materials-logo

Journal Browser

Journal Browser

Synthesis, Physicochemical Properties, and Applications of Low-Dimensional Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Nanomaterials and Nanotechnology".

Deadline for manuscript submissions: closed (20 May 2024) | Viewed by 1337

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Chemistry, Uppsala University, Uppsala, Sweden
2. TdB Labs AB, Uppsala, Sweden
Interests: graphene chemistry and photochemistry; fluorescent labelling; polysaccharide chemistry; physical organic chemistry; solvation effects

Special Issue Information

Dear Colleagues,

Welcome to this Special Issue on "Synthesis, Physicochemical Properties, and Applications of Low-Dimensional Materials". Owing to their exceptional structural, electronic, optical, and magnetic characteristics, low-dimensional materials have attracted considerable interest in recent times. These materials, which have reduced dimensions in one or more directions, display captivating phenomena that are different from their bulk equivalents. Moreover, they present vast opportunities for a wide range of applications such as nanoelectronics, energy storage, bioscience, diagnostics, environmental science and technology, catalysis, etc.

This Special Issue aims to provide a platform for researchers to showcase their latest findings, innovative methodologies, and theoretical advancements in the realm of low-dimensional materials. Specific focus is placed on their synthesis, physicochemical properties, and novel applications in a variety of research and technology areas. We invite researchers from diverse backgrounds, including physics, chemistry, materials science, and engineering, to contribute their original research articles or reviews.

Topics of interest for this Special Issue include, but are not limited to, the synthesis and growth of low-dimensional materials, characterization techniques, theoretical modeling and simulation, their structural and physical properties, and applications in devices and technologies. We encourage both experimental and theoretical contributions that shed light on the fundamental aspects and potential applications of low-dimensional materials.

We look forward to receiving your valuable contributions to this Special Issue.

Dr. Raffaello Papadakis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • low-dimensional materials
  • synthetic methodologies
  • physical properties
  • optical properties
  • characterization techniques
  • material properties
  • nanoscale materials
  • nanoelectronics
  • diagnostics
  • environmental applications
  • fabrication of devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 11388 KiB  
Article
Enhancement of 5-Fluorouracil Drug Delivery in a Graphene Oxide Containing Electrospun Chitosan/Polyvinylpyrrolidone Construct
by Jamie J. Grant, Suresh C. Pillai, Tatiana S. Perova, Barry Brennan, Steven J. Hinder, Marion McAfee, Sarah Hehir and Ailish Breen
Materials 2024, 17(21), 5300; https://doi.org/10.3390/ma17215300 - 31 Oct 2024
Viewed by 1038
Abstract
Electrospun nanofibrous mats, consisting of chitosan (CS) and polyvinylpyrrolidone (PVP), were constructed with the addition of graphene oxide (GO) for enhancement of delivery of the 5-Fluorouracil (5-Fu) chemotherapy drug. Upon studying the range of GO concentrations in CS/PVP, the concentration of 0.2% w [...] Read more.
Electrospun nanofibrous mats, consisting of chitosan (CS) and polyvinylpyrrolidone (PVP), were constructed with the addition of graphene oxide (GO) for enhancement of delivery of the 5-Fluorouracil (5-Fu) chemotherapy drug. Upon studying the range of GO concentrations in CS/PVP, the concentration of 0.2% w/v GO was chosen for inclusion in the drug delivery model. SEM showed bead-free, homogenous fibres within this construct. This construct also proved to be non-toxic to CaCo-2 cells over 24 and 48 h exposure. The construction of a drug delivery vehicle whereby 5-Fu was loaded with and without GO in various concentrations showed several interesting findings. The presence of CS/PVP was revealed through XPS, FTIR and Raman spectroscopies. FTIR was also imperative for the analysis of 5-Fu while Raman exclusively highlighted the presence of GO in the samples. In particular, a detailed analysis of the IR spectra recorded using two FTIR spectrometers, several options for determining the concentration of 5-Fu in composite fibre systems CS/PVP/5-Fu and GO/CS/PVP/5-Fu were demonstrated. By analysis of Raman spectra in the region of D and G bands, a linear dependence of ratios of integrated intensities of AD and AG on the intensity of host polymer band at 1425 cm−1 vs. GO content was found. Both methods, therefore, can be used for monitoring of GO content and 5-Fu release in studied complex systems. After incorporating the chemotherapy drug 5-Fu into the constructs, cell viability studies were also performed. This study demonstrated that GO/CS/PVP/5-Fu constructs have potential in chemotherapy drug delivery systems. Full article
Show Figures

Figure 1

Back to TopTop