New Challenges in the Monitoring, Risk Assessment and Management of Pesticides and Biocides in the “One Health Era”

A special issue of Journal of Xenobiotics (ISSN 2039-4713).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 4474

Special Issue Editor


E-Mail Website
Guest Editor
Istituto Superiore di Sanità—Italian National Institute of Health (ISS), Department of Food Safety, Nutrition and Public Health, Viale Regina Elena 299, 00161 Rome, Italy
Interests: mass spectrometry; chromatography; regulatory toxicology; risk assessment; method validation; drugs; toxins; pesticides; trace elements; food additives & contaminants; nutraceuticals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The use of pesticides and biocides plays a pivotal role in agriculture, public health, and industrial applications. However, their presence in food, feed, animals, and humans poses significant challenges to health and environmental safety. Plant production systems worldwide are working to meet diverse and growing needs of humankind while addressing challenges such as climate change and biodiversity loss. At the same time, there is an increasing demand for the transition from conventional pesticides to low-risk, sustainable plant protection products.

Despite strong political goals at the global level—including the United Nations 2030 Agenda for Sustainable Development, the Farm to Fork Strategy, the Biodiversity Strategy, REFIT and the Chemicals Strategy for Sustainability—inefficiencies in implementation and regulatory complexities remain significant barriers to achieving desired outcomes for both environmental and human health.

This Special Issue aims to address novel challenges in the monitoring, risk assessment and management of pesticides and biocides, within the framework of the One Health approach, which emphasizes the interrelation of human, animal, and environmental health. Contributions are invited in the following areas:

  • innovative analytical methods for detecting pesticides and biocides across manifold matrices, including food, feed, animals, human biomonitoring, environmental samples, and indicator species;
  • risk assessment and toxicological studies that explore their impacts (e.g., endocrine disruption, carcinogenicity and effects on pollinators);
  • research on new regulatory requirements for the renewal and approval of bioactive substances.

By uniting multidisciplinary perspectives, this Issue seeks to foster scientific advancements and policy innovations that support sustainable and health-conscious chemical management.

Dr. Teresa D’Amore
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Xenobiotics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pesticides
  • biocides
  • risk assessment
  • One Health
  • human, animal and environmental health
  • monitoring
  • analytical methods
  • mass spectrometry
  • chromatography
  • toxicological studies
  • regulatory toxicology
  • endocrine disruption
  • carcinogenicity
  • effects on pollinators

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1730 KiB  
Article
Prioritization and Sensitivity of Pesticide Risks from Root and Tuber Vegetables
by Milica Lučić and Antonije Onjia
J. Xenobiot. 2025, 15(4), 125; https://doi.org/10.3390/jox15040125 - 3 Aug 2025
Viewed by 491
Abstract
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in [...] Read more.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs). Acute and chronic dietary risks were assessed for both adults and children. Although individual hazard quotients (HQs) for adults and children remained below the threshold of concern (HQ < 1), the cumulative acute risk reached up to 63.1% of the Acute Reference Dose (ARfD) for children and 51.1% ARfD for adults, with ginger and celery posing the highest risks. Similarly, cumulative chronic risks remained below the safety threshold, with the Acceptable Daily Intake (ADI) percentages reaching a maximum of 5.9% ADI for adults and increased vulnerability of 11.0% ADI among children. Monte Carlo simulations were applied to account for variability and uncertainty in chronic exposure estimates. The hazard index (HI) results showed that adverse health effects for both population groups remained within acceptable safety limits (HI < 1), although higher susceptibility was observed in children. Sensitivity analysis identified body weight and vegetable consumption rates as the most influential factors affecting chronic risk variability. Full article
Show Figures

Figure 1

23 pages, 2437 KiB  
Article
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Viewed by 347
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using [...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas. Full article
Show Figures

Figure 1

21 pages, 793 KiB  
Article
Development and Validation of LC–MS/MS and IC–HRMS Methods for Highly Polar Pesticide Detection in Honeybees: A Multicenter Study for the Determination of Pesticides in Honeybees to Support Pollinators and Environmental Protection
by Tommaso Pacini, Emanuela Verdini, Serenella Orsini, Katia Russo, Tabita Mauti, Mara Gasparini, Marialuisa Borgia, Barbara Angelone, Teresa D’Amore and Ivan Pecorelli
J. Xenobiot. 2025, 15(4), 95; https://doi.org/10.3390/jox15040095 - 20 Jun 2025
Cited by 1 | Viewed by 541
Abstract
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for [...] Read more.
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for pesticides in food and the environment. This study presents the development and validation of two complementary analytical methods (LC–MS/MS and IC–HRMS) for highly polar pesticide (HPP) detection and quantification in bee matrices. Both methods were validated according to document SANTE/11312/2021 v2. LC–MS/MS was validated with a limit of quantification (LOQ) of 0.005 mg/kg for all the analytes. Repeatability at 0.005, 0.010, 0.020, and 0.100 mg/kg showed RSDr from 1.6% to 19.7% and recoveries between 70% and 119%. Interlaboratory precision at 0.020 mg/kg across two labs showed RSDR from 5.5% to 13.6%, with recoveries between 91% and 103%. The IC–HRMS method achieved LOQs of 0.01 mg/kg (glufosinate, N-acetyl glufosinate, MPPA, glyphosate, N-acetyl glyphosate, N-acetyl AMPA) and 0.1 mg/kg (fosetyl, phosphonic acid, AMPA), with mean recoveries in repeatability conditions from 84% to 114% and RSDr from 2% to 14%. Intralaboratory precision showed mean recoveries from 87% to 119%, with RSDwR values between 10% and 18%. These methods enable accurate monitoring of HPP contamination, supporting risk assessment and sustainable agriculture. Full article
Show Figures

Graphical abstract

15 pages, 631 KiB  
Article
Monte Carlo Simulation of Pesticide Toxicity for Rainbow Trout (Oncorhynchus mykiss) Using New Criteria of Predictive Potential
by Alla P. Toropova, Andrey A. Toropov and Emilio Benfenati
J. Xenobiot. 2025, 15(3), 82; https://doi.org/10.3390/jox15030082 - 1 Jun 2025
Viewed by 1036
Abstract
Background: The toxicity of pesticides for fish in general and Rainbow Trout (Oncorhynchus mykiss) in particular is an important ecological indicator required by regulations, and it implies the use of a large number of fish. The number of animals needed [...] Read more.
Background: The toxicity of pesticides for fish in general and Rainbow Trout (Oncorhynchus mykiss) in particular is an important ecological indicator required by regulations, and it implies the use of a large number of fish. The number of animals needed would be even higher to evaluate metabolites and pesticide impurities. Considering ethical issues, the costs, and the necessary resources, the use of in silico models is often proposed. Aim of the study: We explore the use of advanced Monte Carlo methods to obtain improved results for models testing Rainbow Trout (Oncorhynchus mykiss) acute toxicity. Several versions of the stochastic Monte Carlo simulation of pesticide toxicity for Rainbow Trout, carried out using CORAL software, were studied. The set of substances was split into four subsets: active training, passive training, calibration, and validation. Modeling was repeated five times to enable better statistical evaluation. To improve the predictive potential of models, the index of ideality of correlation (IIC), correlation intensity index (CII), and coefficient of conformism of correlation prediction (CCCP) were applied. Main results and novelty: The most suitable results were observed in the case of the CCCP-based optimization for SMILES-based descriptors, achieving an R2 of 0.88 on the validation set, in all five random splits, demonstrating consistent and robust modeling performance. The relationship of information systems related to QSAR simulation and new ideas is discussed, assigning a key role to fundamental concepts like mass and energy. The study of the mentioned criteria of predictive potential during the conducted computer experiments showed that even though they are all aimed at improving the predictive potential, their values do not correlate, except for the CII and the CCCP. This means that, in general, the information impact of the considered criteria has a different nature, at least in the case of the simulation of toxicity for Rainbow Trout (Oncorhynchus mykiss). The applicability domain of the model is specific for pesticides; the software identifies potential outliers by looking at rare molecular fragments. Full article
Show Figures

Figure 1

13 pages, 1909 KiB  
Article
Do Isopropylammonium Glyphosate and LiCl Impact the Spore Diversity and Functions of Aquatic Fungi Involved in Plant Litter Decomposition in Streams?
by Jorge Rodrigues, Hernâni Gerós, Manuela Côrte-Real and Fernanda Cássio
J. Xenobiot. 2025, 15(3), 65; https://doi.org/10.3390/jox15030065 - 1 May 2025
Viewed by 458
Abstract
Glyphosate based-herbicides are stressors of great concern because they can impact aquatic ecosystems. Similarly, lithium, a metal, is currently of concern because of its increasing use worldwide. Because glyphosate-based herbicides and lithium might co-occur in aquatic environments, there is a need to assess [...] Read more.
Glyphosate based-herbicides are stressors of great concern because they can impact aquatic ecosystems. Similarly, lithium, a metal, is currently of concern because of its increasing use worldwide. Because glyphosate-based herbicides and lithium might co-occur in aquatic environments, there is a need to assess their impacts on aquatic organisms, such as aquatic fungi, as they play a key role in plant litter decomposition in streams. Microcosm assays were used to examine the effects of lithium and the herbicide isopropylammonium glyphosate (IPAG), alone or in mixtures, on microbial leaf mass loss, total fungal sporulation and biomass production. IPAG (alone and combined with LiCl) neither affected plant litter decomposition nor fungal biomass production, but boosted total fungal sporulation. Dimorphospora foliicola, the most tolerant species among the twelfth leaf inhabitant fungal species, is the major contributor to total fungal sporulation. IPAG interacts with LiCl in the total fungal sporulation and sporulation of D. foliicola, A. tetracladia, and F. curvula, indicating a species dependent-effect. IPAG alone or combined with LiCl greatly decreased the diversity of spores, as did as LiCl alone, but to a lesser extent. Finally, aquatic fungal communities reveal redundancy and resiliency to IPAG and LiCL, maintaining the health of aquatic ecosystems. Full article
Show Figures

Graphical abstract

19 pages, 4146 KiB  
Article
Bacterial Cytochrome P450 Involvement in the Biodegradation of Fluorinated Pyrethroids
by Mohd Faheem Khan, Jun Liao, Zhenyang Liu and Gaurav Chugh
J. Xenobiot. 2025, 15(2), 58; https://doi.org/10.3390/jox15020058 - 18 Apr 2025
Cited by 2 | Viewed by 1018
Abstract
Fluorinated pyrethroids, such as cyfluthrin and cyhalothrin, are more effective insecticides due to their enhanced stability and lipophilicity. However, they pose greater risks to non-target organisms. Their persistence in the environment and accumulation in tissues can lead to increased toxicity and ecological concerns. [...] Read more.
Fluorinated pyrethroids, such as cyfluthrin and cyhalothrin, are more effective insecticides due to their enhanced stability and lipophilicity. However, they pose greater risks to non-target organisms. Their persistence in the environment and accumulation in tissues can lead to increased toxicity and ecological concerns. This study investigates the biodegradation of the fluorinated pyrethroids β-cyfluthrin (BCF) and λ-cyhalothrin (LCH) using a newly isolated Bacillus sp. MFK14 from a garden soil microbial consortium. Initial screening using 19F NMR analysis showed that the microbial consortium degraded both pyrethroids, leading to the isolation of Bacillus sp. MFK14. Subsequent GC-MS analysis revealed various degradation intermediates in both pyrethroids after incubation with Bacillus sp. MFK14. Notably, Bacillus sp. MFK14 completely degraded β-cyfluthrin and λ-cyhalothrin within 48 h at 30 °C. Fluoride ions from β-cyfluthrin and trifluoroacetic acid (TFA) from λ-cyhalothrin were detected as the end-products by 19F NMR analysis of the aqueous fraction. The pathway of the degradation was proposed for both the pyrethroids indicating shared biodegradation pathways despite different fluorinations. Inhibition studies with 1-ABT suggested the involvement of bacterial cytochrome P450 (CYP) enzymes in their biodegradation. The CYPome of Bacillus sp. MFK14 includes 23 CYP variants that showed significant sequence similarity to known bacterial CYPs, suggesting potential roles in pyrethroid biodegradation and environmental persistence. These findings highlight the potential for bioremediation of fluorinated pesticides, offering an environmentally sustainable approach to mitigate their ecological impact. Full article
Show Figures

Graphical abstract

Back to TopTop