Aqueous Extract of Limnospira platensis Provides Protection Against Microcystin-Induced Oxidative Stress in Hydroponic Culture of Radish (Raphanus sativus)
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of M. aeruginosa and L. platensis Extracts
2.2. Biochemical Characterization of M. aeruginosa, L. platensis, and Raphanus sativus Tissue Samples
2.2.1. Total Soluble Sugars
2.2.2. Total Protein Contents
2.2.3. Total Polyphenols
2.2.4. Flavonoids
2.2.5. Auxins
2.3. Culture of Radish Plants and Treatment with Different Extracts
- C (control): irrigation with alternating water and nutrient solution,
- C1: irrigation with water containing 10 µg/L of MCs,
- C2: irrigation with water containing 40 µg/L of MCs,
- B1: irrigation with water containing 0.1 g/L L. platensis extract,
- B2: irrigation with water containing 1 g/L L. platensis extract,
- C1 + B1: irrigation with water containing 10 µg/L of MCs + 0.1 g/L L. platensis extract,
- C1 + B2: irrigation with water containing 10 µg/L of MCs + 1 g/L L. platensis extract,
- C2 + B1: irrigation with water containing 40 µg/L of MCs + 0.1 g/L L. platensis extract,
- C2 + B2: irrigation with water containing 40 µg/L of MCs + 1 g/L L. platensis extract.
2.4. Determination of MCs in Radish Tissues
2.5. Determination of Biometric Parameters and Yield Parameters of Radish Plants
2.6. Determination of Biochemical Parameters in Radish Tissues
2.6.1. Pigment Content in Leaves
2.6.2. Vitamin C Content in Taproots
2.6.3. Inorganic Ions in Taproots
2.6.4. Antioxidant Enzyme Activities in Radish Tissues
2.6.5. Determination of Malondialdehyde (MDA) in Radish Tissues
2.7. Statistical Analysis
3. Results
3.1. Characterization of M. aeruginosa and L. platensis Extracts
3.2. Bioaccumulation of MCs in Radish Tissues
3.3. Effects of L. platensis Extract on Radish Growth Under MC-Induced Stress
3.4. Effect of L. platensis Extract on the Biochemical Parameters of Radish-Stressed Tissues by MCs
3.4.1. Photosynthetic Pigment Content
3.4.2. Total Soluble Sugar Content
3.4.3. Total Proteins Content
3.5. Effect of L. platensis Extract on Stress Markers of Radish-Stressed by MCs
3.5.1. Total Polyphenols Content
3.5.2. Determination of Malondialdehyde (MDA)
3.5.3. Peroxidase (POD) Activity
3.5.4. Superoxide Dismutase (SOD) Activity
3.5.5. Catalase (CAT) Activity
3.6. Effects of L. platensis Extract on Biochemical Parameters of Radish Taproots Under MC-Induced Stress
3.7. Effects of L. platensis Extract on Nutrient Content of Radish Taproots Under MC-Induced Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef]
- Dittmann, E.; Wiegand, C. Cyanobacterial toxins–occurrence, biosynthesis and impact on human affairs. Mol. Nutr. Food Res. 2006, 50, 7–17. [Google Scholar] [CrossRef]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural diversity, characterization and toxicology of microcystins. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Hastie, C.J.; Borthwick, E.B.; Morrison, L.F.; Codd, G.A.; Cohen, P.T.W. Inhibition of several protein phosphatases by a non-covalently interacting microcystin and a novel cyanobacterial peptide, nostocyclin. Biochim. Biophys. Acta Gen. Subj. 2005, 1726, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Kudela, R.M.; Mekebri, A.; Crane, D.; Oates, S.C.; Tinker, M.T.; Staedler, M.; Miller, W.A.; Toy-Choutka, S.; Dominik, C. Evidence for a novel marine harmful algal bloom: Cyanotoxin (microcystin) transfer from land to sea otters. PLoS ONE 2010, 5, e12576. [Google Scholar] [CrossRef]
- Mugani, R.; El Khalloufi, F.; Kasada, M.; Haida, M.; Aba, R.P.; Essadki, Y.; Zerrifi, S.E.A.; Herter, S.-O.; Hejjaj, A.; Aziz, F. Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms. Harmful Algae 2024, 135, 102631. [Google Scholar] [CrossRef]
- El Khalloufi, F.; Oufdou, K.; Lahrouni, M.; El Ghazali, I.; Saqrane, S.; Vasconcelos, V.; Oudra, B. Allelopatic effects of cyanobacteria extracts containing microcystins on Medicago sativa-Rhizobia symbiosis. Ecotoxicol. Environ. Saf. 2011, 74, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Haida, M.; El Khalloufi, F.; Mugani, R.; Redouane, E.M.; Campos, A.; Vasconcelos, V.; Oudra, B. Effects of Irrigation with Microcystin-Containing Water on Growth, Physiology, and Antioxidant Defense in Strawberry Fragaria vulgaris under Hydroponic Culture. Toxins 2022, 14, 198. [Google Scholar] [CrossRef]
- Lahrouni, M.; Oufdou, K.; Oudra, B. Occurrence of cyanobacteria producing toxins in irrigation freshwaters: Which impacts on crop quality and public health? J. Mater. Environ. Sci. 2015, 6, 2986–3001. [Google Scholar]
- Peng, K.; Liu, X.; Cheng, H.; Xu, M.; Liu, Y.; Yang, H.; Liu, P.; Yang, S. Characterization of driving factors for the long-term succession of bloom-forming cyanobacterial genera in Lake Erhai, southwest China. J. Environ. Manag. 2024, 351, 119729. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.H. Removal of cyanobacterial and algal cells from water by ultrasonic waves—A review. J. Mol. Liq. 2016, 222, 1109–1114. [Google Scholar] [CrossRef]
- Anderson, C.R.; Sellner, K.G.; Anderson, D.M. Bloom prevention and control. In Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 2017; pp. 205–222. [Google Scholar]
- Beasley, V.R.; Cook, W.O.; Dahlem, A.M.; Hooser, S.B.; Lovell, R.A.; Valentine, W.M. Algae intoxication in livestock and waterfowl. Vet. Clin. N. Am. Food Anim. Pract. 1989, 5, 345–361. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Microalgae: New source of plant biostimulants. Agronomy 2020, 10, 1240. [Google Scholar] [CrossRef]
- El-Sayed, S.A.A. Effect of potassium fertilization levels and algae extract on growth, bulb yield and quality of onion (Allium cepa L.). Middle East J. 2018, 7, 625–638. [Google Scholar]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef] [PubMed]
- Dmytryk, A.; Chojnacka, K. Algae as fertilizers, biostimulants, and regulators of plant growth. In Algae Biomass: Characteristics And Applications: Towards Algae-Based Products; Springer: Cham, Switzerland, 2018; pp. 115–122. [Google Scholar]
- Bouaıcha, N.; Chézeau, A.; Turquet, J.; Quod, J.-P.; Puiseux-Dao, S. Morphological and toxicological variability of Prorocentrum lima clones isolated from four locations in the south-west Indian Ocean. Toxicon 2001, 39, 1195–1202. [Google Scholar] [CrossRef]
- El Khalloufi, F.; Oufdou, K.; Lahrouni, M.; Faghire, M.; Peix, A.; Ramírez-Bahena, M.H.; Vasconcelos, V.; Oudra, B. Physiological and antioxidant responses of Medicago sativa-rhizobia symbiosis to cyanobacterial toxins (Microcystins) exposure. Toxicon 2013, 76, 167–177. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Savicka, M.; Škute, N. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 2010, 56, 26–33. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, p. 152. [Google Scholar]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Gang, S.; Sharma, S.; Saraf, M.; Buck, M.; Schumacher, J. Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-Protocol 2019, 9, e3230. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circular 1950, 347, 32. [Google Scholar]
- Corbel, S.; Mougin, C.; Nélieu, S.; Delarue, G.; Bouaïcha, N. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR (14C-MC-LR). Sci. Total Environ. 2016, 541, 1052–1058. [Google Scholar] [CrossRef]
- El Moukhtari, A.; Carol, P.; Mouradi, M.; Savoure, A.; Farissi, M. Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress. Symbiosis 2021, 85, 305–324. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Pame, P. Lead phyto-toxicity induced by accumulation and uptake potentially inhibits morpho-physiological depression and alterations in an aquatic model plant, Eichhornia crassipes. EurAsian J. Biosci. 2019, 13, 1565–1573. [Google Scholar]
- Pathy, K. Process for preparation of vitamin C and method for determination of vitamin c in tablets. SF J. Chem. Res. 2018, 2, 2. [Google Scholar] [CrossRef]
- Pequerul, A.; Pérez, C.; Madero, P.; Val, J.; Monge, E. A rapid wet digestion method for plant analysis. In Optimization of Plant Nutrition: Refereed Papers from the Eighth International Colloquium for the Optimization of Plant Nutrition, Portugal; Springer: Berlin/Heidelberg, Germany, 1993; pp. 3–6. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Nitrogen-total. In Methods of Soil Analysis. Part; ASA; SSSA: Madison, WI, USA, 1982; Volume 2, pp. 403–430. [Google Scholar]
- Fidalgo, F.; Azenha, M.; Silva, A.F.; de Sousa, A.; Santiago, A.; Ferraz, P.; Teixeira, J. Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Secur. 2013, 2, 70–80. [Google Scholar] [CrossRef]
- Beyer, W.F., Jr.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Gehringer, M.M.; Kewada, V.; Coates, N.; Downing, T.G. The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon 2003, 41, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.; Azevedo, J.; Pinto, E.; Neves, J.; Campos, A.; Vasconcelos, V. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2015, 116, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhong, Y.M.; Zhang, H.Q.; Shi, Z.Q. Nitrate reductase-dependent nitric oxide production is involved in microcystin-LR-induced oxidative stress in brassica rapa. Water Air Soil Pollut. 2012, 223, 4141–4152. [Google Scholar] [CrossRef]
- MacKintosh, C.; Beattie, K.A.; Klumpp, S.; Cohen, P.; Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990, 264, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Kurki-Helasmo, K.; Meriluoto, J. Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapis alba L.) seedlings. Toxicon 1998, 36, 1921–1926. [Google Scholar] [CrossRef]
- Saqrane, S.; El Ghazali, I.; Oudra, B.; Bouarab, L.; Vasconcelos, V. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: A laboratory experimental approach. Toxicon 2009, 53, 786–796. [Google Scholar] [CrossRef]
- Mógor, Á.F.; Ördög, V.; Lima, G.P.P.; Molnár, Z.; Mógor, G. Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J. Appl. Phycol. 2018, 30, 453–460. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.F. Anticancer Activity, Antioxidant Activity, Mineral Contents, Vegetative and Yield of Eruca sativa Using Foliar Application of Autoclaved Cellular Extract of Spirulina platensis Extract, Comparing to NPK Fertilizers. J. Plant Prod. 2017, 8, 529–536. [Google Scholar] [CrossRef]
- Enan, S.; El-Saady, A.M.; El-Sayed, A.B. Impact of foliar feeding with alga extract and boron on yield and quality of sugar beet grown in sandy soil. Egypt. J. Agronematol. 2016, 38, 319–336. [Google Scholar]
- Wang, A.; Hu, J.; Huang, X.; Li, X.; Zhou, G.; Yan, Z. Comparative transcriptome analysis reveals heat-responsive genes in Chinese cabbage (Brassica rapa ssp. chinensis). Front. Plant Sci. 2016, 7, 939. [Google Scholar] [CrossRef]
- Plaza, I.; García, J.L.; Villarroel, M. Effect of spirulina (Arthrospira platensis) supplementation on tilapia (Oreochromis niloticus) growth and stress responsiveness under hypoxia. Span. J. Agric. Res. 2018, 16, e0606. [Google Scholar] [CrossRef]
- Rachidi, F.; Benhima, R.; Sbabou, L.; El Arroussi, H. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol. Rep. 2020, 25, e00426. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.S.; Esawy, M.A. Evaluation of Spirulina platensis as bio stimulator for organic farming systems. J. Genet. Eng. Biotechnol. 2008, 6, 1–7. [Google Scholar]
- Di Stasio, E.; Van Oosten, M.J.; Silletti, S.; Raimondi, G.; Dell’Aversana, E.; Carillo, P.; Maggio, A. Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J. Appl. Phycol. 2018, 30, 2675–2686. [Google Scholar] [CrossRef]
- Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El-Baz, F.K.; El Baroty, G.S. Enhancing Antioxidant Availability in Wheat Grains from Plants Grown under Seawater Stress in Response to Microalgae Extract Treatments. J. Sci. Food Agric. 2010, 90, 299–303. [Google Scholar] [CrossRef]
- Selem, E. Physiological effects of Spirulina platensis in salt stressed Vicia faba L. plants. Egypt. J. Bot. 2019, 59, 185–194. [Google Scholar] [CrossRef]
- Pflugmacher, S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat. Toxicol. 2004, 70, 169–178. [Google Scholar] [CrossRef]
- Shedeed, Z.A.; Gheda, S.; Elsanadily, S.; Alharbi, K.; Osman, M.E.H. Spirulina platensis biofertilization for enhancing growth, photosynthetic capacity and yield of Lupinus luteus. Agriculture 2022, 12, 781. [Google Scholar] [CrossRef]
- Arahou, F.; Lijassi, I.; Wahby, A.; Rhazi, L.; Arahou, M.; Wahby, I. Spirulina-based biostimulants for sustainable agriculture: Yield improvement and market trends. BioEnergy Res. 2023, 16, 1401–1416. [Google Scholar] [CrossRef]
- Ben Abdallah, N.; Ben Salem, M. Parametres morphophysiologiques de selection pour la resistance a la secheresse des cereales. In Tolerance a la Secheresse des Cereales en Zone Mediterraneenne; Diversité génétique et amélioration variétale; INRA: Paris, France, 1993; pp. 4216–4222. [Google Scholar]
- do Bittencourt-Oliveira, M.C.; Cordeiro-Araújo, M.K.; Chia, M.A.; de Arruda-Neto, J.D.T.; de Oliveira, Ê.T.; dos Santos, F. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol. Environ. Saf. 2016, 128, 83–90. [Google Scholar] [CrossRef]
- Marrs, K.A. The functions and regulation of glutathione s-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 127–158. [Google Scholar] [CrossRef] [PubMed]
- Morsy, N. Productivity and quality of kohlrabi grown in a newly reclaimed sandy soil using organic and mineral-N fertilizer regimes with or without spraying of Spirulina platensis extract. Egypt. J. Hortic. 2019, 46, 169–178. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Aulhorn, M.; Grimm, B. Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol. 2007, 175, 482–489. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; Bresta, P.; Stavroulaki, V.; Sumbele, S. Carbon gain vs. water saving, growth vs. defence: Two dilemmas with soluble phenolics as a joker. Plant Sci. 2014, 227, 21–27. [Google Scholar] [CrossRef]
- Ksouri, R.; Wided, M.; Ahmed, D.; Hanen, F.; Claude, G.; Chedly, A. Salinity Effects on Polyphenol Content and Antioxidant Activities in Leaves of the Halophyte Cakile Maritima. Plant Physiol. Biochem. PPB 2007, 45, 244–249. [Google Scholar] [CrossRef]
- Lahrouni, M.; Oufdou, K.; El Khalloufi, F.; Baz, M.; Lafuente, A.; Dary, M.; Pajuelo, E.; Oudra, B. Physiological and biochemical defense reactions of Vicia faba L.-Rhizobium symbiosis face to chronic exposure to cyanobacterial bloom extract containing microcystins. Environ. Sci. Pollut. Res. 2013, 20, 5405–5415. [Google Scholar] [CrossRef] [PubMed]
- Levizou, E.; Papadimitriou, T.; Papavasileiou, E.; Papadimitriou, N.; Kormas, K.A. Root vegetables bioaccumulate microcystins-LR in a developmental stage-dependent manner under realistic exposure scenario: The case of carrot and radish. Agric. Water Manag. 2020, 240, 106274. [Google Scholar] [CrossRef]
- Turkan, I. ROS and RNS: Key signalling molecules in plants. J. Exp. Bot. 2018, 69, 3313–3315. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro-Araújo, M.K.; Chia, M.A.; de Arruda-Neto, J.D.T.; Tornisielo, V.L.; Vilca, F.Z.; do Bittencourt-Oliveira, M.C. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment. Sci. Total Environ. 2016, 566–567, 1379–1386. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, B.; Song, L.; Wu, X.; Zhang, J.; Wang, C. Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology 2011, 20, 803–814. [Google Scholar] [CrossRef]
- Gómez, R.; Vicino, P.; Carrillo, N.; Lodeyro, A.F. Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Crit. Rev. Biotechnol. 2019, 39, 693–708. [Google Scholar] [CrossRef]
- Kumar, D.; Yusuf, M.A.; Singh, P.; Sardar, M.; Sarin, N.B. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 2013, 250, 1079–1089. [Google Scholar] [CrossRef]
- Caverzan, A.; Piasecki, C.; Chavarria, G.; Stewart, C.N., Jr.; Vargas, L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019, 20, 1086. [Google Scholar] [CrossRef] [PubMed]
- Tahjib-UI-Arif, M.; Sohag, A.A.M.; Afrin, S.; Bashar, K.K.; Afrin, T.; Mahamud, A.G.M.S.U.; Polash, M.A.S.; Hossain, M.T.; Sohel, M.A.T.; Brestic, M. Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture 2019, 9, 223. [Google Scholar] [CrossRef]
- Khan, A.; Numan, M.; Khan, A.L.; Lee, I.-J.; Imran, M.; Asaf, S.; Al-Harrasi, A. Melatonin: Awakening the defense mechanisms during plant oxidative stress. Plants 2020, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Mittova, V.; Tal, M.; Volokita, M.; Guy, M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 2003, 26, 845–856. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Alyemeni, M.N.; Wijaya, L.; Alamri, S.A.; Alam, P.; Ashraf, M.; Ahmad, P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE. 2018, 13, e0202175. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kobayashi, Y.; Matsumoto, H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 2001, 125, 199–208. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol. 1990, 186, 421–431. [Google Scholar]
- Gharib, F.A.E.L.; Ahmed, E.Z. Spirulina platensis improves growth, oil content, and antioxidant activitiy of rosemary plant under cadmium and lead stress. Sci. Rep. 2023, 13, 8008. [Google Scholar] [CrossRef] [PubMed]
- Haida, M.; El Khalloufi, F.; Essadki, Y.; Alexandrino, D.A.M.; Mugani, R.; Hejjaj, A.; Campos, A.; Vasconcelos, V.; Carvalho, M.F.; Díez-Quijada, L. Microcystin-degrading bacteria reduce bioaccumulation in Fragaria vulgaris and enhance fruit yield and quality. Environ. Sci. Pollut. Res. 2024, 31, 54502–54524. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Ma, X.; Liu, H. Effect of microcystins at different rice growth stages on its yield, quality, and safety. Environ. Sci. Pollut. Res. 2021, 28, 13942–13954. [Google Scholar] [CrossRef]
- Zhu, J.; Ren, X.; Liu, H.; Liang, C. Effect of irrigation with microcystins-contaminated water on growth and fruit quality of Cucumis sativus L. and the health risk. Agric. Water Manag. 2018, 204, 91–99. [Google Scholar] [CrossRef]








| L. platensis Extract | M. aeruginosa Extract | |
|---|---|---|
| Total soluble sugar content (mg/g DW) | 15.23 ± 0.92 | 25.62 ± 2.5 |
| Total phenolic content (µg Gallic acid/g DW) | 0.2 ± 0.01 | Nd |
| Proteins content (mg/g DW) | 39.67 ± 2.11 | 30.23 ± 1.21 |
| Flavonoids content (µg Catechin/g DW) | 0.3 ± 0.03 | Nd |
| Auxins content (mg/g DW) | 44.69 ± 2.10 | Nd |
| 0 µg/L | 10 µg/L | 40 µg/L | 0.1 g/L | 1 g/L | 10 µg/L + 0.1 g/L | 10 µg/L + 1 g/L | 40 µg/L + 0.1 g/L | 40 µg/L + 1 g/L | ||
|---|---|---|---|---|---|---|---|---|---|---|
| MCs in radish tissues (μg/kg FW) | Taproots | Nd a | 10.13 ± 1.45 b | 14.64 ± 1.50 b | Nd a | Nd a | 9.68 ± 2.84 b | 9.04 ± 0.73 b | 12.53 ± 1.99 b | 10.15 ± 0.38 b |
| Leaves | Nd a | 7.33 ± 0.14 b | 8.81 ± 1.35 b | Nd a | Nd a | 5.90 ± 0.65 b | 6.63 ± 0.10 b | 5.88 ± 0.60 b | 5.35 ± 0.25 b |
| Growth Parameters (Leaves and Roots) | Yield Parameters (Taproots) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| LN | LA (cm2) | APL (cm) | RL (cm) | LFW (g) | RFW (g) | TL (cm) | TFW (g) | TDW (g) | TD (cm) | |
| Control | 5 ± 0.57 a | 15.28 ± 0.62 ab | 12.33 ± 1.58 a | 16.03 ± 1.18 a | 1.75 ± 0.15 ab | 2.05 ± 0.08 a | 4.31 ± 0.27 a | 8.03 ± 0.67 ab | 2.37 ± 0.34 bcd | 4.22 ± 0.33 abc |
| 10 µg/L of MCs | 5.66 ± 0.88 ab | 11.67 ± 0.12 ab | 12.6 ± 0.90 a | 14.63 ± 4.53 a | 1.5 ± 0.6 a | 2.50 ± 0.15 ab | 3.17 ± 0.17 a | 7.47 ± 0.23 a | 1.47 ± 0.23 abc | 3.71 ± 0.14 ab |
| 40 µg/L of MCs | 5.66 ± 0.33 ab | 5.24 ± 0.88 a | 10.3 ± 1.24 a | 14.5 ± 1.51 a | 0.9 ± 0.1 a | 1.76 ± 0.40 a | 4.03 ± 0.58 a | 6.73 ± 0.20 a | 0.83 ± 0.13 a | 3.17 ± 0.03 a |
| 0.1 g/L of LP | 8 ± 0.57 bc | 18.20 ± 0.10 ab | 10.43 ± 0.26 a | 16.8 ± 0.81 a | 1.9 ± 0.8 ab | 1.85 ± 0.14 a | 4.57 ± 0.28 a | 8.26 ± 0.07 abc | 2.26 ± 0.07 abc | 4.33 ± 0.24 abc |
| 1 g/L of LP | 9 ± 1 c | 49.31 ± 0.64 c | 13.36 ± 1.07 a | 18.73 ± 2.49 a | 3.1 ± 0.5 cd | 12.33 ± 1.07 bc | 4.83 ± 0.50 a | 9.82 ± 0.20 c | 3.82 ± 0.20 d | 5.37 ± 0. 33 c |
| 10 µg/L of MCs + 0.1 g/L of LP | 5.66 ± 0.33 ab | 26.15 ± 8.70 b | 12.7 ± 0.72 a | 14.46 ± 1.10 a | 1.35 ± 0.35 a | 2.3 ± 0.28 a | 3.75 ± 0.43 a | 7.9 ± 0.17 ab | 1.9 ± 0.17 abc | 4.11 ± 0.07 ab |
| 10 µg/L of MCs + 1 g/L of LP | 7.66 ± 0.33 abc | 48.18 ± 2.48 c | 14.9 ± 1.08 a | 17.33 ± 1.47 a | 2.25 ± 0.35 abc | 3.83 ± 0.43 c | 4.07 ± 0.22 a | 8.53 ± 0.52 bc | 2.83 ± 0.71 cd | 4.46 ± 0.23 bc |
| 40 µg/L of MCs + 0.1 g/L of LP | 7 ± 0.57 abc | 16.62 ± 1.45 ab | 11.3 ± 0.37 a | 16.63 ± 3.68 a | 2 ± 1 ab | 2.1 ± 0 a | 4.1 ± 0.52 a | 7.07 ± 0.18 ab | 1.07 ± 0.19 ab | 3.28 ± 0.12 ab |
| 40 µg/L of MCs + 1 g/L of LP | 6.66 ± 0.33 abc | 47.99 ± 5.58 c | 15.2 ± 1.49 a | 16.73 ± 3.20 a | 3.55 ± 0.35 c | 3.75 ± 0.08 bc | 4.32 ± 0.49 a | 7.13 ± 0.12 ab | 1.18 ± 0.17 ab | 3.77 ± 0.42 ab |
| Biochemical Parameters (Taproots) | ||||
|---|---|---|---|---|
| Sugar (mg/100 g of FW) | Proteins (mg/100 g of FW) | Polyphenols (Gallic Acid mg/100 g of FW) | Vitamin C (Ascorbic Acid mg/100 g of FW) | |
| Control | 12.13 ± 1.13 a | 93.72 ± 0.74 abc | 306.45 ± 37.90 a | 24.94 ± 0.92 c |
| 10 µg/L of MCs | 11.77 ± 0.10 a | 79.51 ± 6.78 ab | 323.45 ± 24.73 a | 15.85 ± 1.83 ab |
| 40 µg/L of MCs | 11.10 ± 0.39 a | 75.07 ± 7.29 a | 354.49 ± 5.15 a | 12.68 ± 0.92 a |
| 0.1 g/L of LP | 14.02 ± 0.82 a | 107.13 ± 4.68 c | 290.58 ± 37.47 a | 53.36 ± 1.91 de |
| 1 g/L of LP | 15.54 ± 1.48 a | 112.25 ± 1.03 c | 277.44 ± 1.52 a | 69.21 ± 2.30 f |
| 10 µg/L of MCs + 0.1 g/L of LP | 13.75 ± 2.58 a | 101.92 ± 8.03 bc | 292.64 ± 9.25 a | 45.97 ± 1.58 d |
| 10 µg/L of MCs + 1 g/L of LP | 12.65 ± 2.01 a | 94.64 ± 0.75 abc | 298.73 ± 5.27 a | 54.95 ± 1.40 e |
| 40 µg/L of MCs + 0.1 g/L of LP | 9.65 ± 0.92 a | 81.35 ± 3.78 ab | 300.25 ± 12.45 a | 28.53 ± 2.42 c |
| 40 µg/L of MCs + 1 g/L of LP | 11.52 ± 1.20 a | 88.66 ± 7.88 abc | 310.89 ± 4.02 a | 21.56 ± 2.08 bc |
| Nutrient Content (Taproots) | ||||||
|---|---|---|---|---|---|---|
| Fe (mg/100 g of DW) | K (mg/100 g of DW) | Mg (mg/100 g of DW) | Zn (mg/100 g of DW) | Ca (mg/100 g of DW) | P (mg/100 g of DW) | |
| Control | 0.207 ± 0.41 a | 4.68 ± 0.52 cd | 14.28 ± 0.35 c | 0.814 ± 0.083 c | 43.48 + 2.21 c | 165.22 + 11.48 bc |
| 10 µg/L of MCs | 0.151 ± 0.01 a | 2.97 ± 0.15 bc | 13.72 ± 0.89 c | 0.509 ± 0.005 ab | 23.19 + 0.23 b | 137.36 + 24.21 ab |
| 40 µg/L of MCs | 0.114 ± 0.004 a | 2.68 ± 0.07 ab | 1.78 ± 0.26 a | 0.352 ± 0.009 a | 14.03 + 0.29 a | 101.49 + 4.59 a |
| 0.1 g/L of LP | 0.213 ± 0.05 a | 5.48 ± 0.29 d | 1.11 ± 0.21 a | 1.366 ± 0.005 d | 13.32 + 0.16 a | 290.56 + 11.48 ef |
| 1 g/L of LP | 0.234 ± 0.01 a | 6.02 ± 0.11 d | 4.91 ± 4.11 ab | 1.678 ± 0.073 e | 11.95 + 0.07 a | 318.00 + 3.07 f |
| 10 µg/L of MCs + 0.1 g/L of LP | 0.167 ± 0.005 a | 0.77 ± 0.06 a | 10.87 ± 0.39 bc | 0.707 ± 0.057 bc | 15.65 + 0.50 a | 251.07 + 2.52 de |
| 10 µg/L of MCs + 1 g/L of LP | 0.163 ± 0.005 a | 1.96 ± 0.85 ab | 4.71 ± 0.66 ab | 0.815 ± 0.001 c | 15.30 + 1.02 a | 281.87 + 6.74 ef |
| 40 µg/L of MCs + 0.1 g/L of LP | 0.162 ± 0.004 a | 0.89 ± 0.04 a | 6.96 ± 0.34 abc | 0.416 ± 0.005 a | 21.21 + 0.93 b | 197.48 + 13.25 cd |
| 40 µg/L of MCs + 1 g/L of LP | 0.132 ± 0.001 a | 2.29 ± 0.17 ab | 1.53 ± 0.48 a | 0.53 4 ± 0.011 ab | 14.23 + 0.68 a | 220.76 + 3.82 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haida, M.; Ezzyky, B.; Hakkoum, Z.; Mugani, R.; Essadki, Y.; El Khalloufi, F.; Haddioui, A.; Loukid, M.; Oudra, B.; Bouaïcha, N. Aqueous Extract of Limnospira platensis Provides Protection Against Microcystin-Induced Oxidative Stress in Hydroponic Culture of Radish (Raphanus sativus). J. Xenobiot. 2025, 15, 182. https://doi.org/10.3390/jox15060182
Haida M, Ezzyky B, Hakkoum Z, Mugani R, Essadki Y, El Khalloufi F, Haddioui A, Loukid M, Oudra B, Bouaïcha N. Aqueous Extract of Limnospira platensis Provides Protection Against Microcystin-Induced Oxidative Stress in Hydroponic Culture of Radish (Raphanus sativus). Journal of Xenobiotics. 2025; 15(6):182. https://doi.org/10.3390/jox15060182
Chicago/Turabian StyleHaida, Mohammed, Badr Ezzyky, Zineb Hakkoum, Richard Mugani, Yasser Essadki, Fatima El Khalloufi, Abdelmajid Haddioui, Mohamed Loukid, Brahim Oudra, and Noureddine Bouaïcha. 2025. "Aqueous Extract of Limnospira platensis Provides Protection Against Microcystin-Induced Oxidative Stress in Hydroponic Culture of Radish (Raphanus sativus)" Journal of Xenobiotics 15, no. 6: 182. https://doi.org/10.3390/jox15060182
APA StyleHaida, M., Ezzyky, B., Hakkoum, Z., Mugani, R., Essadki, Y., El Khalloufi, F., Haddioui, A., Loukid, M., Oudra, B., & Bouaïcha, N. (2025). Aqueous Extract of Limnospira platensis Provides Protection Against Microcystin-Induced Oxidative Stress in Hydroponic Culture of Radish (Raphanus sativus). Journal of Xenobiotics, 15(6), 182. https://doi.org/10.3390/jox15060182

