materials-logo

Journal Browser

Journal Browser

Preparation, Electromagnetic Absorption and Shielding Properties of Electromagnetic Functional Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Materials Physics".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 7582

Special Issue Editors


E-Mail Website
Guest Editor
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Interests: magnetic shield; demagnetization; anhysteretic magnetization curve; magnetic field compensation; magnetic field stimulation

E-Mail
Guest Editor Assistant
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Interests: magnetic shield; demagnetization; SERF magnetometer; magnetic compensation coil design

Special Issue Information

Dear Colleagues,

With the rapid development of quantum precision measurement technology, the measurement limit of human magnetic fields through SQUID and SERF atomic magnetometers has reached the magnitude of fT, which has been widely used in basic physics and biomedicine studies; these often require an experimental environment with an extremely weak magnetic field, necessitating high-performance magnetic shielding devices. Therefore, there is an urgent need to develop new electromagnetic functional materials with high absorption and shielding properties.

The main purpose of this Special Issue on “Preparation, Electromagnetic Absorption and Shielding Properties of Electromagnetic Functional Materials” is to detail advances in magnetic shielding materials. Topics of interest include, but are not limited to, the following: ferrite materials, amorphous nanocrystalline materials, ferromagnetic materials, electromagnetic absorbing materials,  electromagnetic shielding designs, magnetic shielding structures, demagnetization, and the theoretical modeling of magnetic shielding.

Dr. Xu Zhang
Guest Editor

Dr. Jianzhi Yang
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ferrite material
  • amorphous nanocrystalline material
  • ferromagnetic material
  • electromagnetic absorbing material
  • magnetic shielding material
  • electromagnetic shielding design
  • magnetic shielding structure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 1123 KiB  
Article
Simulation Research on Low-Frequency Magnetic Noise in Fe-Based Nanocrystalline Magnetic Shields
by Shuai Kang, Wenfeng Fan, Jixi Lu and Wei Quan
Materials 2025, 18(2), 330; https://doi.org/10.3390/ma18020330 - 13 Jan 2025
Viewed by 595
Abstract
Depending on high permeability, high Curie temperature, and low eddy current loss noise, nanocrystalline alloys, as the innermost layer, exhibit great potential in the construction of cylindrical magnetic shielding systems with a high shielding coefficient and low magnetic noise. This study compares a [...] Read more.
Depending on high permeability, high Curie temperature, and low eddy current loss noise, nanocrystalline alloys, as the innermost layer, exhibit great potential in the construction of cylindrical magnetic shielding systems with a high shielding coefficient and low magnetic noise. This study compares a magnetic noise of 1 Hz, simulated by the finite element method (FEM), of a cylindrical nanocrystalline magnetic shield with different structural parameters based on the measured initial permeability of commercial Fe-based nanocrystalline (1K107). The simulated results demonstrate that the magnetic noise is irrelevant to the pump and probe hole diameter. The magnetic noise of a nanocrystalline cylinder with a fixed length gradually increases with the rise in aspect ratio. The radial and axial magnetic noise of a nanocrystalline cylinder with a fixed diameter can reach optimal values when the aspect ratio is 1.3 and 1.4, respectively. The layer thickness of a nanocrystalline cylinder is negatively correlated to magnetic noise. Additionally, by comparing the 1 Hz magnetic noise of a cylindrical nanocrystalline magnetic shield with varying initial permeability, it can be concluded that an increase in loss factor results in an increase in magnetic noise. These results are useful for the design of a high-performance passive magnetic shield with low magnetic noise. Full article
Show Figures

Figure 1

13 pages, 4387 KiB  
Article
Electromagnetic Interference Shielding Effectiveness of Pure SiC–Ti3SiC2 Composites Fabricated by Reactive Melt Infiltration
by Mingjun Zhang, Zhijun Ma, Xueqin Pan, Yun Li, Nanlong Zhang, Jiaxiang Xue, Jianfeng Yang and Bo Wang
Materials 2025, 18(1), 157; https://doi.org/10.3390/ma18010157 - 2 Jan 2025
Cited by 1 | Viewed by 748
Abstract
Silicon carbide-based titanium silicon carbide (SiC–Ti3SiC2) composites with low free alloy content and varying Ti3SiC2 contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi2 alloy in SiC-C preforms [...] Read more.
Silicon carbide-based titanium silicon carbide (SiC–Ti3SiC2) composites with low free alloy content and varying Ti3SiC2 contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi2 alloy in SiC-C preforms obtained. The densities of SiC-C preform are tailored by the carbon morphology and volumetric shrinkage of slurry during the gel-casting process, and pure composites with variable Ti3SiC2 volume contents are successfully fabricated with different carbon contents of the preforms. Due to the increased Ti3SiC2 content in the obtained composites, both electrical conductivity and electromagnetic interference (EMI) shielding effectiveness improved progressively, while skin depth exhibited decreased consistently. The improvement in the EMI shielding effectiveness of the composite is due to the free electrons being bound to move in the conductive network formed by the Ti3SiC2 phase, converting electrical energy into thermal energy and reducing the energy of electromagnetic waves. Notably, at a Ti3SiC2 content of 31 vol.%, the EMI shielding effectiveness of the SiC–Ti3SiC2 composites in the X-band reached an impressive 62.1 dB, confirming that SiC–Ti3SiC2 composites can be treated as high-performance EMI shielding materials with extensive application prospects. Full article
Show Figures

Figure 1

18 pages, 5721 KiB  
Article
A Novel Simulation Model of Shielding Performance Based on the Anisotropic Magnetic Property of Magnetic Shields
by Yuzheng Ma, Minxia Shi, Leran Zhang, Teng Li, Xuechen Ling, Shuai Yuan, Hanxing Wang and Yi Gao
Materials 2024, 17(23), 5906; https://doi.org/10.3390/ma17235906 - 2 Dec 2024
Viewed by 816
Abstract
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. [...] Read more.
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. Additionally, neglecting the anisotropy of permalloy sheets can introduce unpredictable errors in the evaluation of MSR performance. To address this issue, this paper proposes a modified model for calculating the shielding factor (SF) of MSRs that incorporates the anisotropic magnetic characteristics of permalloy sheets. These characteristics were measured using a two-dimensional single sheet tester (2D-SST). A high-precision measurement system was developed, comprising a 2D-SST (to generate two-dimensional magnetic fields and sense the induced B and H signals) and a control system (to apply in-phase 2D excitation signals and amplify, filter, and record the B and H data). Hysteresis loops were tested at low frequencies (0.1–9 Hz) and under different magnetization states (0.1–0.6 T) in two orientations—parallel and perpendicular to the annealing magnetic field—to verify anisotropy under varying conditions. Initial permeability, near-saturation magnetization, and basic magnetization curves (BM curves) were measured across different directions to provide parameters for simulations and theoretical calculations. Based on these measurements and finite element simulations, a mathematical model was developed to adjust the empirical coefficient λ used in theoretical SF calculations. The results revealed that the ratio of empirical coefficients in different directions is inversely proportional to the ratio of magnetic permeability in the corresponding directions. A verification group was established to compare the original model and the modified model. The mean squared error (MSE) between the original model and the finite element simulation was 49.97, while the MSE between the improved model and the finite element simulation was reduced to 0.13. This indicates a substantial improvement in the computational accuracy of the modified model. Full article
Show Figures

Figure 1

9 pages, 11998 KiB  
Article
A Progressive Loss Decomposition Method for Low-Frequency Shielding of Soft Magnetic Materials
by Airu Ji and Jinji Sun
Materials 2024, 17(22), 5584; https://doi.org/10.3390/ma17225584 - 15 Nov 2024
Viewed by 693
Abstract
Energy loss in shielding soft magnetic materials at low frequencies (1–100 Hz) can cause fluctuations in the material’s magnetic field, and the resulting magnetic noise can interfere with the measurement accuracy and basic precision physics of biomagnetic signals. This places higher demands on [...] Read more.
Energy loss in shielding soft magnetic materials at low frequencies (1–100 Hz) can cause fluctuations in the material’s magnetic field, and the resulting magnetic noise can interfere with the measurement accuracy and basic precision physics of biomagnetic signals. This places higher demands on the credibility and accuracy of loss separation predictions. The current statistical loss theory (STL) method tends to ignore the high impact of the excitation dependence of quasi-static loss in the low-frequency band on the prediction accuracy. STL simultaneously fits and predicts multiple unknown quantities, causing its results to occasionally fall into the value boundary, and the credibility is low in the low-frequency band and with less data. This paper proposes a progressive loss decomposition (PLD) method. Through multi-step progressive predictions, the hysteresis loss simulation coefficients are first determined. The experimental data of the test ring verifies the credibility of PLD’s prediction of the two hysteresis coefficients, improving the inapplicability of the STL method. In addition, we use the proposed method to obtain the prediction results of the low-frequency characteristics of the loss of a variety of typical soft magnetic materials, providing a reference for analyzing the loss characteristics of materials. Full article
Show Figures

Figure 1

16 pages, 15750 KiB  
Article
Iron Loss and Temperature Rise Analysis of a Transformer Core Considering Vector Magnetic Hysteresis Characteristics under Direct Current Bias
by Minxia Shi, Teng Li, Shuai Yuan, Leran Zhang, Yuzheng Ma and Yi Gao
Materials 2024, 17(15), 3767; https://doi.org/10.3390/ma17153767 - 31 Jul 2024
Viewed by 1463
Abstract
Direct current (DC) bias induced by the DC transmission and geomagnetically induced current is a critical factor in the abnormal operation of electrical equipment and is widely used in the field of power transmission and distribution system state evaluation. As the main affected [...] Read more.
Direct current (DC) bias induced by the DC transmission and geomagnetically induced current is a critical factor in the abnormal operation of electrical equipment and is widely used in the field of power transmission and distribution system state evaluation. As the main affected component, the vector magnetization state of a transformer core under DC bias has rarely been studied, resulting in inaccurate transformer operation state estimations. In this paper, a dynamic vector hysteresis model that considers the impact of rotating and DC-biased fields is introduced into the numerical analysis to simulate the distribution of magnetic properties, iron loss and temperature of the transformer core model and a physical 110 kV single-phase autotransformer core. The maximum values of B, H and iron loss exist at the corners and T-joint of the core under rotating and DC-biased fields. The corresponding maximum value of the temperature increase is found in the main core limb area. The temperature rise of the 110 kV transformer core under various DC-biased conditions is measured and compared with the FEM (Finite Element Method) results of the proposed model and the model solely based on the magnetization curve B||H. The calculation error of the temperature rise obtained by the improved model is approximately 3.76–15.73% and is much less than the model solely based on magnetization curve B||H (approximately 50.71–66.92%). Full article
Show Figures

Figure 1

Review

Jump to: Research

39 pages, 8550 KiB  
Review
Enhancement of Magnetic Shielding Based on Low-Noise Materials, Magnetization Control, and Active Compensation: A Review
by Yijin Liu, Jianzhi Yang, Fuzhi Cao, Xu Zhang and Shiqiang Zheng
Materials 2024, 17(22), 5469; https://doi.org/10.3390/ma17225469 - 8 Nov 2024
Cited by 4 | Viewed by 2598
Abstract
Magnetic-shielding technologies play a crucial role in the field of ultra-sensitive physical measurement, medical imaging, quantum sensing, etc. With the increasing demand for the accuracy of magnetic measurement, the performance requirements of magnetic-shielding devices are also higher, such as the extremely weak magnetic [...] Read more.
Magnetic-shielding technologies play a crucial role in the field of ultra-sensitive physical measurement, medical imaging, quantum sensing, etc. With the increasing demand for the accuracy of magnetic measurement, the performance requirements of magnetic-shielding devices are also higher, such as the extremely weak magnetic field, gradient, and low-frequency noise. However, the conventional method to improve the shielding performance by adding layers of materials is restricted by complex construction and inherent materials noise. This paper provides a comprehensive review about the enhancement of magnetic shielding in three aspects, including low-noise materials, magnetization control, and active compensation. The generation theorem and theoretical calculation of materials magnetic noise is summarized first, focusing on the development of spinel ferrites, amorphous, and nanocrystalline. Next, the principles and applications of two magnetization control methods, degaussing and magnetic shaking, are introduced. In the review of the active magnetic compensation system, the forward and inverse design methods of coil and the calculation method of the coupling effect under the ferromagnetic boundary of magnetic shield are explained in detail, and their applications, especially in magnetocardiography (MCG) and magnetoencephalogram (MEG), are also mainly described. In conclusion, the unresolved challenges of different enhancement methods in materials preparation, optimization of practical implementation, and future applications are proposed, which provide comprehensive and instructive references for corresponding research. Full article
Show Figures

Figure 1

Back to TopTop