Hematological and Biochemical Alterations Induced by Sub-Acute Administration of Permethrin in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Experimental Subjects
2.2. Hematology Count and Quantification
2.3. Biochemical Markers of Tissue Damage in Serum
2.4. Tissue Homogenization and Total Protein Determination
2.5. Antioxidant Enzyme Activity and MDA Detection
2.6. Statistical Analysis
3. Results
3.1. Hematological Profile
3.2. White Blood Cell Count
3.3. Biochemical Profile
3.4. Antioxidant System in Liver, Kidney, and Heart
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

| Parameter | Sham | Corn Oil | PERM | ||
|---|---|---|---|---|---|
| 75 | 150 | 300 | |||
| Erytrocyte (×106/µL) | 4.59 ± 0.49 | 4.32 ± 0.79 | 6.06 ± 0.43 | 5.88 ± 1.96 | 5.72 ± 0.59 |
| Hemoglobin (g/dL) | 16.06 ± 1.23 | 15.85 ± 1.54 | 12.01 ± 0.58 | 12.58 ± 0.76 | 11.91 ± 0.72 |
| Hematocrit (%) | 43.82 ± 3.88 | 41.51 ± 2.86 | 32.39 ± 3.09 | 31.51 ± 6.21 | 29.34 ± 4.59 |
| Platelets (×103/µL) | 241 ± 81 | 253 ± 97 | 881 ± 40 | 1216 ± 70 | 1389 ± 37 |
| Mean cell volume (fL/cell) | 85.75 ± 7.21 | 87.70 ± 6.53 | 72.38 ± 4.16 | 65.28 ± 2.51 | 59.46 ± 2.41 |
| Erythrocyte distribution width (%) | 14.14 ± 1.42 | 15.17 ± 1.92 | 8.04 ± 0.87 | 7.35 ± 0.55 | 6.06 ± 0.53 |
| Leucocytes (×103/µL) | 6.95 ± 2.07 | 6.08 ± 2.25 | 13.63 ± 1.44 | 16.28 ± 1.44 | 18.03 ± 0.64 |
| Lymphocytes (%) | 3.44 ± 1.02 | 3.05 ± 1.43 | 7.67 ± 1.03 | 6.57 ± 1.61 | 6.97 ± 0.65 |
| Neutrophils (%) | 4.21 ± 1.31 | 3.86 ± 1.05 | 9.11 ± 0.62 | 13.09 ± 1.06 | 14.18 ± 0.49 |
| Monocytes (%) | 0.63 ± 0.65 | 0.65 ± 0.61 | 2.81 ± 0.82 | 1.76 ± 0.33 | 1.60 ± 0.11 |
| Eosinophils (%) | 0.15 ± 0.12 | 0.21 ± 0.15 | 0.26 ± 0.10 | 0.43 ± 0.01 | 0.30 ± 0.1 |
| Basophils (%) | 0.06 ± 0.03 | 0.07 ± 0.05 | 0.07 ± 0.06 | 0.15 ± 0.04 | 0.16 ± 0.02 |
| Parameter | Sham | Corn Oil | PERM | ||
|---|---|---|---|---|---|
| 75 | 150 | 300 | |||
| Erytrocyte (×106/µL) | 4.59 ± 0.49 | 4.32 ± 0.79 | 6.06 ± 0.43 | 5.88 ± 1.96 | 5.72 ± 0.59 |
| Alanine aminotransferase (U/L) | 28.73 ± 6.28 | 37.94 ± 4.55 | 196.50 ± 31.61 | 201.3 ± 32.60 | 209.9 ± 30.34 |
| Aspartate aminotransferase (U/L) | 27.50 ± 4.21 | 33.38 ± 4.59 | 199.4 ± 26.83 | 208.0 ± 23.71 | 212.90 ± 25.0 |
| Gamma-glutamyl transferase (U/L) | 38.25 ± 1.98 | 44.88 ± 3.79 | 67.25 ± 3.88 | 80.88 ± 5.35 | 93.25 ± 2.65 |
| Alkaline phosphatase (U/L) | 94.13 ± 7.90 | 97.83 ± 5.34 | 129.75 ± 4.74 | 133.62 ± 5.80 | 138.0 ± 5.55 |
| Albumin (g/dL) | 3.65 ± 0.20 | 4.05 ± 0.20 | 2.86 ± 0.15 | 2.36 ± 0.48 | 1.76 ± 0.55 |
| Total bilirubin (mg/dL) | 0.90 ± 0.08 | 0.96 ± 0.06 | 1.33 ± 0.03 | 1.40 ± 0.04 | 1.51 ± 0.03 |
| Total protein (g/dL) | 7.11 ± 0.58 | 7.35 ± 0.40 | 9.32 ± 0.27 | 11.31 ± 0.35 | 12.46 ± 0.22 |
| C-reactive protein (mg/L) | 0.65 ± 0.20 | 0.47 ± 0.31 | 1.76 ± 0.55 | 2.36 ± 0.49 | 2.86 ± 0.15 |
| Globulins (g/dL) | 2.42 ± 0.29 | 3.10 ± 0.27 | 6.56 ± 0.69 | 8.20 ± 0.40 | 8.96 ± 0.56 |
| Creatinine (mg/dL) | 0.54 ± 0.14 | 0.71 ± 0.15 | 1.66 ± 0.19 | 1.92 ± 0.05 | 2.01 ± 0.21 |
| Urea (mg/dL) | 27.94 ± 6.33 | 37.19 ± 3.02 | 49.13 ± 2.70 | 61.28 ± 4.12 | 62.30 ± 4.44 |
| Blood urea nitrogen (mg/dL) | 13.25 ± 0.46 | 15.63 ± 1.92 | 28.00 ± 0.75 | 40.88 ± 5.43 | 55.86 ± 3.23 |
| Glucose (mg/dL) | 73.63 ± 7.11 | 76.75 ± 8.89 | 120.62 ± 5.06 | 135.87 ± 2.85 | 156.12 ± 5.33 |
| Triglyceride (mg/dL) | 72.51 ± 16.29 | 80.03 ± 6.95 | 127.60 ± 4.88 | 135.20 ± 7.52 | 138.88 ± 6.23 |
| Cholesterol (mg/dL) | 57.38 ± 2.26 | 61.50 ± 5.50 | 60.0 ± 3.70 | 59.38 ± 5.23 | 66.13 ± 3.56 |
References
- Holynska-Iwan, I.; Szewczyk-Golec, K. Pyrethroids: How They Affect Human and Animal Health? Medicina 2020, 56, 582. [Google Scholar] [CrossRef]
- Chrustek, A.; Holynska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wroblewski, M.; Cwynar, A.; Olszewska-Slonina, D. Current Research on the Safety of Pyrethroids Used as Insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef]
- Méndez Gura, M.G. Permethrin. In Encyclopedia of Toxicology; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 381–392. [Google Scholar]
- Ismail, M.; Javed, S.; Kazim, M.; Razaq, A.; Hussain, E.; Ali, S.; Choudhary, M.I. Phenylpropanoids from Tanacetum baltistanicum with Nematocidal and Insecticidal Activities. Chem. Nat. Compd. 2022, 58, 637–643. [Google Scholar] [CrossRef]
- Lopez-Aceves, T.G.; Coballase-Urrutia, E.; Estrada-Rojo, F.; Vanoye-Carlo, A.; Carmona-Aparicio, L.; Hernandez, M.E.; Pedraza-Chaverri, J.; Navarro, L.; Aparicio-Trejo, O.E.; Perez-Torres, A.; et al. Exposure to Sub-Lethal Doses of Permethrin Is Associated with Neurotoxicity: Changes in Bioenergetics, Redox Markers, Neuroinflammation and Morphology. Toxics 2021, 9, 337. [Google Scholar] [CrossRef]
- Wang, X.; Martínez, M.-A.; Dai, M.; Chen, D.; Ares, I.; Romero, A.; Castellano, V.; Martínez, M.; Rodríguez, J.L.; Martínez-Larrañaga, M.-R. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ. Res. 2016, 149, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Liu, B.; Simonsen, D.W.; Lehmler, H.J. Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population. JAMA Intern. Med. 2020, 180, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Dalsager, L.; Fage-Larsen, B.; Bilenberg, N.; Jensen, T.K.; Nielsen, F.; Kyhl, H.B.; Grandjean, P.; Andersen, H.R. Maternal urinary concentrations of pyrethroid and chlorpyrifos metabolites and attention deficit hyperactivity disorder (ADHD) symptoms in 2-4-year-old children from the Odense Child Cohort. Environ. Res. 2019, 176, 108533. [Google Scholar] [CrossRef] [PubMed]
- Lehmler, H.J.; Simonsen, D.; Garcia, A.Q.; Irfan, N.M.; Dean, L.; Wang, H.; von Elsterman, M.; Li, X. A systematic review of human biomonitoring studies of 3-phenoxybenzoic acid, a urinary biomarker pyrethroid insecticide exposure, 1997 to 2019. Hyg. Environ. Health Adv. 2022, 4, 100018. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Norma Oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. [Internet]. 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 24 September 2025).
- Diario Oficial de la Federación. Secretaría de Medio Ambiente, Recursos Naturales y Pesca (SEMARNAP). Norma Oficial Mexicana NOM-087-ECOL-1995, Que establece los requisitos para la separación, envasado, almacenamiento, recolección, transporte, tratamiento y disposición final de los residuos peligrosos biológico-infecciosos que se generan en estableci-mientos que presten atención médica. [Internet]. 1995. Available online: https://www.gob.mx/cms/uploads/attachment/file/680173/NOM-087-ECOL-SSA1-2002.pdf (accessed on 24 September 2025).
- Hadwan, M.H.; Abed, H.N. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 2016, 6, 194–199. [Google Scholar] [CrossRef]
- Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–958. [Google Scholar] [CrossRef]
- Mannervik, B. Measurement of glutathione reductase activity. Curr. Protoc. Toxicol. 1999, 7.2.1–7.2.4. [Google Scholar] [CrossRef]
- Gronwald, J.W.; Plaisance, K.L. Isolation and characterization of glutathione S-transferase isozymes from sorghum. Plant Physiol. 1998, 117, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Mori, N.; Wada, J.A.; Watanabe, M.; Kumashiro, H. Increased activity of superoxide dismutase in kindled brain and suppression of kindled seizure following intra-amygdaloid injection of superoxide dismutase in rats. Brain Res. 1991, 557, 313–315. [Google Scholar] [CrossRef]
- Ukeda, H.; Kawana, D.; Maeda, S.; Sawamura, M. Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase. Biosci. Biotechnol. Biochem. 1999, 63, 485–488. [Google Scholar] [CrossRef]
- Gerard-Monnier, D.; Erdelmeier, I.; Regnard, K.; Moze-Henry, N.; Yadan, J.C.; Chaudiere, J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 1998, 11, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Liang, Y.J.; Yang, L.; Long, D.X.; Wang, H.P.; Wu, Y.J. Long-term low-dose exposure of permethrin induces liver and kidney damage in rats. BMC Pharmacol. Toxicol. 2022, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Sun, Q.; Kim, Y.; Yang, S.H.; Qi, W.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Exposure to permethrin promotes high fat diet-induced weight gain and insulin resistance in male C57BL/6J mice. Food Chem. Toxicol. 2018, 111, 405–416. [Google Scholar] [CrossRef]
- Taiwo Idowu, E.; Aimufua, O.J.; Yomi-Onilude, E.; Akinsanya, B.; Adetoro Otubanjo, O. Toxicological effects of prolonged and intense use of mosquito coil emission in rats and its implications on malaria control. Rev. Biol. Trop. 2013, 61, 1463–1473. [Google Scholar]
- Karim, M.; Ghose, D.; Rahman, M.; Hossain, M.; Rahman, M.; Rahman, M.; Islam, R. Evidence of health complications caused by mosquito coil smoke inhalation in mouse model. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 122. [Google Scholar] [CrossRef]
- Garba, S.H. Toxicological Effects of Inhaled Mosquito Coil Smoke on the Rat Spleen: A Haematological and Histological Study SH Garba, MM Shehu and AB Adelaiye. J. Med. Sci. 2007, 7, 94–99. [Google Scholar] [CrossRef]
- Shearer, J.J.; Freeman, L.E.B.; Liu, D.; Andreotti, G.; Hamilton, J.; Happel, J.; Lynch, C.F.; Alavanja, M.C.; Hofmann, J.N. Longitudinal investigation of haematological alterations among permethrin-exposed pesticide applicators in the Biomarkers of Exposure and Effect in Agriculture study. Occup. Environ. Med. 2019, 76, 467–470. [Google Scholar] [CrossRef]
- Mansee, A. Persistence of cypermethrin and permethrin and their effects on rat blood hematological characteristics. Agric. Sci. 1998, 3, 35–39. [Google Scholar] [CrossRef]
- Al-Sarar, A.; Abo Bakr, Y.; Al-Erimah, G.; Hussein, H.; Bayoumi, A. Hematological and biochemical alterations in occupationally pesticides-exposed workers of Riyadh municipality, Kingdom of Saudi Arabia. Res. J. Environ. Toxicol. 2009, 3, 179–185. [Google Scholar] [CrossRef]
- Amr, M.M. Pesticide monitoring and its health problems in Egypt, a Third World country. Toxicol. Lett. 1999, 107, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mourad Abu, T. Adverse impact of insecticides on the health of Palestinian farm workers in the Gaza Strip: A hematologic biomarker study. Int. J. Occup. Environ. Health 2005, 11, 144–149. [Google Scholar] [CrossRef]
- Schreinemachers, D.M.; Ghio, A.J. Article commentary: Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease. Environ. Health Insights 2016, 10, S36225. [Google Scholar] [CrossRef]
- Honda, T.; Pun, V.C.; Manjourides, J.; Suh, H. Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 2017, 101, 125–132. [Google Scholar] [CrossRef]
- Al-Damegh, M.A. Toxicological impact of inhaled electric mosquito-repellent liquid on the rat: A hematological, cytokine indications, oxidative stress and tumor markers. Inhal. Toxicol. 2013, 25, 292–297. [Google Scholar] [CrossRef]
- Nejatifar, F.; Abdollahi, M.; Attarchi, M.; Roushan, Z.A.; Deilami, A.E.; Joshan, M.; Rahattalab, F.; Faraji, N.; Kojidi, H.M. Evaluation of hematological indices among insecticides factory workers. Heliyon 2022, 8, e09040. [Google Scholar] [CrossRef]
- Saka, W.; Akhigbe, R.; Azeez, O.; Babatunde, T. Effects of pyrethroid insecticide exposure on haematological and haemostatic profiles in rats. Pak. J. Biol. Sci. PJBS 2011, 14, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Joshi, U.; Pearson, A.; Evans, J.E.; Langlois, H.; Saltiel, N.; Ojo, J.; Klimas, N.; Sullivan, K.; Keegan, A.P.; Oberlin, S.; et al. A permethrin metabolite is associated with adaptive immune responses in Gulf War Illness. Brain Behav. Immun. 2019, 81, 545–559. [Google Scholar] [CrossRef]
- Ghorbel Koubaa, F.; Chaâbane, M.; Choura, B.; Turki, M.; Makni-Ayadi, F.; El Feki, A. Hepatoprotective Effects of Taraxacum officinale Root Extract on Permethrin-induced Liver Toxicity in Adult Mice. Pharm. Biomed. Res. 2020, 6, 223–236. [Google Scholar] [CrossRef]
- Sufyani, O.O.; Oraiby, M.E.; Attafi, I.M.; Noureldin, E.; Dafallah, O.; Hobani, Y.A.; Qumayi, S.; Sahly, A.; Majrabi, Y.; Maashi, A.; et al. Blood Chemo-Profiling in Workers Exposed to Occupational Pyrethroid Pesticides. Int. J. Environ. Res. Public Health 2025, 22, 769. [Google Scholar] [CrossRef]
- Osei-Bimpong, A.; Meek, J.H.; Lewis, S.M. ESR or CRP? A comparison of their clinical utility. Hematology 2007, 12, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Kawther, O.; Majid, M.; Mossa, A. Certain Inflammatory Changes in Scabies Stressed Patients Treated with Permethrin 5%. Virol. Immunol. J. 2020, 4, 000229. [Google Scholar] [CrossRef]
- Patel, A.K.; Dewangan, G.; Rajput, N.; Koli, S. Assessment of Permethrin Toxicity following subacute dermal exposure in rats. J. Sci. Res. Rep. 2024, 30, 25–32. [Google Scholar] [CrossRef]
- Patrick-Iwuanyanwu, K.C.; Charles, I.A. Biochemical and Histological Changes in Liver and Kidney in Male Wistar Albino Rats Following Exposure to Solignum®: A Permethrincontaining Wood Preservative. J. Xenobiot. 2014, 4, 4596. [Google Scholar] [CrossRef]
- Fedeli, D.; Carloni, M.; Nasuti, C.; Gambini, A.; Scocco, V.; Gabbianelli, R. Early life permethrin exposure leads to hypervitaminosis D, nitric oxide and catecholamines impairment. Pestic. Biochem. Physiol. 2013, 107, 93–97. [Google Scholar] [CrossRef]
- Golomb, B.A.; Devaraj, S.; Messner, A.K.; Koslik, H.J.; Han, J.H.; Yik, B. Lower blood malondialdehyde is associated with past pesticide exposure: Findings in Gulf War illness and healthy controls. Mil. Med. Res. 2021, 8, 46. [Google Scholar] [CrossRef] [PubMed]




| Parameter | Sham | Corn Oil | PERM | ANOVA Results | ||
|---|---|---|---|---|---|---|
| 75 | 150 | 300 | ||||
| Liver | ||||||
| GPX (U/mg) | 0.153 ± 0.019 | 0.156 ± 0.028 | 0.148 ± 0.038 | 0.164 ± 0.047 | 0.177 ± 0.017 | F (4, 25) = 0.73; p = 0.577 |
| GR (U/mg) | 0.007 ± 0.002 | 0.008 ± 0.005 | 0.007 ± 0.001 | 0.009 ± 0.001 | 0.012 ± 0.007 | F (4, 11.4) = 1.21; p = 0.357 |
| GST (U/mg) | 0.063 ± 0.007 ns | 0.062 ± 0.020 | 0.068 ± 0.011 | 0.095 ± 0.016 *,# | 0.103 ± 0.010 *,# | F (4, 25) = 11.41; p < 0.0001 |
| CAT (KU/mg) | 5415 ± 717 | 5433 ± 1332 | 5226 ± 1074 | 5583 ± 1744 | 4344 ± 1035 | F (4, 25) = 0.97; p = 0.439 |
| SOD (U/mg) | 118 ± 6.8 | 112 ± 7.8 | 115 ± 7.9 | 125 ± 9.0 | 118 ± 5.7 | F (4, 25) = 1.28; p = 0.302 |
| MDA (mmol/mg) | 72 × 106 ± 15 × 106 ns | 69 × 106 ± 16 × 106 | 56 × 106 ± 0.13 × 106 | 46 × 106 ± 13 × 106 *,# | 35 × 106 ± 11 × 106 *,# | F (4, 25) = 6.99; p = 0.0006 |
| Kidney | ||||||
| GPX (U/mg) | 0.073 ± 0.011 | 0.069 ± 0.026 | 0.068 ± 0.018 | 0.092 ± 0.010 | 0.075 ± 0.011 | F (4, 25) = 2.00; p = 0.125 |
| GR (U/mg) | 0.012 ± 0.002 | 0.011 ± 0.001 | 0.011 ± 0.004 | 0.016 ± 0.002 | 0.014 ± 0.004 | F (4, 16.8) = 2.94; p = 0.051 |
| GST (U/mg) | 0.017 ± 0.003 | 0.015 ± 0.005 | 0.015 ± 0.005 | 0.019 ± 0.003 | 0.018 ± 0.002 | F (4, 25) = 1.17; p = 0.346 |
| CAT (KU/mg) | 3114 ± 563 | 2895 ± 841 | 2613 ± 780 | 3577 ± 613 | 2781 ± 270 | F (4, 25) = 1.99; p = 0.125 |
| SOD (U/mg) | 500 ± 23.7 | 355 ± 18.6 | 328 ± 19.9 | 321 ± 6.7 | 318 ± 6.6 | F (4, 25) = 1.28; p = 0.302 |
| MDA (mmol/mg) | 107 × 106 ± 50 × 106 | 100 × 106 ± 0.43 × 106 | 109 × 106 ± 0.23 × 106 | 68 × 106 ± 24 × 106 | 90 × 106 ± 27 × 106 | F (4, 25) = 1.33; p = 0.284 |
| Heart | ||||||
| GPX (U/mg) | 0.014 ± 0.003 | 0.011 ± 0.003 | 0.011 ± 0.003 | 0.010 ± 0.005 | 0.0091 ± 0.002 | F (4, 25) = 1.77; p = 0.166 |
| GR (U/mg) | 0.008 ± 0.001 ns | 0.006 ± 0.001 | 0.006 ± 0.002 | 0.005 ± 0.002 | 0.003 ± 0.001 *,# | F (4, 25) = 4.37; p = 0.008 |
| GST (U/mg) | 0.006 ± 0.008 | 0.008 ± 0.001 | 0.008 ± 0.001 | 0.007 ± 0.001 | 0.007 ± 0.001 | F (4, 25) = 1.99; p = 0.126 |
| CAT (KU/mg) | 198.9 ± 78.1 | 229.8 ± 90.7 | 256.2 ± 61.0 | 229.7 ± 42.5 | 175.8 ± 55.6 | F (4, 25) = 1.26; p = 0.309 |
| SOD (U/mg) | 1939 ± 78.8 | 1837 ± 67.8 | 1736 ± 57.4 | 2731 ± 80.31 | 2230 ± 7.20 | F (4, 25) = 2.87; p = 0.100 |
| MDA (mmol/mg) | 96 × 106 ± 24 × 106 ns | 110 × 106 ± 27 × 106 | 106 × 106 ± 21 × 106 | 77 × 106 ± 26 × 106 | 59 × 106 ± 20 × 106 *,# | F (4, 25) = 4.75; p = 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Aparicio, L.; Coballase-Urrutia, E.; Orozco-Ibarra, M.; Serrano-García, N.; Caballero-Salazar, S.; Ramírez-Pérez, M.; Rivera-Espinosa, L.; Hernández, M.E.; Montesinos-Correa, H.; Pérez-Lozano, D.L.; et al. Hematological and Biochemical Alterations Induced by Sub-Acute Administration of Permethrin in Rats. J. Xenobiot. 2025, 15, 183. https://doi.org/10.3390/jox15060183
Carmona-Aparicio L, Coballase-Urrutia E, Orozco-Ibarra M, Serrano-García N, Caballero-Salazar S, Ramírez-Pérez M, Rivera-Espinosa L, Hernández ME, Montesinos-Correa H, Pérez-Lozano DL, et al. Hematological and Biochemical Alterations Induced by Sub-Acute Administration of Permethrin in Rats. Journal of Xenobiotics. 2025; 15(6):183. https://doi.org/10.3390/jox15060183
Chicago/Turabian StyleCarmona-Aparicio, Liliana, Elvia Coballase-Urrutia, Marisol Orozco-Ibarra, Norma Serrano-García, Silvia Caballero-Salazar, Maritza Ramírez-Pérez, Liliana Rivera-Espinosa, María E. Hernández, Hortencia Montesinos-Correa, Diana L. Pérez-Lozano, and et al. 2025. "Hematological and Biochemical Alterations Induced by Sub-Acute Administration of Permethrin in Rats" Journal of Xenobiotics 15, no. 6: 183. https://doi.org/10.3390/jox15060183
APA StyleCarmona-Aparicio, L., Coballase-Urrutia, E., Orozco-Ibarra, M., Serrano-García, N., Caballero-Salazar, S., Ramírez-Pérez, M., Rivera-Espinosa, L., Hernández, M. E., Montesinos-Correa, H., Pérez-Lozano, D. L., & Diaz, D. (2025). Hematological and Biochemical Alterations Induced by Sub-Acute Administration of Permethrin in Rats. Journal of Xenobiotics, 15(6), 183. https://doi.org/10.3390/jox15060183

