
Citation: Sedaghat, A.; Arbabkhah,

H.; Jafari Kang, M.; Hamidi, M. Deep

Learning Applications in Vessel Dead

Reckoning to Deal with Missing

Automatic Identification System Data.

J. Mar. Sci. Eng. 2024, 12, 152.

https://doi.org/10.3390/

jmse12010152

Academic Editors: Xinqiang Chen,

Dongfang Ma and Ryan Wen Liu

Received: 16 December 2023

Revised: 4 January 2024

Accepted: 5 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Deep Learning Applications in Vessel Dead Reckoning to Deal
with Missing Automatic Identification System Data
Atefe Sedaghat , Homayoon Arbabkhah, Masood Jafari Kang and Maryam Hamidi *

Department of Industrial and Systems Engineering, Lamar University, Beaumont, TX 77710, USA;
asedaghat@lamar.edu (A.S.); harbabkhah@lamar.edu (H.A.); mjafarikang@lamar.edu (M.J.K.)
* Correspondence: mhamidi@lamar.edu

Abstract: This research introduces an online system for monitoring maritime traffic, aimed at track-
ing vessels in water routes and predicting their subsequent locations in real time. The proposed
framework utilizes an Extract, Transform, and Load (ETL) pipeline to dynamically process AIS data
by cleaning, compressing, and enhancing it with additional attributes such as online traffic volume,
origin/destination, vessel trips, trip direction, and vessel routing. This processed data, enriched with
valuable details, serves as an alternative to raw AIS data stored in a centralized database. For user
interactions, a user interface is designed to query the database and provide real-time information
on a map-based interface. To deal with false or missing AIS records, two methods, dead reckoning
and machine learning techniques, are employed to anticipate the trajectory of the vessel in the next
time steps. To evaluate each method, several metrics are used, including R squared, mean absolute
error, mean offset, and mean offset from the centerline. The functionality of the proposed system is
showcased through a case study conducted in the Gulf Intracoastal Waterway (GIWW). Three years
of AIS data are collected and processed as a simulated API to transmit AIS records every five minutes.
According to our results, the Seq2Seq model exhibits strong performance (0.99 R squared and an
average offset of ~1400 ft). However, the second scenario, dead reckoning, proves comparable to the
Seq2Seq model as it involves recalculating vessel headings by comparing each data point with the
previous one.

Keywords: online traffic monitoring; ETL pipeline; AIS data; vessel trajectory prediction; dead
reckoning; GIWW

1. Introduction

The availability of maritime data, collected through an extensive network of terrestrial
and satellite Automatic Identification System (AIS) receivers, has created unprecedented op-
portunities for transformative analyses and the extraction of valuable insights in maritime
traffic monitoring. This abundance of information enables various crucial applications,
including vessel trajectory prediction, anomaly detection, threat assessment, and tracking
and classification of maritime activities [1].

At the core of this data-driven revolution is AIS technology, which plays a central
role in maritime operations for real-time tracking and monitoring of vessels. Utilizing
Very High Frequency (VHF) signals, AIS facilitates the exchange of encoded information
containing various attributes of a ship at regular intervals. These attributes include key
details such as the ship’s position coordinates, speed over ground, course over ground,
Maritime Mobile Service Identities (MMSI), and more. AIS data are categorized into
static and dynamic information, with static details encompassing essential ship-related
information and dynamic data continuously transmitted and varying based on the vessel’s
motion [2,3].

The management challenges posed by the high volume and velocity of AIS data
underscore the necessity for compression and efficient data processing. The frequent
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transmission of AIS signals generates substantial data, posing challenges for real-time
analysis, decision-making procedures, and the development of intelligent services and
applications [4]. To tackle this issue, compression techniques are applied to reduce storage
and computing costs associated with processing AIS data. These techniques aim to decrease
the overall data volume by retaining essential information while eliminating redundant or
negligible data points [5].

In the practical landscape of vessel monitoring, existing systems such as VesselFinder [6],
Marine Cadastre [7], and AccessAIS [8], as outlined in Table 1, demonstrate capabilities in
vessel tracking. In Figure 1, the dashboard of the VesselFinder platform is shown. Such
systems let users find vessel locations and some static information like a vessel’s name,
picture (if any), speed, destination (if provided), as well as estimated time of arrival (ETA).
However, the current systems exhibit deficiencies in real-time analysis, data compression,
and traffic analysis. To address these limitations, a novel system has been crafted. The
proposed system not only monitors vessel movements but also conducts real-time data
analysis, presenting the results on an interactive map. Additionally, the system is equipped
to analyze historical data, enhancing its overall functionality.

Table 1. Comparison of current marine systems and our proposed system.

Features

Real-Time
Map

Historical
Analysis

Real-Time
Analysis

Traffic
Analysis

Data Volume
Reduction

Dealing with
Missing Records

Current
systems

VesselFinder �

Marine
Cadastre �

AccessAIS �

Proposed
system ETL pipeline � � � � � �
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In narrow waterways and channels, where operational intricacies are heightened, the
significance of missing AIS points becomes even more pronounced. The scheduling of
vessels in such areas often relies heavily on manual intervention and observation, lacking
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a systematic monitoring approach. Aside from manual scheduling, current Collision
Avoidance Systems rely on observers to ensure safe navigation. The 1972 Convention
(COLREGs) was a significant effort, introducing rules and guidelines governing vessel
conduct, lights, sounds, and exemptions. The integration of advanced technologies like
radar, AIS, and automatic radar plotting aid (ARPA) could provide maritime operators
with real-time data, predictive tools, and automated alerts. However, these systems heavily
depend on the accuracy and consistency of data inputs. AIS provides the major source
of data, and any technical issues, data errors, or data absence can weaken the system’s
effectiveness. Apart from vessels that are not required to have an AIS transporter, there is a
notable occurrence of AIS transponders intentionally or accidentally turning off. This adds
a layer of complexity, as the absence of real-time vessel information can pose significant
challenges for ensuring safe navigation. Our study introduces an intelligent framework
designed to track vessel traffic effectively and predict the next location of vessel movements
accurately in real time. The algorithm employs an Extract, Transform, and Load (ETL)
pipeline to dynamically clean, compress, and process AIS data. Furthermore, it enriches
raw AIS data with valuable information such as online traffic volume, origin/destination
details, vessel trips, trip directions, and vessel routing. By storing the processed data in a
database, this advanced system could be a replacement for the current of collecting and
storing raw AIS data. To facilitate user interactions and access to the system’s intelligent
services, we have developed a user interface that allows end users to query the database
and retrieve real-time information displayed on an interactive map. This intuitive interface
empowers users to make informed decisions and gain valuable insights.

In the second phase of our study, we use processed data to predict the next location
of vessel movements employing two distinct approaches: classical dead reckoning and
machine learning methods. These approaches are evaluated and compared based on
prediction errors, enabling an assessment of their performance to determine the most
accurate prediction method. Combining data processing, prediction algorithms, and a
user-friendly interface, our framework provides a comprehensive solution for online traffic
monitoring and trajectory prediction. By leveraging its sequential-to-sequential architecture,
the model can learn patterns from historical AIS data, predict vessel trajectories, and fill
in the gaps caused by missing points, including instances where AIS transponders are
intentionally or accidentally turned off. This not only enhances the accuracy of predictions
but also introduces a level of automation to the monitoring and scheduling processes,
compensating for the limitations of manual observation. The model’s ability to predict
trajectories even in the presence of missing data due to AIS transponder outages contributes
to more robust and reliable maritime operations in narrow waterways. The algorithm’s
functionality is tested using the Gulf Intracoastal Waterway (GIWW). Three years of data
are collected and fed to the ETL pipeline using a simulated API that sends AIS messages
every 5 min. Results indicate that the proposed algorithm processes millions of data rapidly
and predicts the vessel trajectory with 99% accuracy in terms of R squared. To reinforce
our model, we also define other evaluation metrics as the mean offset from actual points as
well as the mean offset from the channel centerline. On average, the best model predicts
vessel points in a buffer of 1500 ft around actual points.

The paper is organized as follows: Processing based on historical AIS data (offline
mode) and both historical and current AIS data (online mode) are discussed in Section 2.
The methodology of the paper including the ETL process and prediction methods are
presented in Section 3. In Section 4, the result using a dashboard is visualized and the
prediction errors are investigated; in Section 5, the discussion and future direction are
mentioned, and finally, the conclusions are presented in Section 6.

2. Literature Review

We examine research papers that have employed historical AIS data for vessel tracking
and trajectory analysis, particularly focusing on online monitoring and intelligent frame-
works. These frameworks dynamically compare real-time AIS data with historical data to
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analyze vessel movements and identify trajectories. In the final review, we delve into the
application of machine learning, deep learning, and dead reckoning methods in predicting
vessel trajectories.

2.1. Historical Analysis

Li et al. proposed a multi-step algorithm that integrates Dynamic Time Warping
(DTW), Principal Component Analysis (PCA), and an improved center clustering approach
for trajectory clustering. The goal is to identify customary routes and detect abnormal
trajectories [9]. Zhang et al. utilized data-driven algorithms, including density-based
spatial clustering of applications with noise (DBSCAN) and Ant Colony Optimization
(ACO), to infer vessel routes from AIS data [10]. Ren et al. introduced a network based
on a multi-clustering algorithm combining k-means, DBSCAN, and Affinity Propagation
(AP) clustering methods to generate high-dimensional trajectories and measure their simi-
larity [11]. Eljabu et al. emphasized the significance of automatic methods for extracting
traffic routes from AIS data, demonstrating the potential of density-based clustering al-
gorithms [12]. Kang et al. analyzed AIS data from the Houston Ship Channel to explore
vessel congestion patterns, factors contributing to congestion, and speed variations [13].
Kabir et al. developed a framework and algorithms for capturing significant directional
changes in vessel trajectories for maritime traffic management [14]. Zohoori et al. presented
a vectorized algorithm for analyzing waterway traffic characteristics, reducing processing
time compared to loop-based methods [15]. Wu et al. proposed an AIS-based method
to identify hot spots in waterways experiencing frequent vessel conflicts and examined
time-of-day impacts on conflict frequency [16]. Additionally, Wu investigated vessel travel
behavior in hotspots using AIS data, focusing on speed distributions and flow speeds for
different vessel types [17]. Zohoori et al. developed an algorithm to model and quantify
delays caused by beam restrictions in narrow waterways, providing insights for vessel
scheduling and expansion projects [18].

2.2. Real-Time Analysis

Evmides et al. introduced an intelligent framework for vessel traffic monitoring that
integrates data analytics, machine learning, and visualization techniques [19]. Chi et al.
proposed a framework to monitor vessel efficiency in real time using AIS data, leading
to cost savings and environmental benefits [20]. Zhang and Li presented a methodology
involving online data cleaning, compression, partition, and clustering of AIS data to identify
traffic patterns and anomalies [2]. Kontopoulos et al. offered a method to detect intentional
AIS switch-off in real time for improved safety [21]. Gao and Shai introduced a ship
spatiotemporal key feature point extraction algorithm for AIS trajectory data, beneficial for
ship traffic flow analysis [22]. Sedaghat et al. proposed a smart framework to dynamically
separate and compress AIS data without compromising data quality, enabling the study of
the online traffic flow of vessels [23].

2.3. Trajectories Prediction

We delve into trajectory prediction methods, categorizing them into two main groups:
machine learning algorithms and deep learning algorithms. Machine learning algorithms
utilize historical trajectory data and models like regression, decision trees, and support
vector machines to predict future object movements based on past trajectories. In contrast,
deep learning algorithms, including recurrent neural networks (RNNs) and sequence-
to-sequence models, excel in capturing temporal dependencies and complex patterns,
exhibiting promising results in trajectory prediction.

2.3.1. Machine Learning Methods

Fuentes extensively discussed various machine learning prediction techniques [24],
encompassing regression models such as the Linear Regression Model (LRM) [25], the au-
toregressive model (AR) [26], Support Vector Regression (SVR), Gaussian Process Regression
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(GPR), neural networks like artificial neural networks (ANN), as well as the Kalman Filter (KF)
and Random Forest (RF). These models typically require ship velocity, acceleration, heading,
and position data for training. The Linear Regression Model (LRM) is often used for time
series prediction due to its real-time forecasting capability, although it may face challenges in
predicting long-term linear ship trajectories and susceptibility to overfitting. However, the
Kalman Filter (KF) excels in estimating the state of moving targets and making predictions.
The Random Forest (RF) algorithm, a versatile method incorporating decision trees, finds
applications in predicting arrival ports and sailing times of ships.

2.3.2. Deep Learning Methods

Deep learning methods prove highly effective in handling complex and dynamic
trajectory data, showcasing robust learning and adaptability. Notably, they demonstrate
outstanding performance in predicting ship trajectories based on AIS data [27]. The Long
Short-Term Memory (LSTM) model addresses the short-term memory issue of RNNs by
incorporating dedicated gate controls for both short and long-term memories in ship trajec-
tory prediction. Integrated models based on LSTM, such as the multiple vessels prediction
model [28], vessel location prediction [29], the Trajectory-based Similarity Search Prediction
model (TSSPL) [28], the Context-Aware LSTM (C-LSTM) model [30], and the federated
deep learning-based method (Conv LSTM) [31], handle complex trajectory problems. The
authors of [1,32] develop a model for predicting vessel trajectories using AIS data, employ-
ing neural sequence-to-sequence models with an LSTM encoder-decoder architecture. Their
experiments on real AIS data demonstrate the superiority of these models over traditional
methods. Abada et al. explore the synergy between deep learning and big data, showcasing
the prowess of artificial neural networks in deciphering complex patterns within extensive
datasets. It highlights applications in predictive analytics, image analysis, and language
processing [33].

3. Methodology

We consider an Extract, Transform, Load (ETL) pipeline to deal with the extraction of
the stream of AIS data, process the data, and load the result into a database as depicted in
Figure 2. Not only does this procedure help to build customized and useful information
to be used instead of raw AIS data but it also helps in making online predictions of vessel
movements; it is a big help for the port authorities to know the estimated location of the
vessels in a real-time manner when facing a disconnection or a vessel intentionally switch
off its location. To do the prediction, some traditional methods and deep learning methods
are implemented, and the error of each method has been evaluated. In the following, every
component of the ETL pipeline is explained in detail.
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3.1. Extracting Data

The first step of the ETL pipeline starts by extracting data from an external source of
AIS data. Practically, the stream of real-time data would be provided through APIs. To
testify to the proposed method’s functionality in real-world cases, we collected historical
data for North America and simulated an API that generates AIS messages in a given time
interval. The retrieved data are then filtered based on a specific boundary called the Area
of Interest (AoI) to extract only the relevant portions of interest. After filtering, the code
performs a data-cleaning process by removing any incomplete or null values. This ensures
that the data are accurate and suitable for further analysis or processing. The final result of
the code is a cleaned dataset containing the essential and valid data, ready to be used for
the Transformation step.

3.2. Transforming Data

The second component of the ETL procedure is the “Transform”. This step considers
the output we have gathered as clean raw AIS data from the Extract part as an input for
further processing. The other input is a geographical information system (GIS) layer of
all waterways located in the AoI. Thanks to the QGIS toolbox, we employ the “split line
to maximum length” function to split the GIS layer into smaller, equally sized segments
as depicted in Figure 3. Then a series of functions have been applied to the input data to
transform the raw AIS data. The following sections talk about these functions in detail.
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Step 1: Finding the last record

The algorithm is developed based on a hash table, which stores the latest record of
each vessel’s data. As the algorithm receives a stream of data; it compares each vessel’s
record with the last record already stored in the hash table to compute features such as
the time and space distance between a pair of consecutive points. The calculated features
will be used in the next steps. If there is no record in the hash table, the algorithm stores
the new data as the last record. However, if the vessel’s information is already stored,
the algorithm updates the existing data with the newly received data. This allows the
algorithm to progressively calculate and update the calculated values in real time, ensuring
the latest information is stored and processed accurately.

Step 2: Applying the sample rate

The other inputs of the transform algorithm are the minimum and maximum accept-
able time difference between two consecutive records collected for a vessel. Assuming ∆t is
a time difference between each vessel’s AIS record and the previous record, the algorithm
keeps records only when ∆t is between the minimum and maximum time difference. It
drops redundant information and breaks the sequence of the AIS records if there is a long
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pause. Our assumption is to set the minimum acceptable time difference at 5 min and the
maximum acceptable time difference at 120 min (2 h).

Step 3: Finding segments

This step takes the intersection of each AIS record and the pre-defined segments of the
AoI to assign the segment’s ids to the records. this helps us summarize the data for each
segment and calculate some traffic features like traffic density. Additionally, it drops any
records located outside of the segments.

Step 4: Filtering noises

Trajectory trackers sometimes may generate wrong records that appear as noises
in a sequence of locations. To capture and drop such records, we add this step to our
transformer. This step uses ∆t and ∆l—that is, the distance between each record and the
previous record—to calculate the average speed. If the average speed is not in a rational
range of the vessel’s speed, from 0 to 30 knots, it drops the record.

Step 5: Determining the vessel’s direction

To define the vessel’s direction, we first define the unit vector of the segments’ center-
line. As Figure 4 shows, we keep the first and last point of each segment centerline and
create a segment vector

→
a . Next, we consider vector b as the distance difference between

the new record and the previous record for each vessel. Finally, we utilize the inner product,
Equation (1), to calculate the angle between these two arrows:

a·b = |a| |b| cos(θ ) (1)

where
a: segment centerline vector
b: vessel’s movement vector
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These two vectors (a, b) make an angle, θ. Based on Equation (1), we have the following:
0 < θ ≤ 90 if a·b > 0
270 < θ ≤ 360 if a·b > 0
90 < θ ≤ 270 if a·b < 0

(2)

Therefore, if the inner product of two vectors has a positive value, it means that the
cos θ is a positive value, which means we can interpret the two vectors as having the same
direction, and we consider it as the “inbound” direction, while if cos θ is a negative value,
the direction of the vessel is in the opposite direction of the segment vector, so the vessel’s
direction is “outbound”. The example, shown in Figure 3, is an inbound trip because
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the inner product of (a, b) is a positive value and the θ between them is simply between
0 and 90 degrees. This method requires all segment unit vectors to be organized in the
head-to-tail position. We use the QGIS toolbox to order segments and find each segment
unit vector. We also assume the vessel’s direction is zero when its speed is below 2 knots.
Therefore, we define three directions based on the vessel’s speed, the inner product of the
vessel’s movement vector, and the segment vector as listed in Table 2.

Table 2. Direction Values.

Vessel Status Inbound Stop Outbound

Direction value 1 0 −1

Step 6: Determining the Trip Number

The proposed algorithm aims to determine trip numbers, considering every stop-to-
stop interval as a separate trip. To determine the trip number, the code first checks if the
new record’s direction is “stopped” and differs from the previous record’s direction. If this
condition is met, it implies the start of a new trip. The code increments the trip number by
one, assigning it as the previous record’s trip number plus one.

In instances where vessels initiate a trip and make stops during the journey, the
algorithm tends to designate each stop as a new trip number, even if the vessel halts briefly
and does not signify the initiation of a new trip. To address this, time-lagged windows
have been implemented. For trips in which vessels stop during the journey, if the stop time
is below a predefined threshold, the algorithm disregards the stop status, considering the
trip number as the previous trip number and not initializing it as a new trip. Consequently,
the algorithm updates the last vessel’s recorded trip number with a delay, ensuring that
the stop status of the vessel is deemed negligible. For more clarification, in Figure 5, we
have a record from an MMSI every five minutes, and the algorithm considers each stop to
stop as a single trip. Therefore, before using a time-lagged window, the trip number for
this specific vessel can increase to three, while in the movement of the vessel, it stops for
about 5 min. If we predefine our threshold at 15 min, based on the time-lagged window,
we must ignore the stop status and consider it to be the previous trip number. In this case,
we have two trip numbers, since at the third stop, the vessel does not stay less than 15 min.
Therefore, we initiate a new trip number.
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3.3. Load the Processed Data

The final stage of the ETL pipeline involves the loading of processed data from the
preceding section into a database. We have developed a comprehensive database to store
the processed data obtained from the ETL pipeline output. This database incorporates a
combination of static and dynamic tables to effectively organize the data. The static tables
encompass vessel profile, segments, vessel status, and vessel type. On the other hand, the
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dynamic tables consist of trips and the last records, which are used for efficient tracking
and analysis. As mentioned above, we developed a simulated API to replicate real-world
operations of receiving a stream of AIS records. The API uses actual AIS data from 2018
to 2022 but releases them in 5 min time intervals. Then, we connect our pipeline to this
API and set it running for all data. Figure 6 shows the log message when running the
pipeline. As shown in log messages, the pipeline is highly efficient so that it can process
26,000 records in 10 s and compress them into 583 records.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 9 of 23 
 

 

it stops for about 5 min. If we predefine our threshold at 15 min, based on the time-lagged 
window, we must ignore the stop status and consider it to be the previous trip number. 
In this case, we have two trip numbers, since at the third stop, the vessel does not stay less 
than 15 min. Therefore, we initiate a new trip number. 

 
Figure 5. Updated Trip number using a time-lagged window. 

3.3. Load the Processed Data 
The final stage of the ETL pipeline involves the loading of processed data from the 

preceding section into a database. We have developed a comprehensive database to store 
the processed data obtained from the ETL pipeline output. This database incorporates a 
combination of static and dynamic tables to effectively organize the data. The static tables 
encompass vessel profile, segments, vessel status, and vessel type. On the other hand, the 
dynamic tables consist of trips and the last records, which are used for efficient tracking 
and analysis. As mentioned above, we developed a simulated API to replicate real-world 
operations of receiving a stream of AIS records. The API uses actual AIS data from 2018 
to 2022 but releases them in 5 min time intervals. Then, we connect our pipeline to this 
API and set it running for all data. Figure 6 shows the log message when running the 
pipeline. As shown in log messages, the pipeline is highly efficient so that it can process 
26,000 records in 10 s and compress them into 583 records. 

 
Figure 6. ETL pipeline log messages for a couple of hours. 

  

Figure 6. ETL pipeline log messages for a couple of hours.

3.4. Trajectory Prediction

This section discusses two distinct approaches used for predicting vessels’ trajectories.
The first method is a traditional approach. In contrast, the second approach involves
utilizing a sequence-to-sequence recurrent neural network model (RNN).

3.4.1. Dead Reckoning

In the realm of vessel navigation, a traditional prediction method known as dead
reckoning is employed to estimate the next position in a series of trajectory data using
current and previous records. Dead reckoning allows us to estimate the next location of
the vessel based on its past movements, even when real-time data, such as AIS data, are
unavailable or disrupted. There are two scenarios in which dead reckoning comes into
play. In Scenario I, we utilize the speed and course over ground obtained from the AIS
record as an input to predict its next location. On the other hand, in Scenario II, we rely on
the pre-record location of the vessel to find its next location. By extrapolating the vessel’s
historical data, we can project its next position, assuming it maintains a consistent speed.
To facilitate this prediction process, we undertake the following steps:

Step 1. Preparing the inputs

To streamline the process, we retrieve relevant data from the database. In the trip
table, we introduce two additional columns that showcase the pre-record and next-record
locations of the vessels.

Step 2. Dead reckoning method

Assuming our aim is to obtain predictions for each specific time interval, we apply
Equation (3) to calculate the distance traveled by the vessel within the defined time
interval, which is assumed to be 5 min (0.083 h). Regarding [34], in Equation (4) the
angular distance is calculated by dividing the linear distance by the earth’s radius. In
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Equation (5), the latitude of the next point is calculated. To find the longitude of the next
point, first we should calculate the projected latitude difference in Equation (6). The ratio
n in Equation (7) is introduced to account for the fact that, as the vessel moves along
a rhumb line, the meridional scale (change in latitude) is not equal to the zonal scale
(change in longitude) due to the convergence of meridians toward the poles. Therefore,
the term n is used to adjust for the variation in the size of a degree of the longitude with
the latitude. We have the longitude difference and the longitude of the next point in
Equations (8) and (9), respectively.

d = 1.15 s·∆t (3)

δ = d/R (4)

ϕ2 = ϕ1 + δ·cos(θ) (5)

∆ψ =ln(tan(π/4 + ϕ2/2)/tan(π/4 + ϕ1/2) (6)

n = ∆ϕ/∆ψ (7)

∆λ = δ·sin(θ)/n (8)

λ2 = λ1 + ∆λ (9)

where
d: distance in mile
s: vessel’s current speed in knots
∆t: given time interval (5 min = 0.083 h)
R: earth’s radius in miles (3958.80 miles)
θ: vessel’s course over ground
ϕ1: latitude of current point
ϕ2: latitude of next point
∆ϕ: latitude difference
∆ψ: projected latitude difference
n: adjustment ratio for the variation in the size of a degree of longitude with latitude
∆λ: longitude difference
λ1: longitude of current point
λ2: longitude of next point
ϕ0: latitude of previous point
λ0: longitude of previous point

In scenario II, instead of using the course over the ground, as recorded in the AIS data,
we calculate it by comparing the current record and the previous one. Figure 7 shows the
dead reckoning method for finding the next location of the vessel using the pre-record and
the new record.
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3.4.2. RNN Method

The sequence-to-sequence recurrent neural network (RNN) method is a more ad-
vanced approach for predicting the vessel’s next timestamp location. This technique
leverages the power of deep learning to model sequential data effectively. The RNN ar-
chitecture is designed to handle sequential input data, such as a vessel’s position and
timestamp over time. It is capable of capturing temporal dependencies and learning
complex patterns from the historical trajectory of the vessel. However, standard RNNs
have limitations in capturing long-term dependencies, making them less suitable for tasks
requiring long-term memory [1]. Long Short-Term Memory (LSTM) is a powerful variant
of RNNs that addresses the challenges of capturing long-term dependencies in sequential
data, making it well-suited for tasks that require modeling complex sequential patterns,
such as sequence-to-sequence learning and natural language processing.

3.4.3. LSTM Structure

LSTM is a type of recurrent neural network (RNN) architecture designed to address
the vanishing gradient problem and capture long-term dependencies in sequential data.
It is particularly effective in tasks involving sequences, such as time series prediction and
natural language processing. The components include the following:

• Input Gate: Determines which information from the current input should be stored in
the cell state;

• Forget Gate: Controls what information should be discarded from the cell state;
• Cell State updates: Maintains the long-term memory information;
• Output Gate: Determines the next hidden state based on the cell state.

3.4.4. Sequence-to-Sequence Model

A sequence-to-sequence (Seq2Seq) model (Figure 8) is designed for tasks where the
input and output are both sequences of varying lengths. Common applications include
machine translation and text summarization. The components include the following:

• Encoder: Processes the input sequence and encodes it into a fixed-size context vector;
• Decoder: Generates the output sequence based on the context vector produced by

the encoder.
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In our case, we use different lengths to predict the points, so we use a Seq2Seq structure,
which is structured as below:

• Step 1: Preparing the inputs;

First, we call processed AIS data from the database and store it as a dataset.

• Step 2: Feature selection and normalization.

Vessel latitude and longitude coordinates are essential for capturing the vessel’s
movement patterns. Therefore, we use these two features as the input for the Seq2Seq
model. Additionally, as shown in Table 3, we add the vessel’s speed over the ground, the
course over the ground, and the heading independent variables. Then we perform data
normalization on the selected columns to bring them to a similar scale. This is crucial for
ensuring that the LSTM model can effectively learn from the data and avoid numerical
instabilities during training.

Table 3. X and Y features.

Features Speed over
Ground

Course over
Ground

Vessel
Heading Longitude Latitude

X features � � � � �

Y features � �

• Step 3: Converting data into tensors.

A sliding window method is applied to convert data tables into a three-dimensional
matrix tensor. Figure 9 illustrates how the sequences, and their corresponding target values,
have been selected. The output of this step is x and y tensors, which are the input sequence
(here this is four sequences) and target sequence (here this is two sequences), respectively.

• Step 4: Training the Seq2Seq model.

We split the data into 80% training and 20% validation sets. This operation does not
require data shuffling and sorts data based on the record date and time to choose the first
80 percent of the data as the training dataset. As depicted in Figure 10, three years of data
from January 2018 to April 2020 is selected and based on the chronological split, 80% of the
data falls between Jan 2018 and Aug 2019.
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• Step 5: Seq2Seq model architecture.

In the context discussed in Section 3.4.4, where input and target sequences vary in
length, the model architecture, as illustrated in Figure 8, has been tailored accordingly. To
accommodate diverse configurations for sensitivity analysis, the generalized format is
presented in Figure 11. Using TensorFlow, we create a sequence model with 50 epochs
and 64 hidden layers. The goal is to predict the vessel’s trajectory based on historical
data using this model. The initial step involves selecting the input to the model with a
specified lookback value of 5, where 5 denotes the number of features in the X dataset.
This input is then fed into the LSTM layer, producing an output with a hidden layer of
64 units and a repeated vector, also known as the encoder vector. This fixed vector is
generated ‘m’ times and serves as the input for the subsequent LSTM layer, utilizing
the value (lookahead, 64). Consequently, the final output of the model is represented
as a lookahead value of 2, where 2 signifies the number of features in the Y dataset.
This architectural design enables the model to effectively handle varying lookback and
lookahead values during the sensitivity analysis.

• Step 6: Model evaluation.

In order to evaluate the model performance, the following metrics are defined:

• R2

R-squared measures the proportion of the variance in the dependent variable (the
actual next coordinates) that is explained by the independent variable (the predicted next
coordinates). It ranges from 0 to 1, where 1 indicates a perfect fit, meaning that the model’s
predictions perfectly match the actual data.

R2 = 1−
∑n

i=1

(
yi −

∼
yi

)2

∑n
i=1(yi − yi)

2 (10)
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• Mean Square Error (MSE)

MSE calculates the average of the squared differences between the predicted and
actual values. It penalizes large errors more heavily. A lower MSE indicates that the
model’s predictions are closer to the actual values.

MSE =
1

n∑n
i=1

(
yi −

∼
yi

)2 (11)

• Mean Absolute Error (MAE)

MAE calculates the average of the absolute differences between the predicted and
actual values. It provides a measure of the average magnitude of errors.

MAE =
1
n

∣∣∣(yi −
∼
yi

)∣∣∣ (12)

• Mean Absolute Percentage Error (MAPE)

Aside from the conventional metrics, we calculate the distance between the predicted
and actual coordination in miles and feet and take the average of the distance of all the
predicted points.

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣∣
(

yi −
∼
yi

)
yi

∣∣∣∣∣∣× 100 (13)

• Mean offset from Centerline (MFC)
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We determine the mean offset from the channel centerline by measuring the distance
between the predicted points and the centerline of the channel and then calculating the
average of these distances. This helps us to have a better estimation of our model if it is
predicting the point in the land rather than the waterway. The red circles in Figure 12 are
predicted points and the dashed line is the centerline of the channel.

MFC =
1
n

∣∣∣→r ∣∣∣· sin(θ) (14)
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4. Application
4.1. User Interface Dashboard

The proposed algorithm has been deployed for implementation in the Texas coastal
lines region, specifically targeting the GIWW (Gulf Intracoastal Waterway). As part of the
implementation, we simulate a continuous stream of AIS data from 2018. These data are
then processed using an ETL pipeline and stored in a database. To provide an intuitive user
interface, we have designed a dashboard that allows end users to retrieve the data they
need. The dashboard initially displays real-time vessel traffic, as shown in Figure 13. In
addition to real-time data, the dashboard provides access to historical information. Users
can query various metrics such as traffic flow, dwell time, OD matrix, trip generation, trip
attraction, and individual vessel trips. These queries can be filtered based on the vessel
type and specific date ranges.
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4.2. Data Processing Efficiency

The proposed ETL pipeline is highly efficient, processing data at a rate of 0.000001
s per record. For example, if we want to process ten million records, it will take just ten
seconds using our algorithm. The speed of this method represents a notable advancement
compared to traditional data processing. It allows for real-time monitoring of vessel traffic
efficiently. Additionally, the ETL has been tested on a simulated environment and can work
simultaneously with the current AIS collection systems. As a result, it does not require a
high-end computer to process raw AIS data because it processes a chunk of the most recent
data at each iteration.

4.3. Prediction Evaluation

As discussed, in the previous section, the dead reckoning method and LSTM algo-
rithms have been implemented to predict the next location of the vessel’s movement. To
visualize the prediction of both methods, we use the folium library in Python. The real
location and the predicted location of a single vessel using the dead reckoning II method
are depicted in red and green colors, respectively, in Figure 14.
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To evaluate the method in Scenarios I and II, the mean offset and other model evalua-
tion metrics have been investigated, and the result is shown in Table 4. While the traditional
method may be simple to implement, it may not capture complex patterns or account for
irregularities in the vessel’s movement. Additionally, the first two approaches can only
predict one location ahead of time, and they are not able to predict more than one step in
the future. They also may not perform well in situations where the vessel’s trajectory is
subject to sudden changes or nonlinear behavior.

Table 4. Model evaluation results.

Metrics Dead Reckoning I Dead Reckoning II Seq2Seq

r square 0.9996 0.9999 0.9999

mean absolute error 0.0111 0.0032 0.0028

mean square error 0.0149 0.0064 0.0046

mean absolute
percent error (%) 2.3 0.68 0.59

mean offset (mile) 1.03 0.32 0.28

mean offset (ft) 5433 1674 1454

mean offset from
centerline(mile) --- --- 0.12
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4.4. Sensitivity Analysis

To gain deeper insights into the impact of the input sequence length on the predictions,
various values were experimented with for both lookback and lookahead settings. Through
a comprehensive analysis of these combinations, it was determined that the optimal con-
figuration for lookback and lookahead is (5, 3) as shown in Table 5. This signifies that the
model exhibits strong predictive performance when provided with five historical records to
forecast the subsequent three records. The sensitivity analysis for different combinations of
lookback and lookahead values is shown in Figure 15, which denotes that the combination
(5, 3) shows better results in terms of the mean distance. Additionally, Figure 16 provides
a visual representation of both accuracy and loss per epoch. The graphs on the right
illustrate the loss per epoch, showcasing closely aligned training and validation curves,
indicating that the model is not overfitting. On the left, the accuracy per epoch plots reveals
consistently high values, approaching one, indicative of a positive trend. Notably, the a1
plot exhibits particularly promising results, suggesting that selecting a lookahead of three
yields enhanced the accuracy. While other lookahead values display slightly decreased
accuracy compared to lookahead three, the overall trend remains favorable. This indicates
that opting for lookahead values of five, seven, and ten still maintains a satisfactory level
of accuracy without a significant decline.

Table 5. Sensitivity analysis with different combinations of lookback and lookahead.

Mean Offset (mile)
Lookahead Window

3 5 7

Lookback
window

5 4.03 4.72 5.25

10 5.74 6.7 5.94

15 6.27 7.02 7.86
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Note that it was impossible for us to capture weather data and merge them with
AIS data based on time and location. Thus, we plotted our model’s error (mile offset
between the predicted and actual point) versus the month of prediction to show the
weather’s impact on our model’s performance. As shown in Figure 17, there is no pattern
in different months.
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Obviously, different vessel types show different maneuvers in channels and narrow
waterways. Especially in channels that have width or depth limitations and put restrictions
on vessels based on their type and dimensions, as shown in Figure 18, tug tows have the
lowest error since their operations are hardly impacted by such restrictions. The average
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offset values of tankers and cargos are also low, which is a good sign, because, in practice,
we care more about tankers and cargo’s locations in channels.

In Figure 19, the traffic density of the Galveston port with id segments of 18, 23, and
73 and the Houston ship channel with id segments of 43, 66, and 94 is illustrated.
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5. Discussion

Looking forward, the research suggests two important future directions. Firstly, an
examination of the system’s feasibility and its applicability to LSTM networks is essential.
Evaluating the scalability and adaptability of the proposed framework under different
operational conditions, such as high-traffic scenarios and diverse waterway characteristics,
will provide valuable insights. Additionally, exploring the integration of advanced machine
learning techniques beyond LSTM could enhance predictive capabilities. Secondly, the
research lays the groundwork for autonomous vessel systems. The system’s ability to
handle false or missing AIS records through dead reckoning and machine learning tech-
niques sets the stage for developing intelligent, self-adjusting vessels. This evolution aligns
with industry trends toward autonomy, particularly in navigating narrow waterways and
channels, offering a potential solution to the challenges of pilot training and scheduling.
Exploring these future directions will not only contribute to academic discourse but also
offer practical insights for the ongoing digital transformation of maritime operations.

6. Conclusions

In the realm of maritime tracking systems, current platforms like Marine Traffic, Ves-
selFinder, and AccessAIS serve as vital tools for monitoring vessel movements, providing
real-time insights into vessel types, names, and directions. However, these systems face
notable limitations, including the absence of detailed historical data and the cumbersome
process of downloading raw information, hindering users seeking comprehensive insights.
Additionally, these platforms lack features such as traffic information, mooring locations,
and advanced predictive capabilities for estimated time of arrival (ETA). Our proposed
model addresses these gaps by introducing innovative features and addressing existing
drawbacks. Through real-time transformation, the model processes and analyzes data in
smaller, more manageable chunks, optimizing time efficiency. Using a 5 min sample rate
reduces unnecessary data volume and structures data for storage efficiency by converting
repetitive columns into dimension tables. The model also introduces new features, in-
cluding trip number, direction, travel miles, travel time, segments, and origin/destination,
enhancing the depth of analysis. Furthermore, the model addresses issues of noise and
missing records, ensuring a more reliable and comprehensive maritime tracking solution.

Our research introduces an inclusive and effective framework for the processing of
maritime data, tracking vessel traffic, and predicting their next locations. Through the
implementation of an Extract, Transform, and Load (ETL) pipeline, we have successfully
processed raw AIS data, augmenting it with additional attributes like vessel direction
and trip number. The utilization of an inner product context for defining vessel direction
and a time-lagged window for trip estimation has proven highly effective, enabling the
accurate processing of millions of data entries within seconds. The newly designed system,
which eliminates the necessity for raw AIS data, exhibits the capacity to handle extensive
information, rendering it a valuable tool for maritime applications. Processed data are
stored in a database, and our user interface offers real-time visualizations of vessel traffic,
providing port authorities with effective monitoring capabilities. In the prediction phase,
we explored two distinct approaches: the conventional dead reckoning method and a deep
learning technique using a decoder-encoder model. Our findings revealed that the second
scenario of the dead reckoning method, considering the angle between the pre-record and
the new record, resulted in lower prediction errors compared to the course of the ground-
based approach. Furthermore, the Seq2Seq model demonstrated promising outcomes in
predicting the trajectories of vessels based on historical data. Our algorithm is versatile
and applicable to diverse maritime scenarios, offering valuable insights and facilitating
improved decision-making processes. For this study, we applied the framework to the
Gulf Intracoastal Waterway (GIWW) in the Texas region, simulating AIS APIs. The results
underscore the system’s efficiency in processing large amounts of data and achieving
precise vessel location predictions.
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