Impact of Cutting Direction in CAD/CAM FRC Blanks on the Shear Bond Strength of Veneering Composites
Highlights
- Bond strength of veneering composite to CAD/CAM FRC (Trinia) was evaluated regarding fiber orientation, load direction, and aging.
- Fiber orientation and load direction showed no significant effect; aging significantly reduced SBS, and fractographic analysis confirmed the adhesive interface as the limiting factor.
- Proper adhesive protocols can ensure durable bonding despite hydrolytic degradation.
- Veneered FRC restorations can be considered a reliable clinical option.
Abstract
1. Introduction
- Load direction does not influence the SBS between FRC and veneering composite.
- Cutting direction does not influence the SBS between FRC and veneering composite.
- Prolonged water storage does not influence the SBS between FRC and veneering composite.
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Treatment and Veneering
2.3. Storage Conditions
2.4. Shear Bond Strength Testing
- σ = shear bond strength (MPa),
- Fmax = maximum force at failure (N),
- A = bonded area (mm2).
2.5. Fractographic Analysis
2.6. Statistical Analysis
3. Results
Fractographic Observations and Failure Modes
4. Discussion
- Loading direction did not significantly influence the SBS between FRC and veneering composite (p > 0.367).
- Cutting direction (fiber orientation) also showed no significant effect on SBS (p > 0.584).
- In contrast, prolonged water storage had a statistically significant negative impact on SBS (p < 0.001), thus leading to the rejection of the third null hypothesis only.
4.1. Influence of Water Storage
4.2. Influence of Fiber Orientation and Loading Direction
4.3. Surface Treatment and Adhesive Protocols
4.4. Micromechanical Retention and Glass Fiber Effects
4.5. Clinical Implications
5. Conclusions
- Fiber orientation (1.5° vs. 45°) and loading direction (parallel vs. perpendicular) had no significant effect on shear bond strength (SBS), with mean values ranging from 20.4 to 21.6 MPa (p > 0.367–0.584).
- Water storage significantly reduced SBS (23.9 MPa at 1 day vs. 18.1 MPa at 180 days, p < 0.001), indicating hydrolytic degradation.
- Failure mode analysis revealed predominantly adhesive and mixed failures, confirming the adhesive interface as the limiting factor, although SBS values remained above clinically relevant thresholds.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FRCs | Fiber-reinforced composites |
CAD/CAM | Computer-aided design/Computer-aided manufacturing |
SBS | Shear bond strength |
SEM | Scanning electron microscopy |
STL | Stereolithography |
FDPs | Fixed dental prostheses |
WS | Water storage |
References
- Alevizakos, V.; Mitov, G.; Teichert, F.; von See, C. The Color Stability and Wear Resistance of Provisional Implant Restorations: A Prospective Clinical Study. Clin. Exp. Dent. Res. 2020, 6, 568–575. [Google Scholar] [CrossRef]
- Tom, T.N.; Uthappa, M.; Sunny, K.; Begum, F.; Nautiyal, M.; Tamore, S. Provisional Restorations: An Overview of Materials Used. J. Adv. Clin. Res. Insights 2016, 3, 212–214. [Google Scholar] [CrossRef]
- Yannikakis, S.A.; Zissis, A.J.; Polyzois, G.L.; Caroni, C. Color Stability of Provisional Resin Restorative Materials. J. Prosthet. Dent. 1998, 80, 533–539. [Google Scholar] [CrossRef]
- Vallittu, P.; Özcan, M. Clinical Guide to Principles of Fiber-Reinforced Composites in Dentistry; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Alshabib, A.; Abid Althaqafi, K.; AlMoharib, H.S.; Mirah, M.; AlFawaz, Y.F.; Algamaiah, H. Dental Fiber-Post Systems: An in-Depth Review of Their Evolution, Current Practice and Future Directions. Bioengineering 2023, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Sfondrini, M.F.; Broggini, S.; D’Allocco, M.; Gandini, P. Efficacy of Esthetic Retainers: Clinical Comparison between Multistranded Wires and Direct-Bond Glass Fiber-Reinforced Composite Splints. Int. J. Dent. 2011, 2011, 548356. [Google Scholar] [PubMed]
- Albar, N.H.M.; Khayat, W.F. Evaluation of Fracture Strength of Fiber-Reinforced Direct Composite Resin Restorations: An in Vitro Study. Polymers 2022, 14, 4339. [Google Scholar] [CrossRef]
- Yasue, T.; Iwasaki, N.; Shiozawa, M.; Tsuchida, Y.; Suzuki, T.; Takahashi, H. Effect of Fiberglass Orientation on Flexural Properties of Fiberglass-Reinforced Composite Resin Block For CAD/CAM. Dent. Mater. J. 2019, 38, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Ewers, R.; Perpetuini, P.; Morgan, V.J.; Marincola, M.; Wu, R.; Seemann, R. Trinia™—Metal-Free Restorations. Implants 2017, 1, 2–7. [Google Scholar]
- Varley, D.; Yousaf, S.; Youseffi, M.; Mozafari, M.; Khurshid, Z.; Sefat, F. Fiber-Reinforced Composites. In Advanced Dental Biomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 301–315. [Google Scholar]
- Tasaka, A.; Rues, S.; Schwindling, F.S.; Rammelsberg, P.; Yamashita, S. Retentive Force of Conical Crowns Combining Zirconia and Fiber-Reinforced Composite. J. Dent. 2022, 124, 104222. [Google Scholar] [CrossRef]
- Ulusoy, H.Ö.; Aydoğdu, H.M.; Tosun, İ. Bonding Performance of Cad/Cam Multilayer Glass-Fiber Reinforced High-Performance Polymer Cores with Different Veneer Materials. SSRN. 2024. Available online: https://ssrn.com/abstract=4848462 (accessed on 8 October 2025).
- Tasaka, A.; Schwindling, F.S.; Rues, S.; Rammelsberg, P.; Yamashita, S. Retentive Force of Telescopic Crowns Combining Fiber-Reinforced Composite and Zirconia. J. Prosthodont. Res. 2022, 66, 265–271. [Google Scholar] [CrossRef]
- Ewers, R.; Marincola, M.; Morgan, V.; Perpetuini, P.; Wagner, F.; Seemann, R. Restoration of the Atrophic Maxilla with Four Narrow and Ultrashort Implants. Int. J. Clin. Oral Maxillofac. Surg. 2018, 4, 35–41. [Google Scholar]
- Bonfante, E.A.; Suzuki, M.; Carvalho, R.M.; Hirata, R.; Lubelski, W.; Bonfante, G.; Pegoraro, T.A.; Coelho, P.G. Digitally Produced Fiber-Reinforced Composite Substructures For Three-Unit Implant-Supported Fixed Dental Prostheses. Int. J. Oral Maxillofac. Implant. 2015, 30, 321. [Google Scholar] [CrossRef]
- Shiozawa, M.; Tsuchida, Y.; Suzuki, T.; Takahashi, H. Discoloration of Fiber-Reinforced Composite Resin Disc For Computer-Aided Design/Computer-Aided Manufacturing After Immersion in Coffee and Curry Solutions. Dent. Mater. J. 2023, 42, 64–71. [Google Scholar] [CrossRef]
- Suzaki, N.; Yamaguchi, S.; Hirose, N.; Tanaka, R.; Takahashi, Y.; Imazato, S.; Hayashi, M. Evaluation of Physical Properties of Fiber-Reinforced Composite Resin. Dent. Mater. 2020, 36, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Bunz, O.; Benz, C.I.; Arnold, W.H.; Piwowarczyk, A. Shear Bond Strength of Veneering Composite to High Performance Polymers. Dent. Mater. J. 2021, 40, 304–311. [Google Scholar] [CrossRef]
- Rosentritt, M.; Schneider-Feyrer, S.; Strasser, T.; Koenig, A.; Schmohl, L.; Schmid, A. thermoanalytical Investigations on the Influence of Storage Time in Water of Resin-Based Cad/Cam Materials. Biomedicines 2021, 9, 1779. [Google Scholar] [CrossRef]
- Keski-Nikkola, M.; Alander, P.; Lassila, L.; Vallittu, P. Bond Strength of Gradia® Veneering Composite to Fibre-Reinforced Composite. J. Oral Rehabil. 2004, 31, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- AlJehani, Y.A.; Baskaradoss, J.K.; Geevarghese, A.; AlShehry, M.A.; Vallittu, P.K. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems. J. Prosthodont. 2016, 25, 392–401. [Google Scholar] [CrossRef]
- Ando, E.; Kihara, T.; Shigeta, Y.; Sasaki, K.; Ikawa, T.; Hirai, S.; Shigemoto, S.; Ihara, K.; Kawamura, N.; Ogawa, T. Effect of Surface Treatment on Bond Strength of Fiber-Reinforced Cad/Cam Epoxy Resin. J. Jpn. Acad. Digit. Dent. 2021, 11, 95–101. [Google Scholar]
- Armstrong, S.R.; Keller, J.C.; Boyer, D.B. Mode of Failure in the Dentin-Adhesive Resin–Resin Composite Bonded Joint as Determined by Strength-Based (Μtbs) and Fracture-Based (Cnsb) Mechanical Testing. Dent. Mater. 2001, 17, 201–210. [Google Scholar] [CrossRef]
- Placido, E.; Meira, J.B.; Lima, R.G.; Muench, A.; de Souza, R.M.; Ballester, R.Y. Shear Versus Micro-Shear Bond Strength Test: A Finite Element Stress Analysis. Dent. Mater. 2007, 23, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- ISO 29022:2013; Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test. European Committee for Standardization: Brüssel, Belgium, 2013.
- Blatz, M.B.; Sadan, A.; Martin, J.; Lang, B. in Vitro Evaluation of Shear Bond Strengths of Resin to Densely-Sintered High-Purity Zirconium-Oxide Ceramic after Long-Term Storage and thermal Cycling. J. Prosthet. Dent. 2004, 91, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Bömicke, W.; Rammelsberg, P.; Krisam, J.; Rues, S. The Effects of Surface Conditioning and Aging on the Bond Strength between Composite Cement and Zirconia-Reinforced Lithium-Silicate Glass-Ceramics. J. Adhes. Dent. 2019, 21, 567. [Google Scholar] [PubMed]
- Heikkinen, T.; Matinlinna, J.; Vallittu, P.; Lassila, L. Long Term Water Storage Deteriorates Bonding of Composite Resin to Alumina and Zirconia Short Communication. Open Dent. J. 2013, 7, 123. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.-L.; Xian, G.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S. Durability Study on interlaminar Shear Behaviour of Basalt-, Glass-and Carbon-Fibre Reinforced Polymer (B/G/Cfrp) Bars in Seawater Sea Sand Concrete Environment. Constr. Build. Mater. 2017, 156, 985–1004. [Google Scholar] [CrossRef]
- Leung, C.K.; Li, V.C. Effect of Fiber inclination on Crack Bridging Stress in Brittle Fiber Reinforced Brittle Matrix Composites. J. Mech. Phys. Solids 1992, 40, 1333–1362. [Google Scholar] [CrossRef]
- Fonseca, R.B.; Marques, A.S.; Bernades, K.d.O.; Carlo, H.L.; Naves, L.Z. Effect of Glass Fiber incorporation on Flexural Properties of Experimental Composites. BioMed Res. Int. 2014, 2014, 542678. [Google Scholar] [CrossRef]
- Müller, V.; Kabel, M.; Andrä, H.; Böhlke, T. Homogenization of Linear Elastic Properties of Short-Fiber Reinforced Composites–A Comparison of Mean Field and Voxel-Based Methods. Int. J. Solids Struct. 2015, 67, 56–70. [Google Scholar] [CrossRef]
- Nakamura, T.; Waki, T.; Kinuta, S.; Tanaka, H. Strength and Elastic Modulus of Fiber-Reinforced Composites Used For Fabricating Fpds. Int. J. Prosthodont. 2003, 16, 549. [Google Scholar]
Loading Direction | Cutting Direction | Aging | Mean SBS (MPa) |
---|---|---|---|
perpendicular | 1.5° | 1 d | 26.2 |
180 d | 18.7 | ||
45° | 1 d | 24.3 | |
180 d | 17.2 | ||
parallel | 1.5° | 1 d | 21.7 |
180 d | 18.9 | ||
45° | 1 d | 23.2 | |
180 d | 17.7 |
Sig. (p-Value) | |
---|---|
Aging (water storage) | <0.001 |
Cutting direction | 0.584 |
Loading direction | 0.367 |
Cutting direction * aging | 0.702 |
Cutting direction * loading direction | 0.493 |
Aging * loading direction | 0.249 |
Cutting direction * aging * loading direction | 0.573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Räther, S.; Schwindling, F.S.; Tasaka, A.; Rammelsberg, P.; Zenthöfer, A.; Rues, S. Impact of Cutting Direction in CAD/CAM FRC Blanks on the Shear Bond Strength of Veneering Composites. Fibers 2025, 13, 144. https://doi.org/10.3390/fib13110144
Räther S, Schwindling FS, Tasaka A, Rammelsberg P, Zenthöfer A, Rues S. Impact of Cutting Direction in CAD/CAM FRC Blanks on the Shear Bond Strength of Veneering Composites. Fibers. 2025; 13(11):144. https://doi.org/10.3390/fib13110144
Chicago/Turabian StyleRäther, Sven, Franz Sebastian Schwindling, Akinori Tasaka, Peter Rammelsberg, Andreas Zenthöfer, and Stefan Rues. 2025. "Impact of Cutting Direction in CAD/CAM FRC Blanks on the Shear Bond Strength of Veneering Composites" Fibers 13, no. 11: 144. https://doi.org/10.3390/fib13110144
APA StyleRäther, S., Schwindling, F. S., Tasaka, A., Rammelsberg, P., Zenthöfer, A., & Rues, S. (2025). Impact of Cutting Direction in CAD/CAM FRC Blanks on the Shear Bond Strength of Veneering Composites. Fibers, 13(11), 144. https://doi.org/10.3390/fib13110144