Topic Editors

Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, QC H2Y 2E7, Canada
Department of Biosciences, University of Milan|UNIMI, Milan, Italy

Aquatic Emerging Contaminants and Their Ecotoxicological Consequences, 2nd Edition

Abstract submission deadline
30 September 2026
Manuscript submission deadline
30 November 2026
Viewed by
2846

Topic Information

Dear Colleagues,

We propose a Topic concerning the assessment of emerging contaminants in aquatic ecosystems, as well as their ecotoxicological effects on aquatic species. This Topic includes scientific peer reviewed articles from MDPI journals such as Toxics, Waters, Journal of Xenobiotics, and Journal of Marine Science and Engineering. In this context, emerging contaminants such as pharmaceuticals, illicit drugs, nanoparticles, and (micro)plastics are not included in regular monitoring processes and represent an increasing global threat to the aquatic environment. For this reason, based on the pivotal approach in ecotoxicology named Environmental Risk Assessment (ERA), which includes the monitoring and effects of pollutants, the proposed Topic has the following aims: (i) monitoring emerging contaminants in both marine and freshwater environments, with particular attention given to (micro)plastics, and (ii) the evaluation of adverse effects on aquatic species at different levels of biological organization (from molecular to population one) using the following approaches:

  • Classical ecotoxicological tests; 
  • Wide batteries of biomarkers; 
  • “Omics” techniques.

Research papers, reviews, and short communications are welcome. For original articles, only studies concerning the evaluation of environmental concentrations or, in general, that have a high ecological impact will be considered. This Topic will collect articles that fill the knowledge gap on the ecotoxicology of emerging contaminants.

Dr. Valerio Matozzo
Prof. Dr. François Gagné
Dr. Stefano Magni
Topic Editors

Keywords

  • aquatic ecosystems
  • marine waters
  • freshwaters
  • emerging contaminants
  • pharmaceuticals
  • illicit drugs
  • (micro)plastics
  • monitoring
  • toxicity evaluation

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Journal of Marine Science and Engineering
jmse
2.8 5.0 2013 15.6 Days CHF 2600 Submit
Journal of Xenobiotics
jox
4.4 6.0 2011 27.6 Days CHF 1600 Submit
Pollutants
pollutants
- - 2021 40 Days CHF 1000 Submit
Toxics
toxics
4.1 6.4 2013 18.1 Days CHF 2600 Submit
Water
water
3.0 6.0 2009 19.1 Days CHF 2600 Submit
Environments
environments
3.7 5.7 2014 19.2 Days CHF 1800 Submit
Limnological Review
limnolrev
- 1.4 2001 20.4 Days CHF 1000 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (4 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
17 pages, 1832 KB  
Article
Integrated Monitoring of Water Quality, Metal Ions, and Antibiotic Residues, with Isolation and Optimization of Enrofloxacin-Degrading Bacteria in American Shad (Alosa sapidissima) Aquaculture Systems
by Yao Zheng, Jiajia Li, Ampeire Yona, Xiaofei Wang, Xue Li, Julin Yuan and Gangchun Xu
J. Xenobiot. 2025, 15(6), 174; https://doi.org/10.3390/jox15060174 - 22 Oct 2025
Viewed by 12
Abstract
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, [...] Read more.
This study investigated water quality, metal ion concentrations, and antibiotic residues specifically enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), across six American shad (Alosa sapidissima) aquaculture sites over a one-year period. Water and sediment samples were analyzed to determine contamination levels, and ENR-degrading bacteria were isolated from the culture environment to explore their potential use in bioremediation. Findings showed that NH3-N and total suspended solids (TSS) exceeded recommended standards at all sampling sites. Elevated levels of Li, Na (except S1), Fe, Ni (except S2 and S4), Sr, and Cu were found at site S3. Site S5 recorded the highest concentrations of Al, As, and Pb, while Cd was most abundant at S6. In sediments, S5 showed higher levels of Mg, K (except S3), Ca, Cr, Mn, Fe, Ni, As, Pb, Cu, and Zn (except S3). ENR and CIP were detected in all water and sediment samples, with a 100% detection rate. The highest ENR (16.68–3215.95 mg·kg−1) and CIP (3.90–459.60 mg·kg−1) concentrations in water occurred at site S6, following a seasonal pattern of autumn > winter > summer > spring. In sediments, the maximum ENR (41.43–133.67 mg·kg−1) and CIP (12.36–23.71 mg·kg−1) levels were observed in spring. Two ENR-degrading bacterial strains were successfully isolated and identified as Enterococcus and Bacillus. Optimal degradation was achieved at 30 °C, pH 8.0, 6% inoculum, and 3000 Lux, resulting in a 64.2% reduction in ENR after 72 h. Under slightly different conditions (25 °C, pH 10), degradation reached 58.5%. This study provides an efficient strain resource for the bioremediation of ENR pollution in the aquaculture water of American shad. Full article
Show Figures

Graphical abstract

13 pages, 2253 KB  
Article
Genetic Damage to Human Lymphocytes Induced by Contaminated Water in Populations Surrounding Lake Chapala and the Santiago River, Jalisco, México
by Mónica Reynoso-Silva, Carlos Alvarez-Moya, Fernando Manuel Guzmán-Rubio, Daniela Guadalupe Velázquez-Cruz, Daniel Moreno-Del Río, Blanca Catalina Ramírez-Hernández, Lucía Barrientos-Ramírez, José de Jesús Vargas-Radillo, Paulina Beatriz Gutiérrez-Martínez and Mario Alberto Ruíz-López
Toxics 2025, 13(10), 887; https://doi.org/10.3390/toxics13100887 - 17 Oct 2025
Viewed by 380
Abstract
Polluted water in the Chapala–Santiago basin (CSB) contains several genotoxic substances that present risks to human health, particularly among residents of communities surrounding Lake Chapala and the Santiago River, where a high prevalence of cancer has been documented. For this reason, it is [...] Read more.
Polluted water in the Chapala–Santiago basin (CSB) contains several genotoxic substances that present risks to human health, particularly among residents of communities surrounding Lake Chapala and the Santiago River, where a high prevalence of cancer has been documented. For this reason, it is necessary to study the genotoxic activity of these waters and the genetic damage in inhabitants of the surrounding populations. This study assessed the genotoxicity of water in various communities in the CSB and evaluated DNA damage to lymphocytes in residents of nearby locations. The alkaline comet assay was employed to evaluate water genotoxicity and DNA damage to lymphocytes in residents living near these waters. A standardized questionnaire was distributed to participants of this study to evaluate their exposure to polluted water. Significant genotoxic activity (p < 0.05) was observed in the lymphocytes of individuals exposed to contaminated water (tail length in Puente Grande 27.88 ± 5.4 compared to 3.77 ± 1.64 of negative control), along with notable DNA damage (p ≤ 0.05) to the lymphocytes of residents living in proximity to these waters (tail length in Juanacatlán 12.3 ± 3.4 compared to 1.4 ± 0.74 of negative control). The waters of the CSB possess the capacity to cause DNA damage; meanwhile, genotoxicity increases from Chapala to El Salto due to the additional input of genotoxic contaminants, thereby elevating the cancer risk for the exposed population. The comet test proved to be a useful tool that allowed data to be obtained quickly and reliably. Full article
Show Figures

Graphical abstract

18 pages, 3600 KB  
Article
Spatial Distribution, Key Influencing Factors, and Ecological Risk of Microplastics in Pearl River Estuary Water and Sediments
by Jiyuan Hu, Chengliang Li, Lichi Deng, Ziyan Yan and Xing Gong
Water 2025, 17(17), 2572; https://doi.org/10.3390/w17172572 - 31 Aug 2025
Viewed by 1132
Abstract
Microplastic (MP) pollution in aquatic ecosystems poses significant ecological and public health risks. A comprehensive understanding of estuarine MP pollution, influenced by multiple anthropogenic and environmental factors, remains elusive in current research. This study investigated the spatial distribution patterns and dominant factors influencing [...] Read more.
Microplastic (MP) pollution in aquatic ecosystems poses significant ecological and public health risks. A comprehensive understanding of estuarine MP pollution, influenced by multiple anthropogenic and environmental factors, remains elusive in current research. This study investigated the spatial distribution patterns and dominant factors influencing MP abundance (MPA) and physicochemical diversity in the river water and sediments of the Pearl River Estuary (PRE), while also assessing the associated ecological risks. The dominant MP categories in river water and sediments were fibers, clear in color, <1 mm in length, and composed of polyethylene terephthalate and polypropylene. Whereas inland regions showed higher MPA, nearshore regions exhibited marginally greater physicochemical diversity. Multivariate statistical analysis identified population density as the primary driver of both MPA in river water and MP physicochemical diversity in sediments. MP physicochemical diversity in river water was predominantly governed by the synergistic effect of salinity and the vegetation land. MPA in sediments depended on the synergistic effect of flow rate and watershed area. Ecological risk assessment identified elevated risks in the eastern study area driven by the presence of polymethyl methacrylate. This study establishes a scientific basis for PRE region MP management and provides global comparative data for estuarine MP research. Full article
Show Figures

Figure 1

11 pages, 2615 KB  
Communication
The Insecticide Imidacloprid Promotes Algal Growth in Absence of Zooplankton
by Verónica Laura Lozano, Florencia Soledad Alvarez Dalinger and Liliana Beatriz Moraña
J. Xenobiot. 2025, 15(3), 90; https://doi.org/10.3390/jox15030090 - 10 Jun 2025
Viewed by 822
Abstract
Imidacloprid, a systemic neonicotinoid insecticide, exerts its neurotoxic effects by binding to nicotinic acetylcholine receptors in the central nervous system. In this study, we examined the effects of commercial imidacloprid formulations on the growth of Chlorella vulgaris and other algal species, comparing these [...] Read more.
Imidacloprid, a systemic neonicotinoid insecticide, exerts its neurotoxic effects by binding to nicotinic acetylcholine receptors in the central nervous system. In this study, we examined the effects of commercial imidacloprid formulations on the growth of Chlorella vulgaris and other algal species, comparing these responses with those induced by plant hormones. Our results demonstrate that formulated imidacloprid stimulates C. vulgaris growth at concentrations as low as 7.82 μM, with a more pronounced effect than certain phytohormones. We observed similar growth-enhancing effects in other algal species exposed to imidacloprid. Notably, pure imidacloprid induced equivalent growth responses in C. vulgaris, confirming that the observed stimulation results from the active ingredient itself rather than formulation adjuvants. Given its insecticidal mode of action, potential worst-case aquatic contamination scenarios with imidacloprid may lead to significant increases in algal biomass through both direct (growth stimulation) and indirect (reduction of zooplankton grazing pressure) mechanisms. Full article
Show Figures

Figure 1

Back to TopTop