sandwich panel (BHC-CSP). The homogenization of the damped BHC-CSP is performed by [...] Read more.
The incorporation of viscoelastic layers in laminates can markedly enhance the damped dynamic characteristics. This study focuses on integrating viscoelastic layers into the composite facesheet of the bowtie-shaped honeycomb core composite sandwich panel (BHC-CSP). The homogenization of the damped BHC-CSP is performed by employing the variational asymptotic method. Based on the generalized total energy equation, the energy functional of the representative unit cell of the damped BHC-CSP is asymptotically analyzed. The warping function, derived following the principle of minimum potential energy, provides a basis for obtaining the corresponding Euler–Lagrange equation to ascertain the equivalent elastic properties of the damped BHC-CSP. Utilizing the developed two-dimensional equivalent model, the free-vibration characteristics of the damped BHC-CSP are examined across diverse boundary conditions while delving into the impact of an external viscous damping layer on the natural frequency of the damped BHC-CSP. The results reveal that intensified boundary constraints effectively diminish the effective vibration region of the damped BHC-CSP, thereby enhancing its overall stability. The introduction of a PMI foam layer proves effective in adjusting the stiffness and mass distribution of the damped BHC-CSP. Resonance characteristics are explored through frequency and time-domain analyses, highlighting the pivotal roles of the excitation position and receiver point in influencing the displacement and velocity responses. Although the stiffness is improved by incorporating a PMI foam layer, its effect on the damping performance of the damped BHC-CSP is minimal when compared to the T-SW308 foam layer. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 5935 KiB  
Article
Towards the Reuse of Fire Retarded Polyamide 12 for Laser Sintering
by Dylan Seigler, Marcos Batistella and José-Marie Lopez-Cuesta
Materials 2024, 17(16), 4064; https://doi.org/10.3390/ma17164064 - 15 Aug 2024
Cited by 1 | Viewed by 1097
Abstract
The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered [...] Read more.
The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered when a fraction of the polymer powders present in the build chamber and not used to manufacture the parts are reused at various times. The aim of this study was to investigate the influence of successive reuse of blends of pure Polyamide 12 and its blends with two types of flame retardants (FR): ammonium polyphosphate (APP) and zinc borate (ZB). The composition of the blends was 70/30 (wt/wt) PA 12/FR. Four successive processing stages have been carried out by collecting the remaining powder blend each time. The powders were re-used using the same processing parameters after sieving. DSC measurements showed that the incorporation of FRs entailed a reduction in the processing window up to 4 °C; nevertheless, no further reduction was noted after aging. The TGA curves of aged blends of powders were also similar for pure PA 12 and PA 12 with FR. In addition, initial and reused powders presented a higher degree of crystallinity than the specimens processed from the powders. The heterogeneous character of the PA 12 after LS processing or reprocessing was shown through Pyrolysis Combustion Flow Calorimetry (PCFC) and cone calorimeter (CC) tests. FTIR analysis also showed that post-condensation reactions have occurred. The mode of action of the flame retardants was clearly seen on HRR curves at both tests. The first reuses of PA 12 powders entailed a significant reduction in time to ignition at the cone calorimeter (150 for the initial material to around 90 s for the reused material), indicating the formation of short polymer chains. Only in the case of zinc borate was it noticed that re-used powder was detrimental to the fire performance because of a strong increase in the value of pHRR (between 163 and 220 kW/m2 for reused material instead of 125 kW/m2 for the initial one). Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

27 pages, 6259 KiB  
Article
Real-Time Spectroscopic Ellipsometry for Flux Calibrations in Multi-Source Co-Evaporation of Thin Films: Application to Rate Variations in CuInSe2 Deposition
by Dhurba R. Sapkota, Balaji Ramanujam, Puja Pradhan, Mohammed A. Razooqi Alaani, Ambalanath Shan, Michael J. Heben, Sylvain Marsillac, Nikolas J. Podraza and Robert W. Collins
Materials 2024, 17(16), 4048; https://doi.org/10.3390/ma17164048 - 14 Aug 2024
Viewed by 1100
Abstract
Flux calibrations in multi-source thermal co-evaporation of thin films have been developed based on real-time spectroscopic ellipsometry (RTSE) measurements. This methodology has been applied to fabricate CuInSe2 (CIS) thin film photovoltaic (PV) absorbers, as an illustrative example, and their properties as functions [...] Read more.
Flux calibrations in multi-source thermal co-evaporation of thin films have been developed based on real-time spectroscopic ellipsometry (RTSE) measurements. This methodology has been applied to fabricate CuInSe2 (CIS) thin film photovoltaic (PV) absorbers, as an illustrative example, and their properties as functions of deposition rate have been studied. In this example, multiple Cu layers are deposited step-wise onto the same Si wafer substrate at different Cu evaporation source temperatures (TCu). Multiple In2Se3 layers are deposited similarly at different In source temperatures (TIn). Using RTSE, the Cu and In2Se3 deposition rates are determined as functions of TCu and TIn. These rates, denoted Reff, are measured in terms of effective thickness which is the volume per planar substrate area and accounts for surface roughness variations with deposition time. By assuming that all incident metal atoms are incorporated into the films and that the atomic concentrations in the deposited material components are the same as in single crystals, initial estimates of the Cu and In atom fluxes can be made versus TCu and TIn. Applying these estimates to the co-evaporation of a set of CIS films from individual Cu, In, and Se sources, atomic concentration corrections can be assigned to the Cu and In2Se3 calibration films. The corrections enable generation of a novel calibration diagram predicting the atomic ratio y = [Cu]/[In] and rate Reff within the TCu-TIn plane. Using this diagram, optimization of the CIS properties as a PV absorber can be achieved versus both y and Reff. Full article
Show Figures

Figure 1

11 pages, 3441 KiB  
Article
Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering
by Yixiao Zhang, Yuchen Jia, Jian Yang, Zixuan Feng, Shuohan Sun, Xiaolong Zhu, Haotian Wang, Shiguang Yan and Ming Zheng
Materials 2024, 17(16), 4019; https://doi.org/10.3390/ma17164019 - 13 Aug 2024
Cited by 3 | Viewed by 1453
Abstract
Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have [...] Read more.
Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field. Full article
(This article belongs to the Special Issue Ferroelectric, Magnetic, and Multiferroic Materials and Applications)
Show Figures

Graphical abstract

11 pages, 2224 KiB  
Article
Color Stability of Various Orthodontic Clear Aligner Systems after Submersion in Different Staining Beverages
by Nicolae Daniel Olteanu, Ionut Taraboanta, Tinela Panaite, Carina Balcos, Sorana Nicoleta Rosu, Raluca Maria Vieriu, Stefania Dinu and Irina Nicoleta Zetu
Materials 2024, 17(16), 4009; https://doi.org/10.3390/ma17164009 - 12 Aug 2024
Cited by 4 | Viewed by 2687
Abstract
This study aimed to compare the color changes in two different orthodontic clear aligner systems after submersion in various beverages for 14 days. The tested aligner systems were Taglus Premium made of polyethylene terephthalate glycol (the TAG group) and CA® Prodin+ made [...] Read more.
This study aimed to compare the color changes in two different orthodontic clear aligner systems after submersion in various beverages for 14 days. The tested aligner systems were Taglus Premium made of polyethylene terephthalate glycol (the TAG group) and CA® Prodin+ made of a transparent copolyester and a thermoplastic elastomer (the PRO group). A total of 56 samples were firstly divided into two groups according to the tested system—TAG and PRO. Each group was subsequently divided in four subgroups according to immersion solution: A—artificial saliva, B—cola, C—coffee, D—red wine. Color measurements were performed on Days 1, 7 and 14 using a portable colorimeter and the CIE L*a*b* system. The obtained results showed significant color changes in both materials when exposed to coffee and red wine (p > 0.05). Samples in the PRO group showed a greater susceptibility to discoloration (higher ΔE values) when compared to the TAG group after submersion in cola (p = 0.025), coffee (p = 0.005) and red wine (p = 0.041) solutions. Statistical analysis revealed that all of the color parameters ΔL*, Δa*, Δb* and ΔE of both tested materials were affected by submersion in coffee solution for 14 days. In conclusion, the CA® Pro+ aligner system is more prone to staining compared to the Taglus material after submersion for 14 days in cola, coffee and red wine solutions. Submersion for 14 days in coffee solution alters all of the color parameters (ΔL, Δa, Δb and ΔE) of both tested aligner materials. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application)
Show Figures

Figure 1

30 pages, 3102 KiB  
Review
Current Progress in Research into Environmentally Friendly Rigid Polyurethane Foams
by Sylwia Makowska, Dawid Szymborski, Natalia Sienkiewicz and Agnė Kairytė
Materials 2024, 17(16), 3971; https://doi.org/10.3390/ma17163971 - 9 Aug 2024
Cited by 4 | Viewed by 3075
Abstract
Polyurethane foams are materials characterized by low density and thermal conductivity and can therefore be used as thermal insulation materials. They are synthesized from toxic and environmentally unfriendly petrochemicals called isocyanates and polyols, which react with each other to form a urethane group [...] Read more.
Polyurethane foams are materials characterized by low density and thermal conductivity and can therefore be used as thermal insulation materials. They are synthesized from toxic and environmentally unfriendly petrochemicals called isocyanates and polyols, which react with each other to form a urethane group via the displacement of the movable hydrogen atom of the −OH group of the alcohol to the nitrogen atom of the isocyanate group. The following work describes the synthesis of polyurethane foams, focusing on using environmentally friendly materials, such as polyols derived from plant sources or modifiers, to strengthen the foam interface derived from plant precipitation containing cellulose derived from paper waste. The polyurethane foam industry is looking for new sources of materials to replace the currently used petrochemical products. The solutions described are proving to be an innovative and promising area capable of changing the face of current PU foam synthesis. Full article
(This article belongs to the Special Issue Polymers, Processing and Sustainability)
Show Figures

Figure 1

23 pages, 5371 KiB  
Article
Low-Cycle Fatigue Properties of Bimetallic Steel Bar with Buckling: Energy-Based Numerical and Experimental Investigations
by Xuanyi Xue, Fei Wang, Neng Wang, Jianmin Hua and Wenjie Deng
Materials 2024, 17(16), 3974; https://doi.org/10.3390/ma17163974 - 9 Aug 2024
Cited by 3 | Viewed by 1040
Abstract
A bimetallic steel bar (BSB) consisting of stainless-steel cladding and carbon steel substrate exhibits excellent corrosion resistance and good mechanical properties. The bimetallic structure of BSBs may affect their low-cycle fatigue performance, and current investigations on the above issue are limited. In this [...] Read more.
A bimetallic steel bar (BSB) consisting of stainless-steel cladding and carbon steel substrate exhibits excellent corrosion resistance and good mechanical properties. The bimetallic structure of BSBs may affect their low-cycle fatigue performance, and current investigations on the above issue are limited. In this study, the low-cycle fatigue properties of bimetallic steel bars (BSBs) with inelastic buckling were investigated. Experiments and numerical studies were conducted to investigate the low-cycle fatigue capacity for BSBs, considering buckling. The buckling mode of BSBs is discussed. The hysteretic loops and energy properties of BSBs with various slenderness ratios (L/D) and fatigue strain amplitudes (εa) are investigated. With increases in the L/D and εa, the original symmetry for hysteresis loops disappears gradually, which is caused by the buckling. A predictive equation revealing the relation between the εa and fatigue life is suggested, which considers the effects of the L/D. A numerical modelling method is suggested to predict the hysteretic curves of BSBs. The effect of buckling on the stress and energy properties of BSBs is discussed through the numerical analysis of 44 models including the effects of the L/D, εa, and cladding ratios. The numerical analysis results illustrate that the hysteresis loops of BSBs with various εa values exhibit similar shapes. The increase in the cladding ratio reduces the peak stress and the dissipated energy properties of BSBs. The hysteresis loop energy density decreases by about 3% with an increase of 0.1 in the cladding ratio. It is recommended that the proportion of stainless steel inBSBs should be minimized once the corrosion resistance requirements are met. Full article
Show Figures

Figure 1

29 pages, 16855 KiB  
Article
Crashworthiness Performance and Multi-Objective Optimization of Bi-Directional Corrugated Tubes under Quasi-Static Axial Crushing
by Liuxiao Zou, Xin Wang, Ruojun Wang, Xin Huang, Menglei Li, Shuai Li, Zengyan Jiang and Weilong Yin
Materials 2024, 17(16), 3958; https://doi.org/10.3390/ma17163958 - 9 Aug 2024
Viewed by 1597
Abstract
Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer higher specific energy absorption but with unstable platform force. To overcome these limitations, this paper introduces a novel bi-directional corrugated [...] Read more.
Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer higher specific energy absorption but with unstable platform force. To overcome these limitations, this paper introduces a novel bi-directional corrugated tube (BCT) that amalgamates the strengths of both the CCT and LCT while mitigating their weaknesses. The BCT is formed by rolling a bi-directional corrugated structure into a circular tubular form. Numerical simulations of the BCT closely align with experimental results. The study further examines the influence of discrete parameters on the BCT’s performance through simulations and identifies the tube’s optimal design using the integral entropy TOPSIS method. A full factorial experimental approach is then employed to investigate the impact of radial amplitude, axial amplitude, and neutral surface diameter on the crushing behavior of the BCT, comparing it with the CCT and LCT. The results reveal that increasing Ai enhances the axial resistance of the structure, while increasing Aj reduces the buckling effect, resulting in a higher specific energy absorption and lower ultimate load capacity for the BCT compared to the CCT and LCT. A simultaneous multi-objective optimization of the CCT, LCT, and BCT confirms that the BCT offers superior specific energy absorption and ultimate load capacity. The optimal configuration parameters for the BCT have been determined, providing significant insights for practical applications in crashworthiness engineering. Full article
(This article belongs to the Special Issue Advances in Modelling and Simulation of Materials in Applied Sciences)
Show Figures

Figure 1

47 pages, 4047 KiB  
Review
Polydopamine Applications in Biomedicine and Environmental Science
by Hossein Omidian and Renae L. Wilson
Materials 2024, 17(16), 3916; https://doi.org/10.3390/ma17163916 - 7 Aug 2024
Cited by 8 | Viewed by 2879
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA’s roles in tissue engineering, [...] Read more.
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA’s roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA’s contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA’s efficacy and scalability. Full article
Show Figures

Figure 1

14 pages, 4592 KiB  
Article
Compressive Properties and Energy Absorption Characteristics of Co-Continuous Interlocking PDMS/PLA Lattice Composites
by Han Wang, Kedi Wang, Jincheng Lei and Xueling Fan
Materials 2024, 17(16), 3894; https://doi.org/10.3390/ma17163894 - 6 Aug 2024
Cited by 1 | Viewed by 1316
Abstract
Co-continuous interlocking lattice structures usually present superior compressive properties and energy absorption characteristics. In this study, co-continuous interlocking polydimethylsiloxane/polylactic acid (PDMS/PLA) lattice composites were designed with different strut diameters, and successfully manufactured by combining the fused deposition modeling (FDM) technique and the infiltration [...] Read more.
Co-continuous interlocking lattice structures usually present superior compressive properties and energy absorption characteristics. In this study, co-continuous interlocking polydimethylsiloxane/polylactic acid (PDMS/PLA) lattice composites were designed with different strut diameters, and successfully manufactured by combining the fused deposition modeling (FDM) technique and the infiltration method. This fabrication method can realize the change and control of structure parameters. The effects of the strut diameter on the compressive properties and energy absorption behavior of PDMS/PLA lattice composites were investigated by using quasi-static compression tests. The compressive properties of the co-continuous interlocking PDMS/PLA lattice composites can be adjusted in a narrow density range by a linear correlation. The energy absorption density of the co-continuous interlocking PDMS/PLA lattice composites increases with the increase in the PLA strut diameter and presents a higher efficiency peak and wider plateau region. The PLA lattice acts as a skeleton and plays an important role in bearing the compressive load and in energy absorption. The indexes of the compressive properties/energy absorption characteristics and PLA volume fraction of co-continuous interlocking PDMS/PLA lattice composites show linear relationships in logarithmic coordinates. The effect of the PLA volume fraction increasing on the plateau stress is more sensitive than the compressive strength and energy absorption density. Full article
Show Figures

Figure 1

17 pages, 5617 KiB  
Article
Impact of Thermochemical Treatments on Electrical Conductivity of Donor-Doped Strontium Titanate Sr(Ln)TiO3 Ceramics
by Aleksandr Bamburov, Ekaterina Kravchenko and Aleksey A. Yaremchenko
Materials 2024, 17(15), 3876; https://doi.org/10.3390/ma17153876 - 5 Aug 2024
Viewed by 1362
Abstract
The remarkable stability, suitable thermomechanical characteristics, and acceptable electrical properties of donor-doped strontium titanates make them attractive materials for fuel electrodes, interconnects, and supports of solid oxide fuel and electrolysis cells (SOFC/SOEC). The present study addresses the impact of processing and thermochemical treatment [...] Read more.
The remarkable stability, suitable thermomechanical characteristics, and acceptable electrical properties of donor-doped strontium titanates make them attractive materials for fuel electrodes, interconnects, and supports of solid oxide fuel and electrolysis cells (SOFC/SOEC). The present study addresses the impact of processing and thermochemical treatment conditions on the electrical conductivity of SrTiO3-derived ceramics with moderate acceptor-type substitution in a strontium sublattice. A-site-deficient Sr0.85La0.10TiO3−δ and cation-stoichiometric Sr0.85Pr0.15TiO3+δ ceramics with varying microstructures and levels of reduction have been prepared and characterized by XRD, SEM, TGA, and electrical conductivity measurements under reducing conditions. The analysis of the collected data suggested that the reduction process of dense donor-doped SrTiO3 ceramics is limited by sluggish oxygen diffusion in the crystal lattice even at temperatures as high as 1300 °C. A higher degree of reduction and higher electrical conductivity can be obtained for porous structures under similar thermochemical treatment conditions. Metallic-like conductivity in dense reduced Sr0.85La0.10TiO3−δ corresponds to the state quenched from the processing temperature and is proportional to the concentration of Ti3+ in the lattice. Due to poor oxygen diffusivity in the bulk, dense Sr0.85La0.10TiO3−δ ceramics remain redox inactive and maintain a high level of conductivity under reducing conditions at temperatures below 1000 °C. While the behavior and properties of dense reduced Sr0.85Pr0.15TiO3+δ ceramics with a large grain size (10–40 µm) were found to be similar, decreasing grain size down to 1–3 µm results in an increasing role of resistive grain boundaries which, regardless of the degree of reduction, determine the semiconducting behavior and lower total electrical conductivity of fine-grained Sr0.85Pr0.15TiO3+δ ceramics. Oxidized porous Sr0.85Pr0.15TiO3+δ ceramics exhibit faster kinetics of reduction compared to the Sr0.85La0.10TiO3−δ counterpart at temperatures below 1000 °C, whereas equilibration kinetics of porous Sr0.85La0.10TiO3−δ structures can be facilitated by reductive pre-treatments at elevated temperatures. Full article
Show Figures

Figure 1

28 pages, 16553 KiB  
Review
Progress in Additive Manufacturing of Magnesium Alloys: A Review
by Jiayu Chen and Bin Chen
Materials 2024, 17(15), 3851; https://doi.org/10.3390/ma17153851 - 3 Aug 2024
Cited by 13 | Viewed by 4799
Abstract
Magnesium alloys, renowned for their lightweight yet high-strength characteristics, with exceptional mechanical properties, are highly coveted for numerous applications. The emergence of magnesium alloy additive manufacturing (Mg AM) has further propelled their popularity, offering advantages such as unparalleled precision, swift production rates, enhanced [...] Read more.
Magnesium alloys, renowned for their lightweight yet high-strength characteristics, with exceptional mechanical properties, are highly coveted for numerous applications. The emergence of magnesium alloy additive manufacturing (Mg AM) has further propelled their popularity, offering advantages such as unparalleled precision, swift production rates, enhanced design freedom, and optimized material utilization. This technology holds immense potential in fabricating intricate geometries, complex internal structures, and performance-tailored microstructures, enabling groundbreaking applications. In this paper, we delve into the core processes and pivotal influencing factors of the current techniques employed in Mg AM, including selective laser melting (SLM), electron beam melting (EBM), wire arc additive manufacturing (WAAM), binder jetting (BJ), friction stir additive manufacturing (FSAM), and indirect additive manufacturing (I-AM). Laser powder bed fusion (LPBF) excels in precision but is limited by a low deposition rate and chamber size; WAAM offers cost-effectiveness, high efficiency, and scalability for large components; BJ enables precise material deposition for customized parts with environmental benefits; FSAM achieves fine grain sizes, low defect rates, and potential for precision products; and I-AM boasts a high build rate and industrial adaptability but is less studied recently. This paper attempts to explore the possibilities and challenges for future research in AM. Among them, two issues are how to mix different AM applications and how to use the integration of Internet technologies, machine learning, and process modeling with AM, which are innovative breakthroughs in AM. Full article
(This article belongs to the Special Issue 3D Printing Technology with Metal Materials)
Show Figures

Figure 1

28 pages, 17468 KiB  
Article
Characterisation of Large-Sized REBaCuO Bulks for Application in Flux Modulation Machines
by Quentin Nouailhetas, Yiteng Xing, Rémi Dorget, Walid Dirahoui, Santiago Guijosa, Frederic Trillaud, Jean Lévêque, Jacques Guillaume Noudem, Julien Labbé and Kévin Berger
Materials 2024, 17(15), 3827; https://doi.org/10.3390/ma17153827 - 2 Aug 2024
Cited by 2 | Viewed by 1068
Abstract
High temperature superconductors (HTSs) are enablers of extensive electrification for aircraft propulsion. Indeed, if used in electrical machines, HTS materials can drastically improve their performance in terms of the power-to-weight ratio. Among the different topologies of superconducting electrical machines, a flux modulation machine [...] Read more.
High temperature superconductors (HTSs) are enablers of extensive electrification for aircraft propulsion. Indeed, if used in electrical machines, HTS materials can drastically improve their performance in terms of the power-to-weight ratio. Among the different topologies of superconducting electrical machines, a flux modulation machine based on HTS bulks is of interest for its compactness and light weight. Such a machine is proposed in the FROST (Flux-barrier Rotating Superconducting Topology) project led by Airbus to develop new technologies as part of their decarbonization goals driven by international policies. The rotor of the machine will house large ring-segment-shaped HTS bulks in order to increase the output power. However, the properties of those bulks are scarcely known and have barely been investigated in the literature. In this context, the present work aims to fill out partially this scarcity within the framework of FROST. Thus, a thorough characterisation of the performances and homogeneity of 11 large REBaCuO bulks was carried out. Ten of the bulks are to be utilized in the machine prototype, originally keeping the eleventh bulk as a spare. A first set of characterisation was conducted on the eleven bulks. For this set, the trapped field mapping and the critical current were estimated. Then, a series of in-depth characterisations on the eleventh bulk followed. It included critical current measurement, X-ray diffraction, and scanning electron microscopy on different millimetre-size samples cut out from the bulk at various locations. The X-ray diffraction and scanning electron microscopy showed weakly oxygenated regions inside the bulk explaining the local drop or loss in superconducting properties. The objective was to determine the causes of the inhomogeneities found in the trapped field measured on all the bulks, sacrificing one of them, here the spare one. To help obtain a clearer picture, a numerical model was then elaborated to reproduce the field map of the eleventh bulk using the experimental data obtained from the characterisation of its various small samples. It is concluded that further characterisations, including the statistics on various bulks, are still needed to understand the underlying reasons for inhomogeneity in the trapped field. Nonetheless, all the bulks presented enough current density to be usable in the construction of the proposed machine. Full article
(This article belongs to the Special Issue Characterization and Application of Superconducting Materials)
Show Figures

Figure 1

15 pages, 6045 KiB  
Article
Rheological Changes in Bio-Based Filaments Induced by Extrusion-Based 3D Printing Process
by Antonella Patti and Stefano Acierno
Materials 2024, 17(15), 3839; https://doi.org/10.3390/ma17153839 - 2 Aug 2024
Cited by 2 | Viewed by 1441
Abstract
In this work, the authors investigated the impact of extrusion-based printing process on the structural characteristics of bio-based resins through rheological measurements. Two commercially available filaments made from unfilled and wood-filled polylactide (PLA) polymers were considered. Three-dimensional specimens were prepared by printing these [...] Read more.
In this work, the authors investigated the impact of extrusion-based printing process on the structural characteristics of bio-based resins through rheological measurements. Two commercially available filaments made from unfilled and wood-filled polylactide (PLA) polymers were considered. Three-dimensional specimens were prepared by printing these filaments under various operating conditions, i.e., changing the extruder temperature and printing rate, and examined using time sweep tests. Specific cycle rheological testing was conducted on pelletized filaments to simulate temperature changes in the printing process. The rheological characteristics of unprocessed materials, in terms of storage (G′) and loss (G″) moduli, were found to be slightly affected by temperature changes. For a pure polymer, the G′ slope at a low frequency decreased over time, showing that the polymer chains evolved from a higher to a lower molecular weight. For wood-filled materials, the G′ slope rose over the testing time, emphasizing the formation of a percolated network of structured filler within the matrix. On the other side, the rheological parameters of both materials were strongly impacted by the printing extrusion and the related conditions. At lower nozzle temperatures (200 °C), by decreasing the printing speed, the G′ and G″ curves became increasingly different with respect to unprocessed resin; whereas at higher nozzle temperatures (220 °C), the influence of the printing speed was insignificant, and all curves (albeit distant from those of unprocessed matrix) mainly overlapped. Considerations on degradation kinetics of both materials during the printing process were also provided by fitting experimental data of complex viscosity with linear correlation over time. Full article
(This article belongs to the Special Issue Polymers, Processing and Sustainability)
Show Figures

Figure 1

17 pages, 5227 KiB  
Article
Experimental Study on Preparation of Inorganic Fibers from Circulating Fluidized Bed Boilers Ash
by Qingjia Wang, Tuo Zhou, Zhiao Li, Yi Ding, Qiang Song, Man Zhang, Nan Hu and Hairui Yang
Materials 2024, 17(15), 3800; https://doi.org/10.3390/ma17153800 - 1 Aug 2024
Cited by 3 | Viewed by 918
Abstract
The ash generated by Circulating Fluidized Bed (CFB) boilers is featured by its looseness and porosity, low content of glassy substances, and high contents of calcium (Ca) and sulfur (S), thus resulting in a low comprehensive utilization rate. Currently, the predominant treatment approach [...] Read more.
The ash generated by Circulating Fluidized Bed (CFB) boilers is featured by its looseness and porosity, low content of glassy substances, and high contents of calcium (Ca) and sulfur (S), thus resulting in a low comprehensive utilization rate. Currently, the predominant treatment approach for CFB ash and slag is stacking, which may give rise to issues like environmental pollution. In this paper, CFB ash (with a CaO content of 7.64% and an SO3 content of 1.77%) was used as the main raw material. The high-temperature melting characteristics, viscosity–temperature characteristics, and initial crystallization temperature of samples with different acidity coefficients were investigated. The final drawing temperature range of the samples was determined, and mechanical property tests were conducted on the prepared inorganic fibers. The results show that the addition of dolomite powder has a significant reducing effect on the complete liquid phase temperature. The final drawing temperatures of the samples with different acidity coefficients range as follows: 1270–1318 °C; 1272–1351 °C; 1250–1372 °C; 1280–1380 °C; 1300–1382 °C; and 1310–1384 °C. The drawing temperature of this system is slightly lower than that of basalt fibers. Based on the test results of the mechanical properties of inorganic fibers, the Young’s modulus of the inorganic fibers prepared through the experiment lies between 55 GPa and 74 GPa, which basically meets the performance requirements of inorganic fibers. Consequently, the method of preparing inorganic fibers by using CFB ash and dolomite powder is entirely feasible. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

24 pages, 8184 KiB  
Article
A Comparative Analysis of Friction and Energy Losses in Hydrogen and CNG Fueled Engines: Implications on the Top Compression Ring Design Using Steel, Cast Iron, and Silicon Nitride Materials
by Vasiliki-Ioanna Nikolopoulou, Anastasios Zavos and Pantelis Nikolakopoulos
Materials 2024, 17(15), 3806; https://doi.org/10.3390/ma17153806 - 1 Aug 2024
Viewed by 1696
Abstract
Optimizing the design of the top compression ring holds immense importance in reducing friction across both traditional Internal Combustion (IC) engines and hybrid power systems. This study investigates the impact of alternative fuels, specifically hydrogen and CNG, on the behavior of top piston [...] Read more.
Optimizing the design of the top compression ring holds immense importance in reducing friction across both traditional Internal Combustion (IC) engines and hybrid power systems. This study investigates the impact of alternative fuels, specifically hydrogen and CNG, on the behavior of top piston rings within internal combustion (IC) engines. The goal of this approach is to understand the complex interplay between blow-by, fuel type, material behavior, and their effects on ring friction, energy losses, and resulting ring strength. Two types of IC engines were analyzed, taking into account flow conditions derived from in-cylinder pressures and piston geometry. Following ISO 6622-2:2013 guidelines, thick top compression rings made from varying materials (steel, cast iron, and silicon nitride) were investigated and compared. Through a quasi-static ring model within Computational Fluid Dynamics (CFD), critical tribological parameters such as the minimum film and ring friction were simulated, revealing that lighter hydrogen-powered engines with higher combustion pressures could potentially experience approximately 34.7% greater power losses compared to their heavier CNG counterparts. By delving into the interaction among the fuel delivery system, gas blow-by, and material properties, this study unveils valuable insights into the tribological and structural behavior of the top piston ring conjunction. Notably, the silicon nitride material demonstrates promising strength improvements, while the adoption of Direct Injection (DI) is associated with approximately 10.1% higher energy losses compared to PFI. Such findings carry significant implications for enhancing engine efficiency and promoting sustainable energy utilization. Full article
(This article belongs to the Special Issue Advances in Tribological and Other Functional Properties of Materials)
Show Figures

Figure 1

15 pages, 18031 KiB  
Article
Tribological Research of Resin Composites with the Fillers of Glass Powder and Micro-Bubbles
by Juozas Padgurskas, Vitoldas Vilčinskas, Muhammad Ibnu Rashyid, Muhammad Akhsin Muflikhun, Raimundas Rukuiža and Aušra Selskienė
Materials 2024, 17(15), 3764; https://doi.org/10.3390/ma17153764 - 31 Jul 2024
Cited by 3 | Viewed by 1321
Abstract
This study investigates the tribological properties of resin composites reinforced with the fillers of glass powder and micro-bubbles. Resin composites were prepared with varying concentrations from 1% to 5% wt of fillers. Tribological tests were conducted using a block-on-ring scheme under dry friction [...] Read more.
This study investigates the tribological properties of resin composites reinforced with the fillers of glass powder and micro-bubbles. Resin composites were prepared with varying concentrations from 1% to 5% wt of fillers. Tribological tests were conducted using a block-on-ring scheme under dry friction conditions. The measurements of friction coefficient and wear values were performed under variable rotation speeds and loading conditions. The study showed that resin composites with 2–3% glass powder fillers and resin composites with 3–4% micro-bubbles exhibited optimal tribological properties. The resin glass powder modifications reduce the wear by 63% and resin micro-bubbles reduce wear by 32%. SEM analysis of the surfaces revealed surface imperfections and structural damage mechanisms, including abrasive and fatigue wear. The study concludes that specific filler concentrations improve the friction and wear resistance of resin composites, highlighting the importance of material preparation and surface quality in tribological performance. The increased wear resistance on both composites would hopefully expand the usage of additive manufactured composite, namely industrial moving components such as polymer gear, wheel, pulley, etc. Full article
(This article belongs to the Special Issue Advances in Tribological and Other Functional Properties of Materials)
Show Figures

Figure 1

15 pages, 7883 KiB  
Article
A Two-Layer Graphene Nonwoven Fabric for Effective Electromagnetic Interference Shielding
by Ying Wu, Haijun Tang, Liying Kang, Hongfu Li and Naisheng Jiang
Materials 2024, 17(15), 3747; https://doi.org/10.3390/ma17153747 - 29 Jul 2024
Viewed by 1278
Abstract
Rapid advancements and proliferation of electronic devices in the past decades have significantly intensified electromagnetic interference (EMI) issues, driving the demand for more effective shielding materials. Herein, we introduce a novel two-layer graphene nonwoven fabric (2-gNWF) that shows excellent EMI shielding properties. The [...] Read more.
Rapid advancements and proliferation of electronic devices in the past decades have significantly intensified electromagnetic interference (EMI) issues, driving the demand for more effective shielding materials. Herein, we introduce a novel two-layer graphene nonwoven fabric (2-gNWF) that shows excellent EMI shielding properties. The 2-gNWF fabric comprises a porous fibrous upper layer and a dense conductive film-like lower layer, specifically designed to enhance EMI shielding through the combined mechanisms of reflection, multiple internal reflections, and absorption of electromagnetic waves. The 2-gNWF exhibits a remarkable EMI shielding effectiveness (SE) of 80 dB while maintaining an impressively low density of 0.039 g/cm3, surpassing the performance of many existing graphene-based materials. The excellent EMI shielding performance of 2-gNWF is attributed to the multiple interactions of incident electromagnetic waves with its highly conductive network and porous structure, leading to efficient energy dissipation. The combination of high EMI SE and low density makes 2-gNWF ideal for applications that require lightweight yet effective shielding properties, demonstrating the significant potential for advanced EMI shielding applications. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Multifunctional Applications)
Show Figures

Figure 1

12 pages, 3470 KiB  
Article
Facilely Promoting the Concentration of Baicalin in Polylactic Acid Fiber for UV Shielding and Antibacterial Functions: A Customized and Sustainable Approach
by Yuyang Zhou, Peng Deng and Wei Chen
Materials 2024, 17(15), 3734; https://doi.org/10.3390/ma17153734 - 28 Jul 2024
Cited by 2 | Viewed by 1266
Abstract
There is a significant trend towards the integration of natural substances with bio-polymers for fully bio-based functional composites. Polylactic acid is regarded as a promising biodegradable polymer for replacing synthetic polymers. Differing from the case of natural fiber, the incompatibility of polylactic acid [...] Read more.
There is a significant trend towards the integration of natural substances with bio-polymers for fully bio-based functional composites. Polylactic acid is regarded as a promising biodegradable polymer for replacing synthetic polymers. Differing from the case of natural fiber, the incompatibility of polylactic acid with bio-based molecules prevents it from being used to fabricate high-quality sustainable composites. This work presents a simultaneous ultraviolet shielding and antibacterial finishing process of polylactic acid combined with bioactive baicalin and an eco-friendly ester, which is highlighted for (a) the lack of synthetic chemicals involved in such process, (b) adsorption enhancement achieved at a mild temperature, and (c) marginal color change on treated polylactic acid. A response surface methodology was adopted to analyze the impacts of various factors on the baicalin quantity in polylactic acid, and to optimize the treatment condition. The uptake ratio of baicalin in polylactic acid was drastically promoted from 8.5 mg/g to 21.1 mg/g using methyl cinnamate. The response surface methodology based on a central composite design experiment indicated that the usage of baicalin was the most significant factor followed by methyl cinnamate and temperature. After optimization, a very faint color depth of 1.2 was apparent, but UPF 50+ and 92% bacterial reduction could be achieved. In all, the success in strengthening of the functionalities of polylactic acid extends the applications of polylactic acid products. Full article
Show Figures

Figure 1

20 pages, 2693 KiB  
Review
Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review
by Elisa Caussin, Mathieu Izart, Romain Ceinos, Jean-Pierre Attal, Fleur Beres and Philippe François
Materials 2024, 17(15), 3736; https://doi.org/10.3390/ma17153736 - 28 Jul 2024
Cited by 15 | Viewed by 7146
Abstract
The restoration of endodontically treated teeth (ETT) remains a significant challenge in modern dentistry. These teeth often suffer from substantial structural damage due to both the original pathology and the invasive nature of endodontic procedures. Consequently, ETT are more susceptible to fractures compared [...] Read more.
The restoration of endodontically treated teeth (ETT) remains a significant challenge in modern dentistry. These teeth often suffer from substantial structural damage due to both the original pathology and the invasive nature of endodontic procedures. Consequently, ETT are more susceptible to fractures compared to vital teeth, necessitating restorative strategies that can effectively restore both function and aesthetics while minimizing the risk of failure. In recent years, advances in adhesive dentistry and the development of high-strength ceramics have further expanded the restorative options for ETT. Bonded restorations have gained popularity as they preserve more tooth structure and enhance the overall strenght of the tooth-restoration complex. The choice of restorative material and technique is influenced by numerous factors, including the amount of remaining tooth structure, the functional requirements of the tooth, and the aesthetic demands of the patient. Despite the plethora of available materials and techniques, the optimal approach to restoring ETT remains a topic of ongoing research and debate. In this comprehensive review, the current state of and recent advances in restoring damaged endodontically treated teeth are explored. Numerous therapeutic options exist, involving a wide range of materials. This article aims to present the biomaterial advancements of the past decade and their applications, offering alternative approaches to treating damaged ETT with the goal of prolonging their retention on the dental arch and serving as a valuable resource for dental practitioners who face this issue daily. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

29 pages, 3983 KiB  
Review
Polymer Materials for Optoelectronics and Energy Applications
by Ju Won Lim
Materials 2024, 17(15), 3698; https://doi.org/10.3390/ma17153698 - 26 Jul 2024
Cited by 16 | Viewed by 3396
Abstract
This review comprehensively addresses the developments and applications of polymer materials in optoelectronics. Especially, this review introduces how the materials absorb, emit, and transfer charges, including the exciton–vibrational coupling, nonradiative and radiative processes, Förster Resonance Energy Transfer (FRET), and energy dynamics. Furthermore, it [...] Read more.
This review comprehensively addresses the developments and applications of polymer materials in optoelectronics. Especially, this review introduces how the materials absorb, emit, and transfer charges, including the exciton–vibrational coupling, nonradiative and radiative processes, Förster Resonance Energy Transfer (FRET), and energy dynamics. Furthermore, it outlines charge trapping and recombination in the materials and draws the corresponding practical implications. The following section focuses on the practical application of organic materials in optoelectronics devices and highlights the detailed structure, operational principle, and performance metrics of organic photovoltaic cells (OPVs), organic light-emitting diodes (OLEDs), organic photodetectors, and organic transistors in detail. Finally, this study underscores the transformative impact of organic materials on the evolution of optoelectronics, providing a comprehensive understanding of their properties, mechanisms, and diverse applications that contribute to advancing innovative technologies in the field. Full article
(This article belongs to the Special Issue Research on New Optoelectronic Materials and Devices)
Show Figures

Figure 1

22 pages, 2723 KiB  
Article
Identification Tools of Microplastics from Surface Water Integrating Digital Image Processing and Statistical Techniques
by Ewa Dacewicz, Ewa Łobos-Moysa and Krzysztof Chmielowski
Materials 2024, 17(15), 3701; https://doi.org/10.3390/ma17153701 - 26 Jul 2024
Cited by 1 | Viewed by 1385
Abstract
The primary objective of this study was to demonstrate the potential of digital image analysis as a tool to identify microplastic (MP) particles in surface waters and to facilitate their characterisation in terms of 2D and 3D morphology. Digital image analysis preceded by [...] Read more.
The primary objective of this study was to demonstrate the potential of digital image analysis as a tool to identify microplastic (MP) particles in surface waters and to facilitate their characterisation in terms of 2D and 3D morphology. Digital image analysis preceded by microscopic analysis was used for an exhaustive quantitative and qualitative evaluation of MPs isolated from the Vistula River. Using image processing procedures, 2D and 3D shape descriptors were determined. Principal Component Analysis was used to interpret the relationships between the parameters studied, characterising MP particle geometry, type and colour. This multivariate analysis of the data allowed three or four main factors to be extracted, explaining approximately 90% of the variation in the data characterising MP morphology. It was found that the first principal component for granules, flakes and films was largely represented by strongly correlated with 2D shape descriptors (area, perimeter, equivalent area diameter) and 3D shape descriptors (Corey Shape Factor, Compactness, Dimensionality). Considering the scraps, principal component PC1 was represented by only five of the above descriptors, and the Compactness variable had the largest contribution to principal component PC2. In addition, for granules, flakes and films, a relationship between 2D shape and the colour of their particles could be observed. For the most numerous MP group identified of multicoloured scraps, no such association was found. The results of our study can be used for further multivariate analysis regarding the presence of microplastic floating on the river surface, with a particular focus on particles of secondary origin. This is of key importance for optimising future efforts in conducting small-scale and multidimensional monitoring of and reducing plastics in the aquatic environment. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

23 pages, 10132 KiB  
Article
Chitosan Extracted from the Biomass of Tenebrio molitor Larvae as a Sustainable Packaging Film
by Chacha Saidi Mwita, Riaz Muhammad, Ezekiel Edward Nettey-Oppong, Doljinsuren Enkhbayar, Ahmed Ali, Jiwon Ahn, Seong-Wan Kim, Young-Seek Seok and Seung Ho Choi
Materials 2024, 17(15), 3670; https://doi.org/10.3390/ma17153670 - 25 Jul 2024
Cited by 7 | Viewed by 2161
Abstract
Waste from non-degradable packaging materials poses a serious environmental risk and has led to interest in developing sustainable bio-based packaging materials. Sustainable packaging materials have been made from diverse naturally derived materials such as bamboo, sugarcane, and corn starch. In this study, we [...] Read more.
Waste from non-degradable packaging materials poses a serious environmental risk and has led to interest in developing sustainable bio-based packaging materials. Sustainable packaging materials have been made from diverse naturally derived materials such as bamboo, sugarcane, and corn starch. In this study, we made a sustainable packaging film using chitosan extracted from the biomass of yellow mealworm (Tenebrio molitor) shell waste. The extracted chitosan was used to create films, cross-linked with citric acid (CA) and with the addition of glycerol to impart flexibility, using the solvent casting method. The successful cross-linking was evaluated using Fourier-Transform Infrared (FTIR) analysis. The CA cross-linked mealworm chitosan (CAMC) films exhibited improved water resistance with moisture content reduced from 19.9 to 14.5%. Improved barrier properties were also noted, with a 28.7% and 10.2% decrease in vapor permeability and vapor transmission rate, respectively. Bananas were selected for food preservation, and significant changes were observed over a duration of 10 days. Compared to the control sample, bananas packaged in CAMC pouches exhibited a lesser loss in weight because of excellent barrier properties against water vapor. Moreover, the quality and texture of bananas packaged in CAMC pouch remained intact over the duration of the experiment. This indicates that adding citric acid and glycerol to the chitosan structure holds promise for effective food wrapping and contributes to the enhancement of banana shelf life. Through this study, we concluded that chitosan film derived from mealworm biomass has potential as a valuable resource for sustainable packaging solutions, promoting the adoption of environmentally friendly practices in the food industry. Full article
Show Figures

Figure 1

21 pages, 1925 KiB  
Review
Machine Learning for Additive Manufacturing of Functionally Graded Materials
by Mohammad Karimzadeh, Deekshith Basvoju, Aleksandar Vakanski, Indrajit Charit, Fei Xu and Xinchang Zhang
Materials 2024, 17(15), 3673; https://doi.org/10.3390/ma17153673 - 25 Jul 2024
Cited by 14 | Viewed by 3085
Abstract
Additive Manufacturing (AM) is a transformative manufacturing technology enabling direct fabrication of complex parts layer-by-layer from 3D modeling data. Among AM applications, the fabrication of Functionally Graded Materials (FGMs) has significant importance due to the potential to enhance component performance across several industries. [...] Read more.
Additive Manufacturing (AM) is a transformative manufacturing technology enabling direct fabrication of complex parts layer-by-layer from 3D modeling data. Among AM applications, the fabrication of Functionally Graded Materials (FGMs) has significant importance due to the potential to enhance component performance across several industries. FGMs are manufactured with a gradient composition transition between dissimilar materials, enabling the design of new materials with location-dependent mechanical and physical properties. This study presents a comprehensive review of published literature pertaining to the implementation of Machine Learning (ML) techniques in AM, with an emphasis on ML-based methods for optimizing FGMs fabrication processes. Through an extensive survey of the literature, this review article explores the role of ML in addressing the inherent challenges in FGMs fabrication and encompasses parameter optimization, defect detection, and real-time monitoring. The article also provides a discussion of future research directions and challenges in employing ML-based methods in the AM fabrication of FGMs. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 3035 KiB  
Article
Fiber-Reinforced Equibiaxial Dielectric Elastomer Actuator for Out-of-Plane Displacement
by Simon Holzer, Stefania Konstantinidi, Markus Koenigsdorff, Thomas Martinez, Yoan Civet, Gerald Gerlach and Yves Perriard
Materials 2024, 17(15), 3672; https://doi.org/10.3390/ma17153672 - 25 Jul 2024
Cited by 6 | Viewed by 1455
Abstract
Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address [...] Read more.
Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address these challenges. The fiber reinforcement provides enhanced mechanical integrity and improved strain distribution, enabling efficient energy conversion and out-of-plane displacement. We discuss an analytical model and the fabrication process, including material selection, to realize fiber-reinforced DEAs. Numerical simulations and experimental results demonstrate the performance of the fiber-reinforced equibiaxial DEAs and characterize their displacement and force capabilities. Actuators with four and eight fibers are fabricated with 100 μm and 200 μm dielectric thicknesses. A maximal out-of-plane displacement of 500 μm is reached, with a force of 0.18 N, showing promise for the development of haptic devices. Full article
(This article belongs to the Special Issue Interactive Fiber Rubber Composites—Volume II)
Show Figures

Graphical abstract

12 pages, 14655 KiB  
Article
Configurational Isomerism in Bimetallic Decametalates
by Aleksandar Kondinski
Materials 2024, 17(14), 3624; https://doi.org/10.3390/ma17143624 - 22 Jul 2024
Viewed by 903
Abstract
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10xO28q. For x being a natural number in the [...] Read more.
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10xO28q. For x being a natural number in the range of 0 to 10, the algorithm identifies 318 unique configurational isomers. The algorithm is used to generate mixed molybdenum(VI)–vanadium(V) systems MoxV10xO288 for x=0,1,2, and 3 that are of experimental relevance. The application of the density functional theory (DFT) effectively predicts stability trends that correspond well with empirical observations. In dimolybdenum-substituted decavanadate systems, we discover that a two-electron reduction preferentially stabilizes a configurational isomer due to the formation of metal–metal bonding. The particular polyoxometalate structure is of interest for further experimental studies. Full article
(This article belongs to the Special Issue From Molecular to Supramolecular Materials)
Show Figures

Graphical abstract

22 pages, 6905 KiB  
Article
Dimensional Accuracy of Different Three-Dimensional Printing Models as a Function of Varying the Printing Parameters
by Christin Arnold, Lea Riß, Jeremias Hey and Ramona Schweyen
Materials 2024, 17(14), 3616; https://doi.org/10.3390/ma17143616 - 22 Jul 2024
Cited by 2 | Viewed by 1572
Abstract
Even in digital workflows, models are required for fitting during the fabrication of dental prostheses. This study examined the influence of different parameters on the dimensional accuracy of three-dimensionally printed models. A stereolithographic data record was generated from a master model (SOLL). With [...] Read more.
Even in digital workflows, models are required for fitting during the fabrication of dental prostheses. This study examined the influence of different parameters on the dimensional accuracy of three-dimensionally printed models. A stereolithographic data record was generated from a master model (SOLL). With digital light processing (DLP) and stereolithography (SLA) printing systems, 126 models were produced in several printing runs—SolFlex350 (S) (DLP, n = 24), CaraPrint 4.0 (C) (DLP, n = 48) and Form2 (F) (SLA, n = 54)—and their accuracy was compared with plaster and milled polyurethane models. In addition to the positioning on the build platform, a distinction was made between parallel and across arrangement of the models to the printer’s front, solid and hollow models, and printing with and without support structures. For accuracy assessment, five measurement sections were defined on the model (A–E) and measured using a calibrated digital calliper and digital scans in combination with the GOM Inspect Professional software 2021. The mean deviation between the measurement methods for all distances was 79 µm. The mean deviation of the models from the digital SOLL model were 207.1 µm for the S series, 25.1 µm for the C series and 141.8 µm for the F series. While positioning did not have an influence, there were clinically relevant differences mainly regarding the choice of printer, but also individually in alignment, model structure and support structures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Figure 1

26 pages, 12222 KiB  
Article
High-Temperature Oxidation and Phase Stability of AlCrCoFeNi High Entropy Alloy: Insights from In Situ HT-XRD and Thermodynamic Calculations
by Muhammad Arshad, Saira Bano, Mohamed Amer, Vit Janik, Qamar Hayat and Mingwen Bai
Materials 2024, 17(14), 3579; https://doi.org/10.3390/ma17143579 - 19 Jul 2024
Cited by 3 | Viewed by 2469
Abstract
The high-temperature oxidation behaviour and phase stability of equi-atomic high entropy AlCrCoFeNi alloy (HEA) were studied using in situ high-temperature X-ray diffraction (HTXRD) combined with ThermoCalc thermodynamic calculation. HTXRD analyses reveal the formation of B2, BCC, Sigma and FCC, phases at different temperatures, [...] Read more.
The high-temperature oxidation behaviour and phase stability of equi-atomic high entropy AlCrCoFeNi alloy (HEA) were studied using in situ high-temperature X-ray diffraction (HTXRD) combined with ThermoCalc thermodynamic calculation. HTXRD analyses reveal the formation of B2, BCC, Sigma and FCC, phases at different temperatures, with significant phase transitions observed at intermediate temperatures from 600 °C–100 °C. ThermoCalc predicted phase diagram closely matched with in situ HTXRD findings highlighting minor differences in phase transformation temperature. ThermoCalc predictions of oxides provide insights into the formation of stable oxide phases, predominantly spinel-type oxides, at high p(O2), while a lower volume of halite was predicted, and minor increase observed with increasing temperature. The oxidation behaviour was strongly dependent on the environment, with the vacuum condition favouring the formation of a thin, Al2O3 protective layer, while in atmospheric conditions a thick, double-layered oxide scale of Al2O3 and Cr2O3 formed. The formation of oxide scale was determined by selective oxidation of Al and Cr, as further confirmed by EDX analysis. The formation of thick oxide in air environment resulted in a thick layer of Al-depleted FFC phase. This comprehensive study explains the high-temperature phase stability and time–temperature-dependent oxidation mechanisms of AlCrCoFeNi HEA. The interplay between surface phase transformation beneath oxide scale and oxides is also detailed herein, contributing to further development and optimisation of HEA for high temperature applications. Full article
(This article belongs to the Special Issue Recent Advances in Entropy-Engineered Functional Materials)
Show Figures

Figure 1

17 pages, 19222 KiB  
Article
Characterisation of Fe Distribution in the Liquid–Solid Boundary of Al–Zn–Mg–Si Alloy Using Synchrotron X-ray Fluorescence Microscopy
by He Tian, Dongdong Qu, Nega Setargew, Daniel J. Parker, David J. Paterson, David StJohn and Kazuhiro Nogita
Materials 2024, 17(14), 3583; https://doi.org/10.3390/ma17143583 - 19 Jul 2024
Viewed by 1166
Abstract
Al–Zn–Mg–Si alloy coatings have been developed to inhibit the corrosion of cold-rolled steel sheets by offering galvanic and barrier protection to the substrate steel. It is known that Fe deposited from the steel strip modifies the microstructure of the alloy. We cast samples [...] Read more.
Al–Zn–Mg–Si alloy coatings have been developed to inhibit the corrosion of cold-rolled steel sheets by offering galvanic and barrier protection to the substrate steel. It is known that Fe deposited from the steel strip modifies the microstructure of the alloy. We cast samples of Al–Zn–Mg–Si coating alloys containing 0.4 wt% Fe and directionally solidified them using a Bridgman furnace to quantify the effect of this Fe addition between 600 °C and 240 °C. By applying a temperature gradient, growth is encouraged, and by then quenching the sample in coolant, the microstructure may be frozen. These samples were analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the morphological effects of the Fe distribution across the experimental temperature range. However, due to the sub 1 wt% concentration of Fe, synchrotron X-ray fluorescence microscopy (XFM) was applied to quantitatively confirm the Fe distribution. Directionally solidified samples were scanned at 7.05 keV and 18.5 keV using X-ray fluorescence at the Australian Synchrotron using the Maia array detector. It was found that a mass nucleation event of the Fe-based τ6 phase occurred at 495 °C following the nucleation of the primary α-Al phase as a result of a peritectic reaction with remaining liquid. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

20 pages, 3905 KiB  
Review
Preparation and Application of Nanostructured ZnO in Radiation Detection
by Jingkun Chen, Xuechun Yang, Yuandong Ning, Xue Yang, Yifei Huang, Zeqing Zhang, Jian Tang, Pu Zheng, Jie Yan, Jingtai Zhao and Qianli Li
Materials 2024, 17(14), 3549; https://doi.org/10.3390/ma17143549 - 18 Jul 2024
Cited by 6 | Viewed by 1643
Abstract
In order to adapt to the rapid development of high-speed imaging technology in recent years, it is very important to develop scintillators with an ultrafast time response. Because of its radiation-induced ultrafast decay time, ZnO has become an important material for radiation detection [...] Read more.
In order to adapt to the rapid development of high-speed imaging technology in recent years, it is very important to develop scintillators with an ultrafast time response. Because of its radiation-induced ultrafast decay time, ZnO has become an important material for radiation detection and dosimetry. According to different detection sources and application scenarios, ZnO is used in various radiation detectors in different structures, including nanoarrays and nanocomposites. In this paper, the synthesis methods and research status of various nanostructured ZnO-based materials and their applications in the detection of high-energy rays (X-rays, γ-rays) and high-energy particles (α, β and neutron) are reviewed. The performance discussion mainly includes spatial resolution, decay time and detection efficiency. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

13 pages, 1980 KiB  
Article
Plasmid DNA Complexes in Powder Form Studied by Spectroscopic and Diffraction Methods
by Aleksandra Radko, Sebastian Lalik, Natalia Górska, Aleksandra Deptuch, Jolanta Świergiel and Monika Marzec
Materials 2024, 17(14), 3530; https://doi.org/10.3390/ma17143530 - 17 Jul 2024
Cited by 1 | Viewed by 1054
Abstract
Currently, new functional materials are being created with a strong emphasis on their ecological aspect. Materials and devices based on DNA biopolymers, being environmentally friendly, are therefore very interesting from the point of view of applications. In this paper, we present the results [...] Read more.
Currently, new functional materials are being created with a strong emphasis on their ecological aspect. Materials and devices based on DNA biopolymers, being environmentally friendly, are therefore very interesting from the point of view of applications. In this paper, we present the results of research on complexes in the powder form based on plasmid DNA (pDNA) and three surfactants with aliphatic chains containing 16 carbon atoms (cetyltrimethylammonium chloride, benzyldimethylhexadecylammonium chloride and hexadecylpyridinium chloride). The X-ray diffraction results indicate a local hexagonal packing of DNA helices in plasmid DNA complexes, resembling the packing for corresponding complexes based on linear DNA. Based on the Fourier-transform infrared spectroscopy results, the DNA conformation in all three complexes was determined as predominantly of A-type. The two relaxation processes revealed by dielectric spectroscopy for all the studied complexes are connected with two different contributions to total conductivity (crystallite part and grain boundaries). The crystallite part (grain interior) was interpreted as an oscillation of the polar surfactant head groups and is dependent on the conformation of the surfactant chain. The influence of the DNA type on the properties of the complexes is discussed, taking into account our previous results for complexes based on linear DNA. We showed that the type of DNA has an impact on the properties of the complexes, which has not been demonstrated so far. It was also found that the layer of pDNA–surfactant complexes can be used as a layer with variable specific electric conductivity by selecting the frequency, which is interesting from an application point of view. Full article
(This article belongs to the Special Issue Liquid Crystals and Other Partially Disordered Molecular Systems)
Show Figures

Figure 1

15 pages, 10388 KiB  
Article
Shear Thickening Fluid and Sponge-Hybrid Triboelectric Nanogenerator for a Motion Sensor Array-Based Lying State Detection System
by Youngsu Kim, Inkyum Kim, Maesoon Im and Daewon Kim
Materials 2024, 17(14), 3536; https://doi.org/10.3390/ma17143536 - 17 Jul 2024
Cited by 2 | Viewed by 1810
Abstract
Issues of size and power consumption in IoT devices can be addressed through triboelectricity-driven energy harvesting technology, which generates electrical signals without external power sources or batteries. This technology significantly reduces the complexity of devices, enhances installation flexibility, and minimizes power consumption. By [...] Read more.
Issues of size and power consumption in IoT devices can be addressed through triboelectricity-driven energy harvesting technology, which generates electrical signals without external power sources or batteries. This technology significantly reduces the complexity of devices, enhances installation flexibility, and minimizes power consumption. By utilizing shear thickening fluid (STF), which exhibits variable viscosity upon external impact, the sensitivity of triboelectric nanogenerator (TENG)-based sensors can be adjusted. For this study, the highest electrical outputs of STF and sponge-hybrid TENG (SSH-TENG) devices under various input forces and frequencies were generated with an open-circuit voltage (VOC) of 98 V and a short-circuit current (ISC) of 4.5 µA. The maximum power density was confirmed to be 0.853 mW/m2 at a load resistance of 30 MΩ. Additionally, a lying state detection system for use in medical settings was implemented using SSH-TENG as a hybrid triboelectric motion sensor (HTMS). Each unit of a 3 × 2 HTMS array, connected to a half-wave rectifier and 1 MΩ parallel resistor, was interfaced with an MCU. Real-time detection of the patient’s condition through the HTMS array could enable the early identification of hazardous situations and alerts. The proposed HTMS continuously monitors the patient’s movements, promptly identifying areas prone to pressure ulcers, thus effectively contributing to pressure ulcer prevention. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science)
Show Figures

Graphical abstract

30 pages, 21079 KiB  
Article
Investigating the Effects of the Physicochemical Properties of Cellulose-Derived Biocarbon on Direct Carbon Solid Oxide Fuel Cell Performance
by Bartosz Adamczyk, Magdalena Dudek, Anita Zych, Marcin Gajek, Maciej Sitarz, Magdalena Ziąbka, Piotr Dudek, Przemysław Grzywacz, Małgorzata Witkowska, Joanna Kowalska, Krzysztof Mech and Krystian Sokołowski
Materials 2024, 17(14), 3503; https://doi.org/10.3390/ma17143503 - 15 Jul 2024
Cited by 3 | Viewed by 1435
Abstract
This paper presents a study of the characteristic effects of the physicochemical properties of microcrystalline cellulose and a series of biocarbon samples produced from this raw material through thermal conversion at temperatures ranging from 200 °C to 850 °C. Structural studies revealed that [...] Read more.
This paper presents a study of the characteristic effects of the physicochemical properties of microcrystalline cellulose and a series of biocarbon samples produced from this raw material through thermal conversion at temperatures ranging from 200 °C to 850 °C. Structural studies revealed that the biocarbon samples produced from cellulose had a relatively low degree of graphitization of the carbon and an isometric shape of the carbon particles. Based on thermal investigations using the differential thermal analysis/differential scanning calorimeter method, obtaining fully formed biocarbon samples from cellulose feedstock was possible at about 400 °C. The highest direct carbon solid oxide fuel cell (DC-SOFC) performance was found for biochar samples obtained via thermal treatment at 400–600 °C. The pyrolytic gases from cellulose decomposition had a considerable impact on the achieved current density and power density of the DC-SOFCs supplied by pure cellulose samples or biochars derived from cellulose feedstock at a lower temperature range of 200–400 °C. For the DC-SOFCs supplied by biochars synthesised at higher temperatures of 600–850 °C, the “shuttle delivery mechanism” had a substantial effect. The impact of the carbon oxide concentration in the anode or carbon bed was important for the performance of the DC-SOFCs. Carbon oxide oxidised at the anode to form carbon dioxide, which interacted with the carbon bed to form more carbon oxide. The application of biochar obtained from cellulose alone without an additional catalyst led to moderate electrochemical power output from the DC-SOFCs. The results show that catalysts for the reverse Boudouard reactions occurring in a biocarbon bed are critical to ensuring high performance and stable operation under electrical load, which is crucial for DC-SOFC development. Full article
Show Figures

Figure 1

16 pages, 2959 KiB  
Article
Novel Collagen Membrane Formulations with Irinotecan or Minocycline for Potential Application in Brain Cancer
by Andreea-Anamaria Idu, Mădălina Georgiana Albu Kaya, Ileana Rău, Nicoleta Radu, Cristina-Elena Dinu-Pîrvu and Mihaela Violeta Ghica
Materials 2024, 17(14), 3510; https://doi.org/10.3390/ma17143510 - 15 Jul 2024
Cited by 1 | Viewed by 1531
Abstract
Our study explores the development of collagen membranes with integrated minocycline or irinotecan, targeting applications in tissue engineering and drug delivery systems. Type I collagen, extracted from bovine skin using advanced fibril-forming technology, was crosslinked with glutaraldehyde to create membranes. These membranes incorporated [...] Read more.
Our study explores the development of collagen membranes with integrated minocycline or irinotecan, targeting applications in tissue engineering and drug delivery systems. Type I collagen, extracted from bovine skin using advanced fibril-forming technology, was crosslinked with glutaraldehyde to create membranes. These membranes incorporated minocycline, an antibiotic, or irinotecan, a chemotherapeutic agent, in various concentrations. The membranes, varying in drug concentration, were studied by water absorption and enzymatic degradation tests, demonstrating a degree of permeability. We emphasize the advantages of local drug delivery for treating high-grade gliomas, highlighting the targeted approach’s efficacy in reducing systemic adverse effects and enhancing drug bioavailability at the tumor site. The utilization of collagen membranes is proposed as a viable method for local drug delivery. Irinotecan’s mechanism, a topoisomerase I inhibitor, and minocycline’s broad antibacterial spectrum and inhibition of glial cell-induced membrane degradation are discussed. We critically examine the challenges posed by the systemic administration of chemotherapeutic agents, mainly due to the blood–brain barrier’s restrictive nature, advocating for local delivery methods as a more effective alternative for glioblastoma treatment. These local delivery strategies, including collagen membranes, are posited as significant advancements in enhancing therapeutic outcomes for glioblastoma patients. Full article
Show Figures

Figure 1

15 pages, 2643 KiB  
Article
Mechanical and Antimicrobial Properties of the Graphene-Polyamide 6 Composite
by Paweł Głuchowski, Marta Macieja, Robert Tomala, Mariusz Stefanski, Wiesław Stręk, Maciej Ptak, Damian Szymański, Konrad Szustakiewicz, Adam Junka and Bartłomiej Dudek
Materials 2024, 17(14), 3465; https://doi.org/10.3390/ma17143465 - 12 Jul 2024
Cited by 4 | Viewed by 1302
Abstract
This paper presents the synthesis and characterization of graphene–polymer composites, focusing on their mechanical and antibacterial properties. Graphene flakes were obtained via an electrochemical method and integrated into polyamide 6 (PA6) matrices using melt intercalation. Various characterization techniques confirmed the quality of the [...] Read more.
This paper presents the synthesis and characterization of graphene–polymer composites, focusing on their mechanical and antibacterial properties. Graphene flakes were obtained via an electrochemical method and integrated into polyamide 6 (PA6) matrices using melt intercalation. Various characterization techniques confirmed the quality of the graphene flakes, including X-ray diffraction (XRD), Raman spectroscopy, and infrared (IR) spectroscopy, as well as scanning and transmission electron microscopy (SEM and TEM) imaging. Mechanical tests showed an increase in the elastic modulus with graphene incorporation, while the impact strength decreased. The SEM analysis highlighted the dispersion of the graphene flakes within the composites and their impact on fracture behavior. Antimicrobial tests demonstrated significant antibacterial properties of the composites, attributed to both oxidative stress and mechanical damage induced by the graphene flakes. The results suggest promising applications for graphene–polymer composites in advanced antimicrobial materials. Full article
Show Figures

Figure 1

17 pages, 19988 KiB  
Article
Wettability-Oriented Laser Microgrooving Process on Cemented Carbide Surface
by Jing Ni, Xianle Huang, Zhen Zhang, Zuji Li, Binjie Lv and Xinyu Gao
Materials 2024, 17(14), 3423; https://doi.org/10.3390/ma17143423 - 11 Jul 2024
Viewed by 1079
Abstract
Surface micro-texture has been shown to enhance wettability and reduce wear on cutting tools. However, there is limited research on how laser parameters impact the dimensional accuracy of surface texture and its wettability. This study focuses on producing arrayed groove textures on WC/Co [...] Read more.
Surface micro-texture has been shown to enhance wettability and reduce wear on cutting tools. However, there is limited research on how laser parameters impact the dimensional accuracy of surface texture and its wettability. This study focuses on producing arrayed groove textures on WC/Co cemented carbide surfaces using Nd: YAG laser, evaluating the effect of the laser parameters on surface topography and texture accuracy through microscopic observation and simulation. The results indicate that, with laser parameters such as a number of passes less than 5, approximately 16 W power, scanning speed of 100–150 mm/s, and pulse frequency of 30 kHz, the error between the groove width and laser spot diameter was 4.7%. Additionally, the study explores the impact of the groove texture on surface wettability using the solid droplet method and XPS analysis. Comparative experiments reveal that increased surface roughness enhanced oleophobicity, with surfaces exhibiting high texture accuracy and integrity showing improved oleophobic and spreading properties. Thus, the precise regulation of laser processes is crucial for maintaining surface texture integrity and enhancing surface wettability. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

11 pages, 2457 KiB  
Article
Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong–Frederick Kinematic Hardening Model
by Sushant Bhalchandra Pate, Gintautas Dundulis and Paulius Griskevicius
Materials 2024, 17(14), 3395; https://doi.org/10.3390/ma17143395 - 9 Jul 2024
Cited by 1 | Viewed by 1031
Abstract
The combination of kinematic and isotropic hardening models makes it possible to model the behaviour of cyclic elastic-plastic steel material, though the estimation of the hardening parameters and catching the influence of those parameters on the material response is a challenging task. In [...] Read more.
The combination of kinematic and isotropic hardening models makes it possible to model the behaviour of cyclic elastic-plastic steel material, though the estimation of the hardening parameters and catching the influence of those parameters on the material response is a challenging task. In the current work, an approach for the numerical simulation of the low-cycle fatigue of AISI316L steel is presented using a finite element method to study the fatigue behaviour of the steel at different strain amplitudes and operating temperatures. Fully reversed uniaxial LCF tests are performed at different strain amplitudes and operating temperatures. Based on the LCF test experimental results, the non-linear isotropic and kinematic hardening parameters are estimated for numerical simulation. On comparing, the numerical simulation results were in very good agreement with those of the experimental ones. This presented method for the numerical simulation of the low-cycle fatigue on AISI316 stainless steel can be used for the approximate prediction of the fatigue life of the components under different cyclic loading amplitudes. Full article
Show Figures

Figure 1

11 pages, 13214 KiB  
Article
Three-Dimensional Printing of Yttrium Oxide Transparent Ceramics via Direct Ink Writing
by Qiming Chen, Huibing Li, Weijie Han, Jian Yang, Wentao Xu and Youfu Zhou
Materials 2024, 17(13), 3366; https://doi.org/10.3390/ma17133366 - 8 Jul 2024
Cited by 1 | Viewed by 1491
Abstract
The utilization of 3D printing technology for the fabrication of intricate transparent ceramics overcomes the limitations associated with conventional molding processes, thereby presenting a highly promising solution. In this study, we employed direct ink writing (DIW) to prepare yttrium oxide transparent ceramics using [...] Read more.
The utilization of 3D printing technology for the fabrication of intricate transparent ceramics overcomes the limitations associated with conventional molding processes, thereby presenting a highly promising solution. In this study, we employed direct ink writing (DIW) to prepare yttrium oxide transparent ceramics using a ceramic slurry with excellent moldability, solid content of 45 vol%, and shear-thinning behavior. A successfully printed transparent yttrium oxide ring measuring 30 mm in diameter, 10 mm in inner diameter, and 0.9 mm in thickness was obtained from the aforementioned slurry. After de-binding and sintering procedures, the printed ceramic exhibited in-line transmittance of 71% at 850 nm. This work not only produced complex yttria transparent ceramics with intricate shapes, but also achieved in-line transmittance that was comparable to that of the CIP method (79%), which can meet certain optical applications. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 6097 KiB  
Article
Crack Initiation in Compacted Graphite Iron with Random Microstructure: Effect of Volume Fraction and Distribution of Particles
by Xingling Luo, Konstantinos P. Baxevanakis and Vadim V. Silberschmidt
Materials 2024, 17(13), 3346; https://doi.org/10.3390/ma17133346 - 6 Jul 2024
Cited by 4 | Viewed by 1587
Abstract
Thanks to the distinctive morphology of graphite particles in its microstructure, compacted graphite iron (CGI) exhibits excellent thermal conductivity together with high strength and durability. CGI is extensively used in many applications, e.g., engine cylinder heads and brakes. The structural integrity of such [...] Read more.
Thanks to the distinctive morphology of graphite particles in its microstructure, compacted graphite iron (CGI) exhibits excellent thermal conductivity together with high strength and durability. CGI is extensively used in many applications, e.g., engine cylinder heads and brakes. The structural integrity of such metal-matrix materials is controlled by the generation and growth of microcracks. Although the effects of the volume fraction and morphology of graphite inclusions on the tensile response of CGI were investigated in recent years, their influence on crack initiation is still unknown. Experimental studies of crack initiation require a considerable amount of time and resources due to the highly complicated geometries of graphite inclusions scattered throughout the metallic matrix. Therefore, developing a 2D computational framework for CGI with a random microstructure capable of predicting the crack initiation and path is desirable. In this work, an integrated numerical model is developed for the analysis of the effects of volume fraction and nodularity on the mechanical properties of CGI as well as its damage and failure behaviours. Finite-element models of random microstructure are generated using an in-house Python script. The determination of spacings between a graphite inclusion and its four adjacent particles is performed with a plugin, written in Java and implemented in ImageJ. To analyse the orientation effect of inclusions, a statistical analysis is implemented for representative elements in this research. Further, Johnson–Cook damage criteria are used to predict crack initiation in the developed models. The numerical simulations are validated with conventional tensile-test data. The created models can support the understanding of the fracture behaviour of CGI under mechanical load, and the proposed approach can be utilised to design metal-matrix composites with optimised mechanical properties and performance. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

Back to TopTop