Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Operational Modeling of North Aegean Oil Spills Forced by Real-Time Met-Ocean Forecasts
J. Mar. Sci. Eng. 2022, 10(3), 411; https://doi.org/10.3390/jmse10030411 - 12 Mar 2022
Cited by 3 | Viewed by 1553
Abstract
Over the latest decades, oil marine pollution has posed a vital threat for global ocean health, since spillages of any scale are related to environmental, social and financial impacts. The worldwide increase in oil and gas demand, and the parallel rise in oil [...] Read more.
Over the latest decades, oil marine pollution has posed a vital threat for global ocean health, since spillages of any scale are related to environmental, social and financial impacts. The worldwide increase in oil and gas demand, and the parallel rise in oil and gas production, exploiting particularly coastal and offshore marine deposits, have significantly increased the risk of accidental oil release to the sea. In the present study, an operational oil spill model was applied to test the oil dispersive properties and to reveal the relative magnitude of weathering processes, after an accidental oil spill release along the main tanker transportation route in the North Aegean Sea. Numerical simulations were implemented using the OpenOil transport and fate numerical model, a subclass of the OpenDrift open-source trajectory framework. This model integrates algorithms with several physical processes, such as oil entrainment, vertical mixing, oil resurfacing and oil emulsification. The oil dispersion model was coupled to real-time met-ocean forecasts received from NOAA-GFS and CMEMS. Present simulation results have focused on the impact of turbulent kinetic energy, induced by the background flow field, on the horizontal spreading of particles, as well as on the evolution of oil mass balance and oil mass properties. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Graphical abstract

Article
Tailored Leaching Tests as a Tool for Environmental Management of Mine Tailings Disposal at Sea
J. Mar. Sci. Eng. 2022, 10(3), 405; https://doi.org/10.3390/jmse10030405 - 10 Mar 2022
Cited by 1 | Viewed by 1161
Abstract
The expanding human activities in coastal areas increase the need for developing solutions to limit impacts on the marine environment. Sea disposal affects the marine environment, but despite the growing knowledge of potential impacts, there are still no standardized leaching tests for sea [...] Read more.
The expanding human activities in coastal areas increase the need for developing solutions to limit impacts on the marine environment. Sea disposal affects the marine environment, but despite the growing knowledge of potential impacts, there are still no standardized leaching tests for sea disposal. The aim of this study was to contribute to the development of leaching tests, exemplified using mine tailings, planned for submarine disposal in the Repparfjord, Norway. The mine tailings had elevated concentrations of Ba, Cr, Cu, Mn and Ni compared to background concentrations in the Repparfjord. Variables known to affect metal leaching in marine environments (DOC, pH, salinity, temperature, aerated/anoxic) were studied, as was the effect of flocculant (Magnafloc10), planned to be added prior to discharge. Stirred/non-stirred setups simulated the resuspension and disposal phases. Leaching of metals was below 2% in all experiments, with the highest rate observed for Cu and Mn. Multivariate analysis revealed a different variable importance for metals depending on their association with minerals. Higher leaching during resuspension than disposal, and lower leaching with the addition of Magnafloc10, especially for Cu and Mn, was observed. The leaching tests performed in this study are transferable to other materials for sea disposal. Full article
(This article belongs to the Special Issue Sediment Remediation at Harbour)
Show Figures

Figure 1

Article
Hydrodynamics of a Moored Permeable Vertical Cylindrical Body
J. Mar. Sci. Eng. 2022, 10(3), 403; https://doi.org/10.3390/jmse10030403 - 10 Mar 2022
Viewed by 1350
Abstract
In this study, the problems of diffraction and radiation of water waves by a permeable vertical cylindrical body are formulated within the realm of the linear potential theory. The body, which is floating in constant water depth, is moored with a catenary mooring [...] Read more.
In this study, the problems of diffraction and radiation of water waves by a permeable vertical cylindrical body are formulated within the realm of the linear potential theory. The body, which is floating in constant water depth, is moored with a catenary mooring line system. The method of matched eigenfunction expansions for the prediction of the velocity potential in the fluid domain surrounding the body is applied. Furthermore, the static and dynamic characteristics of the mooring system are combined with the hydrodynamics of the body, to set up the coupled motion equations of the dynamical model, i.e., floater and mooring system, in the frequency domain. Numerical results obtained through the developed solution are presented. The results revealed that porosity plays a key role in reducing/controlling the exciting wave loads. As far as the mooring system is concerned, its quasi-static and dynamic characteristics, by employing several motion directions on the fairlead in accordance to varying environmental conditions, are examined, highlighting their effect on the body’s motions. Full article
(This article belongs to the Special Issue Hydrodynamics of Fish Cages and Floating Permeable Structures)
Show Figures

Figure 1

Article
Comparative Assessment and Parametric Optimisation of Large Marine Two-Stroke Engines with Exhaust Gas Recirculation and Alternative Turbocharging Systems
J. Mar. Sci. Eng. 2022, 10(3), 351; https://doi.org/10.3390/jmse10030351 - 02 Mar 2022
Cited by 1 | Viewed by 911
Abstract
Although the exhaust gas recirculation (EGR) technology has been proven effective to decrease the marine engine’s nitrogen oxides (NOx) emissions, it is associated with a considerable fuel consumption increase and challenges to the engine–turbocharger matching. This study aims to parametrically optimise the EGR [...] Read more.
Although the exhaust gas recirculation (EGR) technology has been proven effective to decrease the marine engine’s nitrogen oxides (NOx) emissions, it is associated with a considerable fuel consumption increase and challenges to the engine–turbocharger matching. This study aims to parametrically optimise the EGR and turbocharging system settings of a large marine two-stroke engine with the objective of obtaining the highest engine efficiency whilst ensuring compliance with the prevailing NOx emissions limits. Two typical configurations of the investigated engine (baseline and alternative) are modelled in the GT-SUITE software. Parametric simulations are performed with EGR rates up to 40% along with cylinder bypass rates up to 50%, and the simulation results are analysed to quantify the impact of the engine operation with EGR on the performance and NOx emissions parameters. For the baseline engine configuration, the EGR rate increase considerably deteriorates the brake specific fuel consumption (BSFC), which is attenuated by opening the cylinder bypass valve. The optimal combinations of the EGR and cylinder bypass rates for each operating point are identified for both configurations. Following the comparative assessment between the two engine configurations, recommendations for the engine operating modes are proposed, leading to BSFC improvement in the region of 0.7 to 2.9 g/kWh. This study provides insights for the operational settings optimisation of two-stroke engines equipped with EGR systems, contributing towards the reduction of the associated environmental carbon footprint. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Article
Automated Tethered Profiler for Hydrophysical and Bio-Optical Measurements in the Black Sea Carbon Observational Site
J. Mar. Sci. Eng. 2022, 10(3), 322; https://doi.org/10.3390/jmse10030322 - 25 Feb 2022
Viewed by 1307
Abstract
Biogeochemical cycles of carbon transformation throughout the euphotic zone of the sea are controlled by physical processes, e.g., daily thermocline, variation in solar irradiance, thermohaline convection, and intermittent mixing. These processes should be regularly observed with sufficient time resolution at fixed geographical locations. [...] Read more.
Biogeochemical cycles of carbon transformation throughout the euphotic zone of the sea are controlled by physical processes, e.g., daily thermocline, variation in solar irradiance, thermohaline convection, and intermittent mixing. These processes should be regularly observed with sufficient time resolution at fixed geographical locations. This study provides a brief overview of the carbon observational site in the Northeastern Black Sea. The focus is on the design of a new tethered profiler Winchi for the inner continental shelf part of the site. The profiler hull and two outriggers comprise an open trimaran platform that is positively buoyant and tends to maintain a horizontal position in the water. The lower end of the winch wire is secured to the bottom anchor. By unwinding/winding the wire, the profiler ascends/descends while measuring the depth profiles of marine environment parameters ranging from the seafloor to air–sea interface. After surfacing, the profiler determines its location using the Global Positioning System (GPS) and transmits data to (and from) a server on land through the Global System for Mobile Communications (GSM). Initial field tests with the Winchi profiler at the Northeastern Black Sea shelf exhibited promising results. We report these early tests to demonstrate the use of Winchi. Full article
(This article belongs to the Special Issue Technological Oceanography)
Show Figures

Figure 1

Article
Investigation on a Large-Scale Braceless-TLP Floating Offshore Wind Turbine at Intermediate Water Depth
J. Mar. Sci. Eng. 2022, 10(2), 302; https://doi.org/10.3390/jmse10020302 - 21 Feb 2022
Viewed by 1128
Abstract
Tension leg platform (TLP) is a cost-effective and high-performance support structure for floating offshore wind turbine (FOWT) because of its small responses in heave, pitch, and roll with the constraint of the tendons. China, as the largest market of offshore wind energy, has [...] Read more.
Tension leg platform (TLP) is a cost-effective and high-performance support structure for floating offshore wind turbine (FOWT) because of its small responses in heave, pitch, and roll with the constraint of the tendons. China, as the largest market of offshore wind energy, has shown a demand for developing reliable, viable floating platform support structures, especially aiming at the intermediate water depth. The present paper described a newly proposed 10-MW Braceless-TLP FOWT designed for a moderate water depth of 60 m. The numerical simulations of the FOWT are carried out using the coupled aero-hydro-servo-elastic-mooring calculation tool FAST. The measured wind and wave data of the target site close to the Fujian Province of China were used to evaluate the performance of the FOWT under the 100-, 50-, 5-, and 2-year-return stochastic weather conditions. The natural periods of the platform in surge, sway, heave, pitch, roll, and yaw were found to be within the range recommended by the design standard DNV-RP-0286 Coupled Analysis of Floating Wind Turbines. The largest surge of the water depth ratio among all the load cases was 15%, which was smaller than the admissible ratio of 23%. The tower top displacements remained between −1 m and 1 m, which were at a similar order to those of a 10-MW monopile-supported offshore wind turbine. The six tendons remained tensioned during the simulation, even under the operational and extreme (parked) environmental conditions. The Braceless-TLP FOWT showed an overall satisfying performance in terms of the structural stability and illustrates the feasibility of this type of FOWT at such a moderate water depth. Full article
(This article belongs to the Special Issue Offshore Wind Turbine Foundations)
Show Figures

Figure 1

Article
Definition of an Artificial Reef Unit through Hydrodynamic and Structural (CFD and FEM) Models—Application to the Ares-Betanzos Estuary
J. Mar. Sci. Eng. 2022, 10(2), 230; https://doi.org/10.3390/jmse10020230 - 09 Feb 2022
Cited by 5 | Viewed by 885
Abstract
The application of hydrodynamics to the definition of artificial reefs is of great interest since the positioning of the artificial reef modules on the sea floor alters the water velocity field, causing an appropriate circulation of nutrients and promoting a habitat for settling [...] Read more.
The application of hydrodynamics to the definition of artificial reefs is of great interest since the positioning of the artificial reef modules on the sea floor alters the water velocity field, causing an appropriate circulation of nutrients and promoting a habitat for settling desired species. Nevertheless, the designs must be subjected to a structural calculation that will condition the constructive process to be applied. The present research proposes a methodology to determine the geometry of an artificial reef in terms of hydrodynamic and structural criteria. The solution proposed was analyzed through Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). Using concrete as base material for artificial reefs, four different dosages were proposed with different proportions of cement and water, leading to different mechanical properties, which determine different constructive strategies, such as dwell time in the mold. From the hydrodynamic point of view, it was found that the solution proposed provides a proper replacement of nutrients. From the structural point of view, it was found that the solution proposed does not need steel reinforcements in concrete, which improves the sustainability of the artificial reef. The four different concrete dosages will condition the constructive strategy through the dwelling time in the mold and, for any established production, the necessary number of molds (formworks). Full article
(This article belongs to the Special Issue Numerical Modelling Applied for Marine Environmental Sustainability)
Show Figures

Figure 1

Article
Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area
J. Mar. Sci. Eng. 2022, 10(2), 231; https://doi.org/10.3390/jmse10020231 - 09 Feb 2022
Cited by 2 | Viewed by 1650
Abstract
Green hydrogen is addressed as a promising solution to decarbonize industrial and mobility sectors. In this context, ports could play a key role not only as hydrogen users but also as suppliers for industrial plants with which they have strong commercial ties. The [...] Read more.
Green hydrogen is addressed as a promising solution to decarbonize industrial and mobility sectors. In this context, ports could play a key role not only as hydrogen users but also as suppliers for industrial plants with which they have strong commercial ties. The implementation of hydrogen technologies in ports has started to be addressed as a strategy for renewable energy transition but still requires a detailed evaluation of the involved costs, which cannot be separated from the correct design and operation of the plant. Hence, this study proposes the design and operation optimization of a hydrogen production and storage system in a typical Italian port. Multi-objective optimization is performed to determine the optimal levelized cost of hydrogen in environmental and techno-economic terms. A Polymer Electrolyte Membrane (PEM) electrolyzer powered by a grid-integrated photovoltaic (PV) plant, a compression station and two-pressure level storage systems are chosen to provide hydrogen to a hydrogen refueling station for a 20-car fleet and satisfy the demand of the hydrogen batch annealing in a steel plant. The results report that a 341 kWP PV plant, 89 kW electrolyzer and 17 kg hydrogen storage could provide hydrogen at 7.80 €/kgH2, potentially avoiding about 153 tCO2,eq/year (120 tCO2,eq/year only for the steel plant). Full article
(This article belongs to the Special Issue Advanced Research in Innovative Ship Energy Systems)
Show Figures

Figure 1

Article
Shoaling Wave Shape Estimates from Field Observations and Derived Bedload Sediment Rates
J. Mar. Sci. Eng. 2022, 10(2), 223; https://doi.org/10.3390/jmse10020223 - 08 Feb 2022
Viewed by 834
Abstract
The shoaling transformation from generally linear deep-water waves to asymmetric shallow-water waves modifies wave shapes and causes near-bed orbital velocities to become asymmetrical, contributing to net sediment transport. In this work, we used two methods to estimate the asymmetric wave shape from data [...] Read more.
The shoaling transformation from generally linear deep-water waves to asymmetric shallow-water waves modifies wave shapes and causes near-bed orbital velocities to become asymmetrical, contributing to net sediment transport. In this work, we used two methods to estimate the asymmetric wave shape from data at three sites. The first method converted wave measurements made at the surface to idealized near-bottom wave-orbital velocities using a set of empirical equations: the “parameterized” waveforms. The second method involved direct measurements of velocities and pressure made near the seabed: the “direct” waveforms. Estimates from the two methods were well correlated at all three sites (Pearson’s correlation coefficient greater than 0.85). Both methods were used to drive bedload-transport calculations that accounted for asymmetric waves, and the results were compared with a traditional excess-stress formulation and field estimates of bedload transport derived from ripple migration rates based on sonar imagery. The cumulative bedload transport from the parameterized waveform was 25% greater than the direct waveform, mainly because the parameterized waveform did not account for negative skewness. Calculated transport rates were comparable to rates estimated from ripple migration except during the largest event, when calculated rates were as much as 100 times greater, which occurred during high period waves. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Article
Environmental Impact on Harmful Species Pseudo-nitzschia spp. and Phaeocystis globosa Phenology and Niche
J. Mar. Sci. Eng. 2022, 10(2), 174; https://doi.org/10.3390/jmse10020174 - 27 Jan 2022
Cited by 2 | Viewed by 1447
Abstract
Global environmental change modifies the phytoplankton community, which leads to variations in their phenology and potentially causes a temporal mismatch between primary producers and consumers. In parallel, phytoplankton community change can favor the appearance of harmful species, which makes the understanding of the [...] Read more.
Global environmental change modifies the phytoplankton community, which leads to variations in their phenology and potentially causes a temporal mismatch between primary producers and consumers. In parallel, phytoplankton community change can favor the appearance of harmful species, which makes the understanding of the mechanisms involved in structuring phytoplankton ecological niches paramount for preventing future risk. In this study, we aimed to assess for the first time the relationship between environmental conditions, phenology and niche ecology of harmful species Phaeocystis globosa and the complex Pseudo-nitzschia along the French coast of the eastern English Channel. A new method of bloom detection within a time-series was developed, which allowed the characterization of 363 blooms by 22 phenological variables over 11 stations from 1998 to 2019. The pairwise quantification of asymmetric dependencies between the phenological variables revealed the implication of different mechanisms, common and distinct between the taxa studied. A PERMANOVA helped to reveal the importance of seasonal change in the environmental and community variables. The Outlying Mean and the Within Outlying Mean indexes allowed us to position the harmful taxa niche among the rest of community and quantify how their respective phenology impacted the dynamic of their subniches. We also discussed the possible hypothesis involved and the perspective of predictive models. Full article
(This article belongs to the Special Issue Taxonomy and Ecology of Marine Microorganisms)
Show Figures

Figure 1

Article
Late Quaternary Marine Terraces and Tectonic Uplift Rates of the Broader Neapolis Area (SE Peloponnese, Greece)
J. Mar. Sci. Eng. 2022, 10(1), 99; https://doi.org/10.3390/jmse10010099 - 12 Jan 2022
Cited by 2 | Viewed by 1669
Abstract
Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal [...] Read more.
Marine terraces are geomorphic markers largely used to estimate past sea-level positions and surface deformation rates in studies focused on climate and tectonic processes worldwide. This paper aims to investigate the role of tectonic processes in the late Quaternary evolution of the coastal landscape of the broader Neapolis area by assessing long-term vertical deformation rates. To document and estimate coastal uplift, marine terraces are used in conjunction with Optically Stimulated Luminescence (OSL) dating and correlation to late Quaternary eustatic sea-level variations. The study area is located in SE Peloponnese in a tectonically active region. Geodynamic processes in the area are related to the active subduction of the African lithosphere beneath the Eurasian plate. A series of 10 well preserved uplifted marine terraces with inner edges ranging in elevation from 8 ± 2 m to 192 ± 2 m above m.s.l. have been documented, indicating a significant coastal uplift of the study area. Marine terraces have been identified and mapped using topographic maps (at a scale of 1:5000), aerial photographs, and a 2 m resolution Digital Elevation Model (DEM), supported by extensive field observations. OSL dating of selected samples from two of the terraces allowed us to correlate them with late Pleistocene Marine Isotope Stage (MIS) sea-level highstands and to estimate the long-term uplift rate. Based on the findings of the above approach, a long-term uplift rate of 0.36 ± 0.11 mm a−1 over the last 401 ± 10 ka has been suggested for the study area. The spatially uniform uplift of the broader Neapolis area is driven by the active subduction of the African lithosphere beneath the Eurasian plate since the study area is situated very close (~90 km) to the active margin of the Hellenic subduction zone. Full article
(This article belongs to the Special Issue Tectonics and Sea-Level Fluctuations)
Show Figures

Figure 1

Article
Beachrock Formation Mechanism Using Multiproxy Experimental Data from Natural and Artificial Beachrocks: Insights for a Potential Soft Engineering Method
J. Mar. Sci. Eng. 2022, 10(1), 87; https://doi.org/10.3390/jmse10010087 - 10 Jan 2022
Cited by 4 | Viewed by 1841
Abstract
Beachrocks are a window to the past environmental, geological, sedimentological and morphological conditions that were dominant in the coastal zone during their formation. Furthermore, beachrocks have the ability to reduce coastal erosion impact on sandy beaches. This study focuses on the beachrock formation [...] Read more.
Beachrocks are a window to the past environmental, geological, sedimentological and morphological conditions that were dominant in the coastal zone during their formation. Furthermore, beachrocks have the ability to reduce coastal erosion impact on sandy beaches. This study focuses on the beachrock formation mechanism through the comparison of cement characteristics, mineral chemistry and sedimentology of beachrock occurrences from two different geological and geographical localities: Diolkos, Corinth, Greece and Sumuide, Okinawa, Japan. In addition, in order to investigate a potential soft engineering method to protect coasts from erosion, artificial beachrock samples were created in vitro using sand samples and ureolytic bacteria from both areas under accelerating conditions. For Okinawa artificial beachrock experiments, the bacteria Pararhodobacter sp. was used, and for Diolkos, it was the bacteria Micrococcus yunnainensis sp. For the natural beachrocks, a multi-analytical approach was accomplished with the use of microscopic investigation, a scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray fluorescence. Correlations were made between natural and artificial beachrocks. Results have shown that Diolkos beachrock was formed in the upper part of the intertidal zone, consisting of detrital material originating from the local bedrock, while Sumuide beachrock formed in the low intertidal–upper subtidal zone, consisting of coral sand and foraminifera fragments. For the artificial beachrocks, three samples were created using the microbial-induced carbonate precipitation (MICP) method, one from Diolkos (Corinth, Greece) and two from Sumuide (Okinawa, Japan). Diolkos artificial beachrock was better consolidated in comparison to Sumuide. Our investigation has shown that bacterial density was the key factor for the creation of the artificial beachrocks, while the samples’ granulometry played a secondary role in the process. The laboratory artificial beachrocks show encouraging results for a new soft engineering method to encounter beach erosion while keeping an ecofriendly character by saving energy, material resources and gas emissions. Artificial beachrocks can share the same properties of a natural beachrock and can contribute positively to marine biodiversity as a natural rocky habitat. Full article
(This article belongs to the Special Issue Coastal Systems: Monitoring, Protection and Adaptation Approaches)
Show Figures

Figure 1

Article
The Black Sea Physics Analysis and Forecasting System within the Framework of the Copernicus Marine Service
J. Mar. Sci. Eng. 2022, 10(1), 48; https://doi.org/10.3390/jmse10010048 - 02 Jan 2022
Cited by 3 | Viewed by 1568
Abstract
This work describes the design, implementation and validation of the Black Sea physics analysis and forecasting system, developed by the Black Sea Physics production unit within the Black Sea Monitoring and Forecasting Center as part of the Copernicus Marine Environment and Monitoring Service. [...] Read more.
This work describes the design, implementation and validation of the Black Sea physics analysis and forecasting system, developed by the Black Sea Physics production unit within the Black Sea Monitoring and Forecasting Center as part of the Copernicus Marine Environment and Monitoring Service. The system provides analyses and forecasts of the temperature, salinity, sea surface height, mixed layer depth and currents for the whole Black Sea basin, excluding the Azov Sea, and has been operational since 2016. The system is composed of the NEMO (v 3.4) numerical model and an OceanVar scheme, which brings together real time observations (in-situ temperature and salinity profiles, sea level anomaly and sea surface temperature satellite data). An operational quality assessment framework is used to evaluate the accuracy of the products which set the basic standards for the future upgrades, highlighting the strengths and weaknesses of the model and the observing system in the Black Sea. Full article
(This article belongs to the Special Issue Ocean Modelling in Support of Operational Ocean and Coastal Services)
Show Figures

Figure 1

Article
Simulation Modeling of a Ship Propulsion System in Waves for Control Purposes
J. Mar. Sci. Eng. 2022, 10(1), 36; https://doi.org/10.3390/jmse10010036 - 31 Dec 2021
Cited by 5 | Viewed by 1539
Abstract
The article deals with a simulation approach to the representation of the ship motions in waves, interacting with the propulsion system behavior (diesel engine and propeller). The final goal is the development of a simulator, as complete as possible, that allows the analysis [...] Read more.
The article deals with a simulation approach to the representation of the ship motions in waves, interacting with the propulsion system behavior (diesel engine and propeller). The final goal is the development of a simulator, as complete as possible, that allows the analysis of the main engine thermodynamics in different sea conditions, also in the unfavorable event of dynamic instability of the hull, and the correct management of the other propulsion components. This latter aspect is particularly interesting in some of the last new energy solutions for decarbonization of ships, concerning, for example, auxiliary electric motors, powered by batteries, to support the traditional diesel-mechanical propulsion (especially in heavy weather conditions). From this point of view, a proper analysis of the engine dynamic performance, affected by particular sea states, is fundamental for a smart management and control of shaft generators/auxiliary electric motors, batteries, etc. To this end, the work presents and highlights the main features of a ship simulator, suitable for the study of the new propulsion solutions that are emerging in maritime transport. Some representative results will point out the complex non-linear behavior of the propulsion plant in waves. Moreover, a parametric roll scenario will be investigated, in order to highlight the capability of the conceived simulator in modeling the effects of the dynamic instability of the hull on the propulsion plant. Full article
(This article belongs to the Special Issue Smart Control of Ship Propulsion System)
Show Figures

Figure 1

Article
Open Digital Shoreline Analysis System: ODSAS v1.0
J. Mar. Sci. Eng. 2022, 10(1), 26; https://doi.org/10.3390/jmse10010026 - 27 Dec 2021
Cited by 3 | Viewed by 2862
Abstract
In this study, we propose a new baseline and transect method, the open-source digital shoreline analysis system (ODSAS), which is specifically designed to deal with very irregular coastlines. We have compared the ODSAS results with those obtained using the digital shoreline analysis system [...] Read more.
In this study, we propose a new baseline and transect method, the open-source digital shoreline analysis system (ODSAS), which is specifically designed to deal with very irregular coastlines. We have compared the ODSAS results with those obtained using the digital shoreline analysis system (DSAS). Like DSAS, our proposed method uses a single baseline parallel to the shoreline and offers the user different smoothing and spacing options to generate the transects. Our method differs from DSAS in the way that the transects’ starting points and orientation are delineated by combining raster and vector objects. ODSAS uses SAGA GIS and R, which are both free open-source software programs. In this paper, we delineate the ODSAS workflow, apply it to ten study sites along the very irregular Galician coastline (NW Iberian Peninsula), and compare it with the one obtained using DSAS. We show how ODSAS produces similar values of coastline changes in terms of the most common indicators at the aggregated level (i.e., using all transects), but the values differ when compared at the transect-by-transect level. We argue herein that explicitly requesting the user to define a minimum resolution is important to reduce the subjectivity of the transect and baseline method. Full article
Show Figures

Figure 1

Article
All-In-One: Microbial Response to Natural and Anthropogenic Forcings in a Coastal Mediterranean Ecosystem, the Syracuse Bay (Ionian Sea, Italy)
J. Mar. Sci. Eng. 2022, 10(1), 19; https://doi.org/10.3390/jmse10010019 - 26 Dec 2021
Cited by 2 | Viewed by 1658
Abstract
Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally [...] Read more.
Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally monitored in a Mediterranean coastal ecosystem, Syracuse Bay, where multiple conflicts co-exist. Quali-quantitative, seasonal surveys of the phytoplankton communities (diatoms, dinoflagellates and other taxa), the potential microbial enzymatic activity rates (leucine aminopeptidase, beta-glucosidase and alkaline phosphatase) and heterotrophic culturable bacterial abundance, together with the thermohaline structure and trophic status in terms of nutrient concentrations, phytoplankton biomass (as Chlorophyll-a), and total suspended and particulate organic matter, were carried out. The aim was to integrate microbial community dynamics in the context of the environmental characterization and disentangle microbial patterns related to natural changes from those driven by the anthropic impact on this ecosystem. In spite of the complex relationships between the habitat characteristics, microbial community abundance and metabolic potential, in Syracuse Bay, the availability of organic substrates differently originated by the local conditions appeared to drive the distribution and activity of microbial assemblage. A seasonal pattern of microbial abundances was observed, with the highest concentrations of phytoplankton in spring and low values in winter, whereas heterotrophic bacteria were more abundant during the autumn period. The autumn peaks of the rates of enzymatic activities suggested that not only phytoplankton-derived but also allochthonous organic polymers strongly stimulated microbial metabolism. Increased microbial response in terms of abundance and metabolic activities was detected especially at the sites directly affected by organic matter inputs related to agriculture or aquaculture activities. Nitrogen salts such as nitrate, rather than orthophosphate, were primary drivers of phytoplankton growth. This study also provides insights on the different seasonal scenarios of water quality in Syracuse Bay, which could be helpful for management plans of this Mediterranean coastal environment. Full article
Show Figures

Figure 1

Article
A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies
J. Mar. Sci. Eng. 2021, 9(12), 1463; https://doi.org/10.3390/jmse9121463 - 20 Dec 2021
Cited by 1 | Viewed by 1851
Abstract
A new, high-resolution model for the northern part of the Aegean Sea, aimed primarily at climatological research (relaxation and data assimilation-free climate simulations), is hereby presented, along with the results of a 28-year-long simulation covering the period from 1986 to 2013. The model [...] Read more.
A new, high-resolution model for the northern part of the Aegean Sea, aimed primarily at climatological research (relaxation and data assimilation-free climate simulations), is hereby presented, along with the results of a 28-year-long simulation covering the period from 1986 to 2013. The model applied is the Regional Ocean Modelling System (ROMS). A significant improvement over previous models of the Aegean introduced in this work is the replacement of parameterizations of the Dardanelles exchange by a fully three-dimensional simulation of the flow in the Strait. The incorporation of part of the Marmara Sea in the model domain enables the interaction with other regional climate simulations, thus allowing climatic variability of the exchange of the Mediterranean and Black Seas. An extensive validation is carried out comparing the model output with all the available observations from several different platforms, i.e., satellite sea surface temperature and height, T/S profiles from R/V ships, and HF radar surface currents velocity. We focus on the model’s ability to reproduce, to some extent, the distinct thermohaline features and circulation patterns that characterize this specific area of the Mediterranean Sea. Our findings, after comparing simulation results with all the available observations, revealed the model’s sufficiency to simulate very adequately the complex hydrology of the North Aegean Sea, and the model’s ability to reproduce incidents of deep-water formation that took place in the region in previous decades during the Eastern Mediterranean Transient (EMT). Full article
(This article belongs to the Special Issue Hydrodynamic Circulation Modelling in the Marine Environment)
Show Figures

Figure 1

Article
A Projection Method for the Estimation of Error Covariance Matrices for Variational Data Assimilation in Ocean Modelling
J. Mar. Sci. Eng. 2021, 9(12), 1461; https://doi.org/10.3390/jmse9121461 - 20 Dec 2021
Cited by 1 | Viewed by 1791
Abstract
Data assimilation methods are an invaluable tool for operational ocean models. These methods are often based on a variational approach and require the knowledge of the spatial covariances of the background errors (differences between the numerical model and the true values) and the [...] Read more.
Data assimilation methods are an invaluable tool for operational ocean models. These methods are often based on a variational approach and require the knowledge of the spatial covariances of the background errors (differences between the numerical model and the true values) and the observation errors (differences between true and measured values). Since the true values are never known in practice, the error covariance matrices containing values of the covariance functions at different locations, are estimated approximately. Several methods have been devised to compute these matrices, one of the most widely used is the one developed by Hollingsworth and Lönnberg (H-L). This method requires to bin (combine) the data points separated by similar distances, compute covariances in each bin and then to find a best fit covariance function. While being a helpful tool, the H-L method has its limitations. We have developed a new mathematical method for computing the background and observation error covariance functions and therefore the error covariance matrices. The method uses functional analysis which allows to overcome some shortcomings of the H-L method, for example, the assumption of statistical isotropy. It also eliminates the intermediate steps used in the H-L method such as binning the innovations (differences between observations and the model), and the computation of innovation covariances for each bin, before the best-fit curve can be found. We show that the new method works in situations where the standard H-L method experiences difficulties, especially when observations are scarce. It gives a better estimate than the H-L in a synthetic idealised case where the true covariance function is known. We also demonstrate that in many cases the new method allows to use the separable convolution mathematical algorithm to increase the computational speed significantly, up to an order of magnitude. The Projection Method (PROM) also allows computing 2D and 3D covariance functions in addition to the standard 1D case. Full article
(This article belongs to the Special Issue Technological Oceanography)
Show Figures

Figure 1

Article
A Comprehensive Approach to Account for Weather Uncertainties in Ship Route Optimization
J. Mar. Sci. Eng. 2021, 9(12), 1434; https://doi.org/10.3390/jmse9121434 - 15 Dec 2021
Cited by 2 | Viewed by 1558
Abstract
This work aims at defining in a probabilistic manner objectives and constraints typically considered in route optimization systems. Information about weather-related uncertainties is introduced by adopting ensemble forecast results. Classical reliability methods commonly used in structural analysis are adopted, allowing to achieve a [...] Read more.
This work aims at defining in a probabilistic manner objectives and constraints typically considered in route optimization systems. Information about weather-related uncertainties is introduced by adopting ensemble forecast results. Classical reliability methods commonly used in structural analysis are adopted, allowing to achieve a simple yet effective evaluation of the probability of failure and the variability associated with the predicted fuel consumption and time of arrival. A quantitative example of application is provided, taking into consideration one of the main North Atlantic routes. Full article
(This article belongs to the Special Issue Ship Routing)
Show Figures

Figure 1

Article
Coastal Floods Induced by Mean Sea Level Rise—Ecological and Socioeconomic Impacts on a Mesotidal Lagoon
J. Mar. Sci. Eng. 2021, 9(12), 1430; https://doi.org/10.3390/jmse9121430 - 14 Dec 2021
Cited by 5 | Viewed by 1577
Abstract
Coastal floods are currently a strong threat to socioeconomic activities established on the margins of lagoons and estuaries, as well as to their ecological equilibrium, a situation that is expected to become even more worrying in the future in a climate change context. [...] Read more.
Coastal floods are currently a strong threat to socioeconomic activities established on the margins of lagoons and estuaries, as well as to their ecological equilibrium, a situation that is expected to become even more worrying in the future in a climate change context. The Ria de Aveiro lagoon, located on the northwest coast of Portugal, is not an exception to these threats, especially considering the low topography of its margins which has led to several flood events in the past. The growing concerns with these regions stem from the mean sea level (MSL) rise induced by climate changes as well as the amplification of the impacts of storm surge events, which are predicted to increase in the future due to higher mean sea levels. Therefore, this study aims to evaluate the influence of MSL rise on the inundation of Ria de Aveiro habitats and to assess the changes in inundation patterns resulting from frequent storm surges (2-year return period) from the present to the future, assessing their ecological and socioeconomic impacts. For this, a numerical model (Delft3D), previously calibrated and validated, was used to simulate the lagoon hydrodynamics under different scenarios combining MSL rise and frequent storm surge events. The numerical results demonstrated that MSL rise can change the vertical zonation and threaten the local habitats. Many areas of the lagoon may change from supratidal/intertidal to intertidal/subtidal, with relevant consequences for local species. The increase in MSL expected for the end of the century could make the lagoon more vulnerable to the effect of frequent storm surges, harming mostly agricultural areas, causing great losses for this sector and for many communities who depend on it. These extreme events can also affect artificialized areas and, in some cases, endanger lives. Full article
(This article belongs to the Special Issue Sea Level Rise: Drivers, Variability and Impacts)
Show Figures

Figure 1

Article
Long-Term Evolution and Monitoring at High Temporal Resolution of a Rapidly Retreating Cliff in a Cold Temperate Climate Affected by Cryogenic Processes, North Shore of the St. Lawrence Gulf, Quebec (Canada)
J. Mar. Sci. Eng. 2021, 9(12), 1418; https://doi.org/10.3390/jmse9121418 - 12 Dec 2021
Cited by 1 | Viewed by 1667
Abstract
This article focuses on the quantification of retreat rates, geomorphological processes, and hydroclimatic and environmental drivers responsible for the erosion of an unconsolidated fine-sediment cliff along the north shore of the Gulf of St. Lawrence (Quebec, Canada). Annual monitoring using field markers over [...] Read more.
This article focuses on the quantification of retreat rates, geomorphological processes, and hydroclimatic and environmental drivers responsible for the erosion of an unconsolidated fine-sediment cliff along the north shore of the Gulf of St. Lawrence (Quebec, Canada). Annual monitoring using field markers over a period of twenty years, coupled with photo interpretation and historical archive analysis, indicates an average annual erosion rate of 2.2 m per year between 1948 and 2017. An acceleration in retreat occurred during the last 70 years, leading to a maximum between 1997 and 2017 (3.4 m per year) and 2000–2020 (3.3 m per year). Daily observations based on six monitoring cameras installed along the cliff between 2008 and 2012 allowed the identification of mechanisms and geomorphological processes responsible for cliff retreat. Data analysis reveals seasonal activity peaks during winter and spring, which account for 75% of total erosional events. On an annual basis, cryogenic processes represent 68% of the erosion events observed and subaerial and hydrogeological processes account for 73%. Small-scale processes, such as gelifraction, solifluction, suffosion, debris collapse, and thermoabrasion, as well as mass movement events, such as slides and mudflows, induced rapid cliff retreat. Lithostratigraphy and cliff height exert an important control on erosion rates and retreat modes, which are described by three main drivers (hydrogeologic, cryogenic, and hydrodynamic processes). Critical conditions promoting high erosion rates include the absence of an ice-foot in winter, the absence of snow cover on the cliff face allowing unrestricted solar radiation, the repetition of winter warm spells, snow melting and sediment thawing, and high rainfall conditions (>30 mm or SPI > 2). The relationships between hydroclimatic forcing and retreat rates are difficult to establish without taking into account the quantification of the geomorphological processes involved. The absence of quantitative data on the relative contribution of geomorphological processes can constitute a major obstacle in modeling the retreat of cliffs with regard to climate change. Full article
(This article belongs to the Special Issue Coastal Hazards Assessment in Cold Regions)
Show Figures

Figure 1

Article
1D–3D Coupling Algorithm of Gas Flow for the Valve System in a Compression Ignition Engine
J. Mar. Sci. Eng. 2021, 9(10), 1061; https://doi.org/10.3390/jmse9101061 - 27 Sep 2021
Viewed by 1016
Abstract
Emission control devices such as selective catalytic reduction (SCR), exhaust gas recirculation (EGR), and scrubbers were installed in the compression ignition (CI) engine, and flow analysis of intake air and exhaust gas was required to predict the performance of the CI engine and [...] Read more.
Emission control devices such as selective catalytic reduction (SCR), exhaust gas recirculation (EGR), and scrubbers were installed in the compression ignition (CI) engine, and flow analysis of intake air and exhaust gas was required to predict the performance of the CI engine and emission control devices. In order to analyze such gas flow, it was inefficient to comprehensively analyze the engine’s cylinder and intake/exhaust systems because it takes a lot of computation time. Therefore, there is a need for a method that can quickly calculate the gas flow of the CI engine in order to shorten the development process of emission control devices. It can be efficient and quickly calculated if only the parts that require detailed observation among the intake/exhaust gas flow of the CI engine are analyzed in a 3D approach and the rest are analyzed in a 1D approach. In this study, an algorithm for gas flow analysis was developed by coupling 1D and 3D in the valve systems and comparing with experimental results for validation. Analyzing the intake/exhaust gas flow of the CI engine in a 3D approach took about 7 days for computation, but using the developed 1D–3D coupling algorithm, it could be computed within 30 min. Compared with the experimental results, the exhaust pipe pressure occurred an error within 1.80%, confirming the accuracy and it was possible to observe the detailed flow by showing the contour results for the part analyzed in the 3D zone. As a result, it was possible to accurately and quickly calculate the gas flow of the CI engine using the 1D–3D coupling algorithm applied to the valve system, and it was expected that it can be used to shorten the process for analyzing emission control devices, including predicting the performance of the CI engine. Full article
(This article belongs to the Special Issue Experiments and Numerical Analysis of Flow)
Show Figures

Figure 1

Article
Optimal Ways of Unloading and Loading Operations under Arctic Conditions
J. Mar. Sci. Eng. 2021, 9(10), 1050; https://doi.org/10.3390/jmse9101050 - 24 Sep 2021
Viewed by 1199
Abstract
Usually, loading and unloading of cargo ships takes place in ports that are equipped with the infrastructure necessary to carry out such operations. In the Arctic, often a helicopter is the only way to get the cargo to the right place. Finding the [...] Read more.
Usually, loading and unloading of cargo ships takes place in ports that are equipped with the infrastructure necessary to carry out such operations. In the Arctic, often a helicopter is the only way to get the cargo to the right place. Finding the optimal geographic location for unloading a ship using helicopters is an important task. It is necessary to create a support system for making the right decisions in such situations. Mathematical modeling has been used to find the geographical location that ensures the most favorable and quickest delivery of cargo from a vessel to its destination, using a helicopter. A criterion has also been found in which the search for the optimum point is a more rational way of unloading the vessel compared to other discharge options. The maps of the economic benefits of loading and unloading operations in this model have been developed. Using the example of the developed model, it is shown that during the transportation of goods in Ob Bay, significant economic and temporary advantages can be obtained. The developed model can be extended to the case of cargo delivery not only in the Arctic conditions, but also where the transport infrastructure is insufficiently developed. Full article
Show Figures

Figure 1

Article
Bathymetric Data Requirements for Operational Coastal Erosion Forecasting Using XBeach
J. Mar. Sci. Eng. 2021, 9(10), 1053; https://doi.org/10.3390/jmse9101053 - 24 Sep 2021
Cited by 4 | Viewed by 2144
Abstract
There is an increasing interest in the broad-scale implementation of coastal erosion early warning systems (EWS) with the goal of enhancing community preparedness to extreme coastal storm wave events. These emerging systems typically rely on process-based models to predict the storm-induced morphological change. [...] Read more.
There is an increasing interest in the broad-scale implementation of coastal erosion early warning systems (EWS) with the goal of enhancing community preparedness to extreme coastal storm wave events. These emerging systems typically rely on process-based models to predict the storm-induced morphological change. A key challenge with incorporating these models in EWSs is the need for up-to-date nearshore and surf zone bathymetry data, which is difficult to measure routinely, but potentially important for accurate erosion forecasting. This study evaluates the degree to which up-to-date bathymetry is required for accurate coastal erosion predictions using the morphodynamic model XBeach and, subsequently, whether a range of “representative” and/or “synthetic” bathymetries can be used for the bottom boundary, when a survey of the immediate pre-storm bathymetry is not available. Twelve storm events at two contrasting sites were modelled using six different bathymetry scenarios, including the expected “best case” bathymetry surveyed immediately pre-storm. These results indicate that alternative bathymetries can be used to obtain sub-aerial erosion predictions that are similar (and in some cases better) than those resulting from the use of an immediately pre-storm surveyed bathymetry, provided that rigorous model calibration is undertaken prior. This generalized finding is attributed to specific parametrizations in the XBeach model structure that are optimized during the calibration process to match the particular bottom boundary condition used. This study provides practical guidance for the selection of suitable nearshore bathymetry for use in operational coastal erosion EWSs. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Coastal Environment)
Show Figures

Figure 1

Article
Soil Fabric and Transitional Behavior in Completely Decomposed Granite: An Example of Well-Graded Soil
J. Mar. Sci. Eng. 2021, 9(10), 1046; https://doi.org/10.3390/jmse9101046 - 23 Sep 2021
Viewed by 926
Abstract
Unlike sedimentary soils, limited studies have dealt with completely decomposed granite (CDG) soils, even though they are plentiful and used extensively in several engineering applications. In this paper, a set of triaxial compression tests have been conducted on well-graded intact and disturbed CDG [...] Read more.
Unlike sedimentary soils, limited studies have dealt with completely decomposed granite (CDG) soils, even though they are plentiful and used extensively in several engineering applications. In this paper, a set of triaxial compression tests have been conducted on well-graded intact and disturbed CDG soils to study the impact of the fabric on soil behavior. The soil behavior was robustly affected by the soil fabric and its mineral composition. The intact soil showed multiple parallel compression lines, while a unique isotropic compression line was present in the case of disturbed soil. Both the intact and disturbed soils showed unique critical state lines (CSL) in both the e-log p′ and q-p′ spaces. The intact soil showed behavior unlike other transitional soils that have both distinct isotropic compression lines ICLs and CSLs. The gradient of the unique ICL of the disturbed soil was much more than that of the parallel compression lines of the intact soil. In the intact soil, the slope of the unique CSL (M) in the q-p′ space was higher than that of the disturbed soil. The isotropic response was present for both the intact and disturbed soils after erasing the inherited anisotropy as the stress increased with irrecoverable volumetric change. Soil fabric is considered the dominant factor in the transitional behavior and such a mode of soil behavior is no longer restricted to gap-graded soil as previously thought. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Article
Challenges for Zero-Emissions Ship
J. Mar. Sci. Eng. 2021, 9(10), 1042; https://doi.org/10.3390/jmse9101042 - 22 Sep 2021
Cited by 9 | Viewed by 2313
Abstract
Due to the increasing impact of ship emissions on the environment and the preventive measures of current regulations introduced by the International Maritime Organization to significantly reduce them, the development of ocean-going all-electric ships has been addressed as a concept applied to achieve [...] Read more.
Due to the increasing impact of ship emissions on the environment and the preventive measures of current regulations introduced by the International Maritime Organization to significantly reduce them, the development of ocean-going all-electric ships has been addressed as a concept applied to achieve it. Being a promising technology considers the use of technology alternatives such as fuel cells, batteries, and supercapacitors together with the use of zero-carbon alternative fuels such as hydrogen (H2) and ammonia (NH3) as main energy sources. This article addresses a state-of-the-art on several challenges related to the ocean-going zero-emissions ship to achieve a zero-emissions shipping, based on the technology associated with hybrid and all-electric ship, and the zero-carbon fuels alternatives. In this respect, a transition from fossil fuel-based propulsion and auxiliary systems to a zero-emissions ship concept are related to the challenges to overcome the needs of energy density for these new alternatives energy sources compared to current fossil fuel options. The transitional process should consider a first step of hybridization of the propulsion and auxiliary systems of existing ships to get a baseline from where to move forward to a zero-emissions configuration for new designs. Full article
(This article belongs to the Special Issue Zero Emission Shipping)
Show Figures

Figure 1

Article
The North Equatorial Countercurrent East of the Dateline, Its Variations and Its Relationship to the El Niño Event
J. Mar. Sci. Eng. 2021, 9(10), 1041; https://doi.org/10.3390/jmse9101041 - 22 Sep 2021
Cited by 1 | Viewed by 978
Abstract
Using forty years (1978–2017) of Ocean Reanalysis System 4 (ORAS4) dataset, the purpose of this study is to investigate the fluctuation of the North Equatorial Countercurrent (NECC) to the east of the dateline in relation to the presence of three kinds of El [...] Read more.
Using forty years (1978–2017) of Ocean Reanalysis System 4 (ORAS4) dataset, the purpose of this study is to investigate the fluctuation of the North Equatorial Countercurrent (NECC) to the east of the dateline in relation to the presence of three kinds of El Niño events. From spring (MAM) through summer (JJA), we found that the NECC was stronger during the Eastern Pacific El Niño (EP El Niño) and the MIX El Niño than during the Central Pacific El Niño (CP El Niño). When it comes to winter (DJF), on the other hand, the NECC was stronger during the CP and MIX El Niño and weaker during the EP El Niño. This NECC variability was affected by the fluctuations of thermocline depth near the equatorial Pacific. Moreover, we also found that the seasonal southward shift of the NECC occurred between winter and spring, but the shift was absent during the CP and MIX El Niño events. This meridional shift was strongly affected by the local wind stress. Full article
(This article belongs to the Special Issue Sea Surface Temperature: From Observation to Applications)
Show Figures

Figure 1

Article
A Design Method to Assess the Primary Strength of the Delta-Type VLFS
J. Mar. Sci. Eng. 2021, 9(9), 1026; https://doi.org/10.3390/jmse9091026 - 18 Sep 2021
Cited by 1 | Viewed by 908
Abstract
Very large floating structure (VLFS) is a sustainable concept centered around creating solid platforms at sea. The Delta is a new type of VLFS, designed to withstand open-sea conditions and to form, in addition to a broad deck areas, a sheltered basin of [...] Read more.
Very large floating structure (VLFS) is a sustainable concept centered around creating solid platforms at sea. The Delta is a new type of VLFS, designed to withstand open-sea conditions and to form, in addition to a broad deck areas, a sheltered basin of year-round operability. The design of this unique hull relies on direct calculations in order to identify critical load cases and assess their load effects. This study formulates a theoretical procedure for the initial assessment of the primary strength. The procedure analytically integrates the floatation loads while the hull rests at hydrostatic equilibrium on a wave surface and obtains the vertical and horizontal bending moment. This preliminary assessment tool enables a fast review of many load cases and provides the basic insights necessary for a reasonable initial design. Using the procedure, we conducted a primary load assessment for the design of Delta. By calculating the load response to 588 load cases, we identified the critical load scenario and the maximal axial stress. As the stress was too high, we improved the geometry in order to reduce loads and assessed proper scantlings for the critical section. We present the formulation of the procedure, the validation of the results, and the implementation for the structural design of the Delta VLFS. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Article
A Comparison of Traditional and Locally Novel Fishing Gear for the Exploitation of the Invasive Atlantic Blue Crab in the Eastern Adriatic Sea
J. Mar. Sci. Eng. 2021, 9(9), 1019; https://doi.org/10.3390/jmse9091019 - 17 Sep 2021
Cited by 3 | Viewed by 1165
Abstract
The Atlantic Blue Crab Callinectes sapidus has been recognized as invasive in the Mediterranean Sea, where it now provides a significant contribution to artisanal fisheries. In this study, we compared the efficiency, selectivity, and productivity of American wire crab traps and traditional fyke [...] Read more.
The Atlantic Blue Crab Callinectes sapidus has been recognized as invasive in the Mediterranean Sea, where it now provides a significant contribution to artisanal fisheries. In this study, we compared the efficiency, selectivity, and productivity of American wire crab traps and traditional fyke nets for the capture of Blue Crabs in a study conducted from June to December 2019 in the Parila Lagoon (River Neretva Estuary, Croatia). A total of 7707 specimens were caught in 15 wire traps, comprising 6959 males and 749 females. The total catch using 50 traditional fyke traps was 1451 crabs, of which 1211 were males and 240 were females. In general, wire crab traps showed a higher capture selectivity and economic performance compared to fyke nets. The catch per unit effort (CPUE) was 102.76 kg for the American wire crab trap and 5.96 kg for the traditional fyke net. The CPUE of gravid female Blue Crabs was lower for the wire traps than the fyke nets. Herein, the utility of crab traps as selective fishing gear for the capture of Blue Crabs, and management tools for control of the reproductive and recruitment phases of the crab, are discussed, with the perspective of future exploitation of the species as a commercially valuable shellfish product in the Mediterranean. Full article
(This article belongs to the Special Issue Marine Fisheries Management)
Show Figures

Figure 1

Article
Fin Whale (Balaenoptera physalus) in the Ligurian Sea: Preliminary Study on Acoustics Demonstrates Their Regular Occurrence in Autumn
J. Mar. Sci. Eng. 2021, 9(9), 966; https://doi.org/10.3390/jmse9090966 - 06 Sep 2021
Cited by 4 | Viewed by 1452
Abstract
The patterns of movement of the fin whale (Balaenoptera physalus (Linnaeus, 1758)) in the Mediterranean Sea are still a matter of debate. Feeding aggregations are well known in the Corso-Liguro-Provençal Basin from July to September, but little is known for the autumn [...] Read more.
The patterns of movement of the fin whale (Balaenoptera physalus (Linnaeus, 1758)) in the Mediterranean Sea are still a matter of debate. Feeding aggregations are well known in the Corso-Liguro-Provençal Basin from July to September, but little is known for the autumn and winter seasons. Passive acoustic monitoring (PAM) was implemented in the Ligurian Sea to overcome this gap and to investigate the temporal and spatial variation of fin whale acoustic presence. From July to December 2011, five autonomous recorders were deployed at between 700 and 900 m depths. Fin whale calls were automatically detected almost every day, with higher vocalization rates in October, November, and December. Furthermore, daily vocalization rates were higher during light hours, and closer to the coast. These outcomes suggest that not all the individuals migrate, staying in the area also during autumn for feeding or breeding purposes. The dial cycle of vocalization might be related to feeding activities and zooplankton vertical migration, whereas the proximity to the coast can be explained by the morphology of the area that promotes the upwelling system. Although this work only represents a six-month period, certainly it suggests the need for a larger spatial and temporal PAM effort, crucial for species management and for mitigating possible impact of anthropogenic activities at the basin level. Full article
(This article belongs to the Special Issue Passive Acoustics to Study Marine and Freshwater Ecosystems)
Show Figures

Figure 1

Article
Analysis of Composite Scrubber with Built-In Silencer for Marine Engines
J. Mar. Sci. Eng. 2021, 9(9), 962; https://doi.org/10.3390/jmse9090962 - 03 Sep 2021
Cited by 1 | Viewed by 1129
Abstract
The International Maritime Organization (IMO) is strengthening regulations on reducing sulfur oxide emissions, and the demand for reducing exhaust noise affecting the environment of ships is also increasing. Various technologies have been developed to satisfy these needs. In this paper, a composite scrubber [...] Read more.
The International Maritime Organization (IMO) is strengthening regulations on reducing sulfur oxide emissions, and the demand for reducing exhaust noise affecting the environment of ships is also increasing. Various technologies have been developed to satisfy these needs. In this paper, a composite scrubber for ships that can simultaneously reduce sulfur oxide and noise was proposed, and the flow characteristics and noise characteristics were analyzed. For the silencer, vane type and resonate type were applied. In the case of the vane type, the effects of the direction, size, and location of the vane were analyzed, and in the case of the resonate type, the effects of the hole location and the number of holes were analyzed. The result shows that the length increase of the vane increased the average transmission loss and had a great effect, especially in the low frequency region. The transmission loss increased when the vane was installed outside, and the noise reduction effect was excellent when the vane was in the reverse direction. In the resonate type, increasing the number of holes is advantageous for noise reduction. The condition for maximally reducing noise in the range not exceeding 840 Pa, which is 70% of the allowable back pressure, is a vane length of 225 mm in the outer vane reverse type. The pressure drop under this condition was 777 Pa, and the average transmission losses in the low frequency region and the entire frequency region were 43.5 and 54.5 dB, respectively. Full article
(This article belongs to the Special Issue Marine Engines Performance and Emissions II)
Show Figures

Figure 1

Article
Benthic Diatoms on Sheltered Coastal Soft Bottoms (Baltic Sea)—Seasonal Community Production and Respiration
J. Mar. Sci. Eng. 2021, 9(9), 949; https://doi.org/10.3390/jmse9090949 - 31 Aug 2021
Cited by 1 | Viewed by 1269
Abstract
Benthic diatom communities dominate sheltered shallow inner coastal waters of the atidal Southern Baltic Sea. However, their photosynthetic oxygen production and respiratory oxygen consumption is rarely evaluated. In the Baltic Sea carbon budget benthic diatom communities are often not included, since phytoplankton is [...] Read more.
Benthic diatom communities dominate sheltered shallow inner coastal waters of the atidal Southern Baltic Sea. However, their photosynthetic oxygen production and respiratory oxygen consumption is rarely evaluated. In the Baltic Sea carbon budget benthic diatom communities are often not included, since phytoplankton is regarded as the main primary producer. Therefore, two wind-protected stations (2–49-cm depths) were investigated between July 2010 and April 2012 using undisturbed sediment cores in combination with planar oxygen optodes. We expected strong fluctuations in the biological activity parameters in the incubated cores over the course of the seasons. The sediment particles at both stations were dominated by fine sand with a median grain size of 131–138 µm exhibiting an angular shape with many edges, which were less mobile compared to exposed coastal sites of the Southern Baltic Sea. These sand grains inhabited dense communities of rather small epipsammic diatoms (<10 µm). Chlorophyll a as a biomass parameter for benthic diatoms fluctuated from 64.8 to 277.3-mg Chl. a m−2 sediment surface. The net primary production and respiration rates exhibited strong variations across the different months at both stations, ranging from 12.9 to 56.9 mg O2 m−2 h−1 and from −6.4 to −137.6 mg O2 m−2 h−1, respectively. From these data, a gross primary production of 13.4 to 59.5 mg C m−2 h−1 was calculated. The results presented confirmed strong seasonal changes (four-fold amplitude) for the activity parameters and, hence, provided important production biological information for sheltered sediments of the Southern Baltic Sea. These data clearly indicate that benthic diatoms, although often ignored until now, represent a key component in the primary production of these coastal habitats when compared to similar studies at other locations of the Baltic Sea and, hence, should be considered in any carbon budget model of this brackish water ecosystem. Full article
(This article belongs to the Special Issue Coastal Lagoon Ecology)
Show Figures

Figure 1

Article
Round Robin Testing: Exploring Experimental Uncertainties through a Multifacility Comparison of a Hinged Raft Wave Energy Converter
J. Mar. Sci. Eng. 2021, 9(9), 946; https://doi.org/10.3390/jmse9090946 - 30 Aug 2021
Cited by 9 | Viewed by 2038
Abstract
The EU H2020 MaRINET2 project has a goal to improve the quality, robustness and accuracy of physical modelling and associated testing practices for the offshore renewable energy sector. To support this aim, a round robin scale physical modelling test programme was conducted to [...] Read more.
The EU H2020 MaRINET2 project has a goal to improve the quality, robustness and accuracy of physical modelling and associated testing practices for the offshore renewable energy sector. To support this aim, a round robin scale physical modelling test programme was conducted to deploy a common wave energy converter at four wave basins operated by MaRINET2 partners. Test campaigns were conducted at each facility to a common specification and test matrix, providing the unique opportunity for intercomparison between facilities and working practices. A nonproprietary hinged raft, with a nominal scale of 1:25, was tested under a set of 12 irregular sea states. This allowed for an assessment of power output, hinge angles, mooring loads, and six-degree-of-freedom motions. The key outcome to be concluded from the results is that the facilities performed consistently, with the majority of variation linked to differences in sea state calibration. A variation of 5–10% in mean power was typical and was consistent with the variability observed in the measured significant wave heights. The tank depth (which varied from 2–5 m) showed remarkably little influence on the results, although it is noted that these tests used an aerial mooring system with the geometry unaffected by the tank depth. Similar good agreement was seen in the heave, surge, pitch and hinge angle responses. In order to maintain and improve the consistency across laboratories, we make recommendations on characterising and calibrating the tank environment and stress the importance of the device–facility physical interface (the aerial mooring in this case). Full article
(This article belongs to the Special Issue Marine Renewables–Infrastructures and Physical Testing)
Show Figures

Figure 1

Article
Emission Abatement Technology Selection, Routing and Speed Optimization of Hybrid Ships
J. Mar. Sci. Eng. 2021, 9(9), 944; https://doi.org/10.3390/jmse9090944 - 30 Aug 2021
Cited by 3 | Viewed by 1455
Abstract
This paper evaluates the effect of a large-capacity electrical energy storage, e.g., Li-ion battery, on optimal sailing routes, speeds, fuel choice, and emission abatement technology selection. Despite rapid cost reduction and performance improvement, current Li-ion chemistries are infeasible for providing the total energy [...] Read more.
This paper evaluates the effect of a large-capacity electrical energy storage, e.g., Li-ion battery, on optimal sailing routes, speeds, fuel choice, and emission abatement technology selection. Despite rapid cost reduction and performance improvement, current Li-ion chemistries are infeasible for providing the total energy demand for ocean-crossing ships because the energy density is up to two orders of magnitude less than in liquid hydrocarbon fuels. However, limited distance zero-emission port arrival, mooring, and port departure are attainable. In this context, we formulate two groups of numerical problems. First, the well-known Emission Control Area (ECA) routing problem is extended with battery-powered zero-emission legs. ECAs have incentivized ship operators to choose longer distance routes to avoid using expensive low sulfur fuel required for compliance, resulting in increased greenhouse gas (GHG) emissions. The second problem evaluates the trade-off between battery capacity and speed on battery-powered zero-emission port arrival and departure legs. We develop a mixed-integer quadratically constrained program to investigate the least cost system configuration and operation. We find that the optimal speed is up to 50% slower on battery-powered legs compared to the baseline without zero-emission constraint. The slower speed on the zero-emission legs is compensated by higher speed throughout the rest of the voyage, which may increase the total amount of GHG emissions. Full article
(This article belongs to the Special Issue Modelling and Optimisation of Ship Energy Systems II)
Show Figures

Figure 1

Article
Broadband Characteristics of Zooplankton Sound Scattering Layer in the Kuroshio–Oyashio Confluence Region of the Northwest Pacific Ocean in Summer of 2019
J. Mar. Sci. Eng. 2021, 9(9), 938; https://doi.org/10.3390/jmse9090938 - 29 Aug 2021
Cited by 3 | Viewed by 1378
Abstract
Acoustic technology, as an important investigation method for fishery resources, has been widely used in zooplankton surveys. Since the Kuroshio–Oyashio confluence region has an extensive distribution of zooplankton, describing and analyzing the characteristic of the zooplankton sound scattering layer (SSL) in this area [...] Read more.
Acoustic technology, as an important investigation method for fishery resources, has been widely used in zooplankton surveys. Since the Kuroshio–Oyashio confluence region has an extensive distribution of zooplankton, describing and analyzing the characteristic of the zooplankton sound scattering layer (SSL) in this area is essential for marine ecology research. To understand its spatial–temporal distribution, acoustic data of the Kuroshio–Oyashio confluence region at the Northwest Pacific Ocean, obtained by a Simrad EK80 broadband scientific echosounder in 2019, were used on board the research vessel (RV) Songhang. After noise removal, the volume backscattering strength (SV) was measured to plot the broadband scattering spectrogram of each water layer and to exhibit zooplankton distribution. The results show that the main sound scattering within 0–200 m originate from the zooplankton, and the SV of each layer increases with the rise of the transducer frequency. The magnitude of SV was closely synchronized with the solar altitude angle, which gets smaller when the angle is positive, then larger when the angle is negative. It means that the SSL has a diel vertical migration (DVM) behavior with the variation of solar height. Meanwhile, scattering strength was positively correlated with temperature in the vertical direction and showed a maximum of −54.31 dB at 20–40 m under the influence of the thermocline. The Kuroshio and Oyashio currents had an obvious influence on the scattering strengths in this study, indicating a low value when next to the Oyashio side and a high value on the Kuroshio side. The scattering strength near the warm vortex center was higher than that at the vortex edge. The results of this study could provide references for a long-term study on ecological environment variation and its impacts on zooplankton distribution. Full article
(This article belongs to the Special Issue Marine Environment Monitoring)
Show Figures

Figure 1

Article
A Novel Cargo Ship Detection and Directional Discrimination Method for Remote Sensing Image Based on Lightweight Network
J. Mar. Sci. Eng. 2021, 9(9), 932; https://doi.org/10.3390/jmse9090932 - 28 Aug 2021
Cited by 2 | Viewed by 1416
Abstract
Recently, cargo ship detection in remote sensing images based on deep learning is of great significance for cargo ship monitoring. However, the existing detection network is not only unable to realize autonomous operation on spaceborne platforms due to the limitation of computing and [...] Read more.
Recently, cargo ship detection in remote sensing images based on deep learning is of great significance for cargo ship monitoring. However, the existing detection network is not only unable to realize autonomous operation on spaceborne platforms due to the limitation of computing and storage, but the detection result also lacks the directional information of the cargo ship. In order to address the above problems, we propose a novel cargo ship detection and directional discrimination method for remote sensing images based on a lightweight network. Specifically, we design an efficient and lightweight feature extraction network called the one-shot aggregation and depthwise separable network (OSADSNet), which is inspired by one-shot feature aggregation modules and depthwise separable convolutions. Additionally, we combine the RPN with the K-Mean++ algorithm to obtain the K-RPN, which can produce a more suitable region proposal for cargo ship detection. Furthermore, without introducing extra parameters, the directional discrimination of the cargo ship is transformed into a classification task, and the directional discrimination is completed when the detection task is completed. Experiments on a self-built remote sensing image cargo ship dataset indicate that our model can provide relatively accurate and fast detection for cargo ships (mAP of 91.96% and prediction time of 46 ms per image) and discriminate the directions (north, east, south, and west) of cargo ships, with fewer parameters (model size of 110 MB), which is more suitable for autonomous operation on spaceborne platforms. Therefore, the proposed method can meet the needs of cargo ship detection and directional discrimination in remote sensing images on spaceborne platforms. Full article
(This article belongs to the Special Issue Machine Learning and Remote Sensing in Ocean Science and Engineering)
Show Figures

Figure 1

Article
Improving the Performance of Mode-Based Sound Propagation Models by Using Perturbation Formulae for Eigenvalues and Eigenfunctions
J. Mar. Sci. Eng. 2021, 9(9), 934; https://doi.org/10.3390/jmse9090934 - 28 Aug 2021
Cited by 2 | Viewed by 989
Abstract
Numerous sound propagation models in underwater acoustics are based on the representation of a sound field in the form of a decomposition over normal modes. In the framework of such models, the calculation of the field in a range-dependent waveguide (as well as [...] Read more.
Numerous sound propagation models in underwater acoustics are based on the representation of a sound field in the form of a decomposition over normal modes. In the framework of such models, the calculation of the field in a range-dependent waveguide (as well as in the case of 3D problems) requires the computation of normal modes for every point within the area of interest (that is, for each pair of horizontal coordinates x,y). This procedure is often responsible for the lion’s share of total computational cost of the field simulation. In this study, we present formulae for perturbation of eigenvalues and eigenfunctions of normal modes under the water depth variations in a shallow-water waveguide. These formulae can reduce the total number of mode computation instances required for a field calculation by a factor of 5–10. We also discuss how these formulae can be used in a combination with a wide-angle mode parabolic equation. The accuracy of such combined model is validated in a series of numerical examples. Full article
Show Figures

Figure 1

Article
A Numerical Study of Sheet Flow Driven by Skewed-Asymmetric Shoaling Waves Using SedWaveFoam
J. Mar. Sci. Eng. 2021, 9(9), 936; https://doi.org/10.3390/jmse9090936 - 28 Aug 2021
Viewed by 1339
Abstract
SedWaveFoam, an OpenFOAM-based two-phase model that concurrently resolves the free surface wave field, and the bottom boundary layer is used to investigate sediment transport throughout the entire water column. The numerical model was validated with large-scale wave flume data for sheet flow driven [...] Read more.
SedWaveFoam, an OpenFOAM-based two-phase model that concurrently resolves the free surface wave field, and the bottom boundary layer is used to investigate sediment transport throughout the entire water column. The numerical model was validated with large-scale wave flume data for sheet flow driven by shoaling skewed-asymmetric waves with two different grain sizes. Newly obtained model results were combined with previous nonbreaking and near-breaking wave cases to develop parameterization methods for time-dependent bed shear stress and sediment transport rate under various sediment sizes and wave conditions. Gonzalez-Rodriguez and Madsen (GRM07) and quasi-steady approaches were compared for intra-wave bed shear stress. The results show that in strongly asymmetric flows, considering the separated boundary layer development processes at each half wave-cycle (i.e., GRM07) is essential to accurately estimating bed shear stress and highlights the impact of phase-lag effects on sediment transport rates. The quasi-steady approach underpredicts (∼60%) sediment transport rates, especially for fine grains under large velocity asymmetry. A modified phase-lag parameter, incorporating velocity asymmetry, sediment stirring, and settling processes is proposed to extend the Meyer-Peter and Mueller type power law formula. The extended formula accurately estimated the enhanced net onshore sediment transport rate observed under skewed-asymmetric wave conditions. Full article
(This article belongs to the Special Issue Recent Advances in Coastal Sediment Dynamics and Transport)
Show Figures

Figure 1

Article
A Comparative Study on the Hydrodynamic-Energy Loss Characteristics between a Ducted Turbine and a Shaftless Ducted Turbine
J. Mar. Sci. Eng. 2021, 9(9), 930; https://doi.org/10.3390/jmse9090930 - 27 Aug 2021
Cited by 2 | Viewed by 1040
Abstract
The shaftless ducted turbine (abbreviated as SDT), as an extraordinary innovation in tidal current power generation applications, has many advantages, and a wide application prospect. The structure of an SDT resembles a ducted turbine (abbreviated as DT), as both contain blades and a [...] Read more.
The shaftless ducted turbine (abbreviated as SDT), as an extraordinary innovation in tidal current power generation applications, has many advantages, and a wide application prospect. The structure of an SDT resembles a ducted turbine (abbreviated as DT), as both contain blades and a duct. However, there are some structural differences between a DT and a SDT, which can cause significant discrepancy in the hydrodynamic characteristics and flow features. The present work compares the detailed hydrodynamic-energy loss characteristics of a DT and a SDT by means of computational fluid dynamics (CFD), performed by solving the 3D steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations in combination with the Menter’s Shear Stress Transport (SST kω) turbulence model and entropy production model. The results show the SDT features a higher power level at low tip speed ratio (TSR) and a potential reduction in potential flow resistance and disturbance with respect to the DT. Moreover, a detail entropy production analysis shows the energy loss is closely related to the flow separation and the reverse flow, and other negative flow factors. The entropy production of the SDT is lessened than that of the DT at different TSR. Unlike the DT, the SDT allows a large mass flow of water to leak through the open-center structure, which plays an important role in improving the wake structure and avoiding the negative flow along the central axis. Full article
(This article belongs to the Topic Marine Renewable Energy)
Show Figures

Figure 1

Article
Prediction of Changes in Seafloor Depths Based on Time Series of Bathymetry Observations: Dutch North Sea Case
J. Mar. Sci. Eng. 2021, 9(9), 931; https://doi.org/10.3390/jmse9090931 - 27 Aug 2021
Cited by 1 | Viewed by 1009
Abstract
Guaranteeing safety of navigation within the Netherlands Continental Shelf (NCS), while efficiently using its ocean mapping resources, is a key task of Netherlands Hydrographic Service (NLHS) and Rijkswaterstaat (RWS). Resurvey frequencies depend on seafloor dynamics and the aim of this research is to [...] Read more.
Guaranteeing safety of navigation within the Netherlands Continental Shelf (NCS), while efficiently using its ocean mapping resources, is a key task of Netherlands Hydrographic Service (NLHS) and Rijkswaterstaat (RWS). Resurvey frequencies depend on seafloor dynamics and the aim of this research is to model the seafloor dynamics to predict changes in seafloor depth that would require resurveying. Characterisation of the seafloor dynamics is based on available time series of bathymetry data obtained from the acoustic remote sensing method of both single-beam echosounding (SBES) and multibeam echosounding (MBES). This time series is used to define a library of mathematical models describing the seafloor dynamics in relation to spatial and temporal changes in depth. An adaptive, functional model selection procedure is developed using a nodal analysis (0D) approach, based on statistical hypothesis testing using a combination of the Overall Model Test (OMT) statistic and Generalised Likelihood Ratio Test (GLRT). This approach ensures that each model has an equal chance of being selected, when more than one hypothesis is plausible for areas that exhibit varying seafloor dynamics. This ensures a more flexible and rigorous decision on the choice of the nominal model assumption. The addition of piecewise linear models to the library offers another characterisation of the trends in the nodal time series. This has led to an optimised model selection procedure and parameterisation of each nodal time series, which is used for the spatial and temporal predictions of the changes in the depths and associated uncertainties. The model selection results show that the models can detect the changes in the seafloor depths with spatial consistency and similarity, particularly in the shoaling areas where tidal sandwaves are present. The predicted changes in depths and uncertainties are translated into a probability risk-alert map by evaluating the probabilities of an indicator variable exceeding a certain decision threshold. This research can further support the decision-making process when optimising resurvey frequencies. Full article
(This article belongs to the Special Issue Spatial and Spatiotemporal Methods in Marine Science)
Show Figures

Figure 1

Article
Comparative Analysis of Two Approaches for Correcting the Systematic Ocean Temperature Bias of CAS-ESM-C
J. Mar. Sci. Eng. 2021, 9(9), 925; https://doi.org/10.3390/jmse9090925 - 26 Aug 2021
Cited by 1 | Viewed by 854
Abstract
Currently, several ocean data assimilation methods have been adopted to increase the performance of air–sea coupled models, but inconsistent adjustments between the sea temperature with other oceanic fields can be introduced. In the coupled model CAS-ESM-C, inconsistent adjustments for ocean currents commonly occur [...] Read more.
Currently, several ocean data assimilation methods have been adopted to increase the performance of air–sea coupled models, but inconsistent adjustments between the sea temperature with other oceanic fields can be introduced. In the coupled model CAS-ESM-C, inconsistent adjustments for ocean currents commonly occur in the tropical western Pacific and the eastern Indian Ocean. To overcome this problem, a new ensemble-based bias correction approach—a simple modification of the Ensemble Optimal Interpolation (EnOI) approach for multi-variable into a direct approach for a single variable—is proposed to minimize the model biases. Compared with the EnOI approach, this new approach can effectively avoid inconsistent adjustments. Meanwhile, the comparisons suggest that inconsistent adjustment mainly results from the unreasonable correlations between temperature and ocean current in the background matrix. In addition, the ocean current can be directly corrected in the EnOI approach, which can additionally generate biases for the upper ocean. These induced ocean biases can produce unreasonable ocean heat sinking and heat storage in the tropical western Pacific. It will generate incorrect ocean heat transmission toward the east, further amplifying the inconsistency introduced through the tropical air–sea interaction process. Full article
Show Figures

Figure 1

Article
Experimental Study of Large-Temperature-Range and Long-Period Monitoring for LNG Marine Auxiliary Based on Fiber Bragg Grating Temperature Measurement
J. Mar. Sci. Eng. 2021, 9(9), 917; https://doi.org/10.3390/jmse9090917 - 24 Aug 2021
Cited by 2 | Viewed by 1227
Abstract
Temperature is a key variable to evaluate the energy consumption and thermodynamic performance of traditional marine auxiliary machinery, chillers and piping systems. In particular, for the cryogenic storage tanks and fuel gas supply systems of LNG ships, explosion-proof and low-temperature-resistance properties bring new [...] Read more.
Temperature is a key variable to evaluate the energy consumption and thermodynamic performance of traditional marine auxiliary machinery, chillers and piping systems. In particular, for the cryogenic storage tanks and fuel gas supply systems of LNG ships, explosion-proof and low-temperature-resistance properties bring new challenges to the onboard temperature measurement and monitoring. In order to promote the development of high-performance and safer monitoring systems for LNG ships, this paper adopted fiber Bragg grating (FBG) technology to ensure the measurement safety and accuracy of temperature sensors, and performs a series of experiments in a large temperature range on the chiller, pipeline, and cryogenic storage tank of an LNG ship and their long-term reliabilities. Firstly, the principle and composition of the designed FBG temperature sensors are introduced in detail, and the measurement accuracy and range of different metal-coated optical fibers were tested in a large temperature range and compared against the traditional thermistors. Then, the effects of different operating conditions of the LNG marine chiller system and cryogenic storage tank on the temperature measurements were investigated. In addition, the drift degrees of the optical fibers and industrial thermistors were analyzed to figure out their reliabilities for long-term temperature measurements. The results showed that for the long-period (16 months) monitoring of LNG ships in a large temperature range (105–315 K) under different shipping conditions, the optical temperature measurement based on FBG technology has sufficient accuracy and dynamic sensitivity with a higher safety than the traditional thermoelectric measurement. Besides, the ship vibration, ambient humidity, and great temperature changes have little impact on its measurement reliability and drifts. This research can provide references and technical supports to the performance testing systems of LNG ships and other relevant vessels with stricter safety standards. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Article
A Universal Simulation Framework of Shipborne Inertial Sensors Based on the Ship Motion Model and Robot Operating System
J. Mar. Sci. Eng. 2021, 9(8), 900; https://doi.org/10.3390/jmse9080900 - 20 Aug 2021
Cited by 1 | Viewed by 1345
Abstract
A complete virtual test environment is a powerful tool for Autonomous Surface Vessels (ASVs) research, and the simulation of ship motion and shipborne sensors is one of the prerequisites for constructing such an environment. This paper proposed a universal simulation framework of shipborne [...] Read more.
A complete virtual test environment is a powerful tool for Autonomous Surface Vessels (ASVs) research, and the simulation of ship motion and shipborne sensors is one of the prerequisites for constructing such an environment. This paper proposed a universal simulation framework of shipborne inertial sensors. A ship motion model considering environmental disturbances is proposed to simulate the six-degrees-of-freedom motion of ships. The discrete form of the inertial sensor stochastic error model is derived. The inertial measurement data are simulated by adding artificial errors to a simulated motion status. In addition, the ship motion simulation, inertial measurement simulation, and environment simulation nodes are implemented based on the computational graph architecture of the Robot Operating System (ROS). The benefit from the versatility of the ROS messages, the format of simulated inertial measurement is exactly the same as that of real sensors, which provides a research basis for the fusion perception algorithm based on visual–inertial and laser–inertial sensors in the research field of ASVs. Full article
Show Figures

Figure 1

Article
Verification and Validation of a Methodology to Numerically Generate Waves Using Transient Discrete Data as Prescribed Velocity Boundary Condition
J. Mar. Sci. Eng. 2021, 9(8), 896; https://doi.org/10.3390/jmse9080896 - 19 Aug 2021
Cited by 2 | Viewed by 1244
Abstract
This work presents a two-dimensional numerical analysis of a wave channel and a oscillating water column (OWC) device. The main goal is to validate a methodology which uses transient velocity data as a means to impose velocity boundary condition for the generation of [...] Read more.
This work presents a two-dimensional numerical analysis of a wave channel and a oscillating water column (OWC) device. The main goal is to validate a methodology which uses transient velocity data as a means to impose velocity boundary condition for the generation of numerical waves. To achieve this, a numerical wave channel was simulated using regular waves with the same parameters as those used in a laboratory experiment. First, these waves were imposed as prescribed velocity boundary condition and compared with the analytical solution; then, the OWC device was inserted into the computational domain, aiming to validate this methodology. For the numerical analysis, computational fluid dynamics ANSYS Fluent software was employed, and to tackle with water–air interaction, the nonlinear multiphase model volume of fluid (VOF) was applied. Although the results obtained through the use of discrete data as velocity boundary condition presented a little disparity; in general, they showed a good agreement with laboratory experiment results. Since many studies use regular waves, there is a lack of analysis with ocean waves realistic data; thus, the proposed methodology stands out for its capacity of using realistic sea state data in numerical simulations regarding wave energy converters (WECs). Full article
(This article belongs to the Special Issue Wind and Wave Climate)
Show Figures

Figure 1

Article
Real-Time Nonlinear Model Predictive Controller for Multiple Degrees of Freedom Wave Energy Converters with Non-Ideal Power Take-Off
J. Mar. Sci. Eng. 2021, 9(8), 890; https://doi.org/10.3390/jmse9080890 - 18 Aug 2021
Cited by 5 | Viewed by 1276
Abstract
An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO) mechanisms, but also more integrated treatment of the whole system, i.e., the buoy dynamics, the PTO system, and [...] Read more.
An increase in wave energy converter (WEC) efficiency requires not only consideration of the nonlinear effects in the WEC dynamics and the power take-off (PTO) mechanisms, but also more integrated treatment of the whole system, i.e., the buoy dynamics, the PTO system, and the control strategy. It results in an optimization formulation that has a nonquadratic and nonstandard cost functional. This article presents the application of real-time nonlinear model predictive controller (NMPC) to two degrees of freedom point absorber type WEC with highly nonlinear PTO characteristics. The nonlinear effects, such as the fluid viscous drag, are also included in the plant dynamics. The controller is implemented on a real-time target machine, and the WEC device is emulated in real-time using the WECSIM toolbox. The results for the successful performance of the design are presented for irregular waves under linear and nonlinear hydrodynamic conditions. Full article
Show Figures

Figure 1

Article
Functionality Investigation of the UAV Arranged FMCW Solid-State Marine Radar
J. Mar. Sci. Eng. 2021, 9(8), 887; https://doi.org/10.3390/jmse9080887 - 18 Aug 2021
Cited by 2 | Viewed by 1337
Abstract
Some models of marine radars are light-weight enough and thus are attractive for potential applications when arranged on UAVs. Elevating a marine radar to high altitudes provides a much wider field of view, however, this could lead to a higher radio interference level. [...] Read more.
Some models of marine radars are light-weight enough and thus are attractive for potential applications when arranged on UAVs. Elevating a marine radar to high altitudes provides a much wider field of view, however, this could lead to a higher radio interference level. The practical estimation of the radio interferences affecting the solid-state FMCW marine radar at altitudes up to 120 m was the main objective of this contribution. A rotary-wing octocopter UAV was developed and built for the experiments. Two different kinds of interferences were observed at higher altitudes. Ray-like interferences were caused by signals, which are received by the radar’s antenna. Circle-like interferences appear due to the low frequency interfering signal directly penetrating the detector due to insufficient receiver screening. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1