Hydration and Water Vapor Transport in Films Based on Cassava Starch Reinforced with Topinambur Fiber (Helianthus tuberosus)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Biocomposite Films
2.3. Films Characterization
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Thickness Measurements and Density of the Films
2.3.3. Kinetics of Water Sorption
2.3.4. Water Sorption Isotherms
2.3.5. Experimental Water Vapor Permeability Measurements
2.3.6. Evaluation of Effective Water Solubility and Diffusion in the Films
2.3.7. Film Surface Roughness and Contact Angle
2.3.8. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.9. Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Microstructural Characterization of Films
3.2. Water Vapor Sorption
3.3. Water Vapor Transport
3.4. Surface Roughness and Contact Angle Under Varying Humidity Conditions
3.5. FTIR Analysis and Evidence of Molecular Interactions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPS | Thermoplastic starch |
PE | Polyethylene |
PP | Polypropylene |
PS | Polystyrene |
ASTM | American Standard for Testing Materials |
FTIR | Fourier Transform Infrared Spectroscopy |
SEM | Scanning Electron Microscopy |
GAB | Guggenheim–Anderson–De Boer model |
WVP | Water vapor permeability |
RH | Relative humidity |
DM | Dried mass |
aw | Water activity |
References
- Cheng, J.; Gao, R.; Zhu, Y.; Lin, Q. Applications of biodegradable materials in food packaging: A review. Alex. Eng. J. 2024, 91, 70–83. [Google Scholar] [CrossRef]
- Lackner, M.; Mukherjee, A.; Koller, M. What Are “Bioplastics”? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility. Polymers 2023, 15, 4695. [Google Scholar] [CrossRef]
- Campanale, C.; Galafassi, S.; Di Pippo, F.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts. TrAC Trends Anal. Chem. 2024, 170, 117391. [Google Scholar] [CrossRef]
- Thrän, J.; Garcia-Garcia, G.; Parra-López, C.; Ufarte, A.; García-García, C.; Parra, S.; Sayadi-Gmada, S. Environmental and economic assessment of biodegradable and compostable alternatives for plastic materials in greenhouses. Waste Manag. 2024, 175, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Liang, Y.; Jiang, J.; Mo, A.; He, D. Organic additives in agricultural plastics and their impacts on soil ecosystems: Compared with conventional and biodegradable plastics. TrAC Trends Anal. Chem. 2023, 166, 117212. [Google Scholar] [CrossRef]
- Flury, M.; Narayan, R. Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment. Curr. Opin. Green Sustain. Chem. 2021, 30, 100490. [Google Scholar] [CrossRef]
- Thacharodi, A.; Meenatchi, R.; Hassan, S.; Hussain, N.; Bhat, M.A.; Arockiaraj, J.; Ngo, H.H.; Le, Q.H.; Pugazhendhi, A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. J. Environ. Manag. 2024, 349, 119433. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M. Thermoplastic Starch: A Potential Biodegradable Polymer for Food Packaging Applications. Fibers 2019, 7, 32. [Google Scholar] [CrossRef]
- Rivadeneira-Velasco, K.E.; Utreras-Silva, C.A.; Díaz-Barrios, A.; Sommer-Márquez, A.E.; Tafur, J.P.; Michell, R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers 2021, 13, 3227. [Google Scholar] [CrossRef]
- Ribba, L.; Garcia, N.L.; D’Accorso, N.; Goyanes, S. Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations. In Starch-Based Materials in Food Packaging: Processing, Characterization and Applications; Villar, M.A., Barbosa, S.E., García, M.A., Castillo, L.A., López, O.V., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 154–196. [Google Scholar] [CrossRef]
- Liu, F.; Ren, J.; Yang, Q.; Zhang, Q.; Zhang, Y.; Xiao, X.; Cao, Y. Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure. Int. J. Biol. Macromol. 2024, 260, 129404. [Google Scholar] [CrossRef] [PubMed]
- Asrofi, M.; Abral, H.; Kasim, A.; Pratoto, A.; Mahardika, M.; Hafizulhaq, F. Mechanical Properties of a Water Hyacinth Nanofiber Cellulose Reinforced Thermoplastic Starch Bionanocomposite: Effect of Ultrasonic Vibration During Processing. Fibers 2018, 6, 40. [Google Scholar] [CrossRef]
- Díaz, A.; García, M.A.; Dini, C. Jerusalem artichoke flour as food ingredient and as source of fructooligosaccharides and inulin. J. Food Compos. Anal. 2022, 114, 104863. [Google Scholar] [CrossRef]
- De Santis, D.; Frangipane, M.T. Evaluation of chemical composition and sensory profile in Jerusalem artichoke (Helianthus tuberosus L.) tubers: The effect of clones and cooking conditions. Int. J. Gastron. Food Sci. 2018, 11, 25–30. [Google Scholar] [CrossRef]
- Sierra Montes, L.F.; Melaj, M.A.; Lorenzo, M.C.; Ribba, L.; García, M.A. Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber. Sust. Polym. Energy 2024, 2, 10004. [Google Scholar] [CrossRef]
- Cazón, P.; Velázquez, G.; Vázquez, M. Regenerated cellulose films combined with glycerol and polyvinyl alcohol: Effect of moisture content on the physical properties. Food Hydrocoll. 2020, 103, 105657. [Google Scholar] [CrossRef]
- Coma, M.E.; Peltzer, M.A.; Delgado, J.F.; Salvay, A.G. Water kefir grains as an innovative source of materials: Study of plasticiser content on film properties. Eur. Polym. J. 2019, 120, 109234. [Google Scholar] [CrossRef]
- Perotto, G.; Simonutti, R.; Ceseracciu, L.; Mauri, M.; Besghini, D.; Athanassiou, A. Water-induced plasticization in vegetable-based bioplastic films: A structural and thermo-mechanical study. Polymer 2020, 200, 122598. [Google Scholar] [CrossRef]
- Guggenheim, E.A. Applications of Statistical Mechanics; Oxford University Press: Oxford, UK, 1966. [Google Scholar]
- Bertuzzi, M.A.; Castro Vidaurre, E.F.; Armada, M.; Gottifredi, J.C. Water vapor permeability of edible starch based films. J. Food. Eng. 2007, 80, 972–978. [Google Scholar] [CrossRef]
- Delgado, J.F.; Peltzer, M.A.; Salvay, A.G. Water Vapour Transport in Biopolymeric Materials: Effects of Thickness and Water Vapour Pressure Gradient on Yeast Biomass-Based Films. J. Polym. Environ. 2022, 30, 2976–2989. [Google Scholar] [CrossRef]
- Cuq, B.; Gontard, N.; Aymard, C.; Guilbert, S. Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polym. Gels Netw. 1997, 5, 1–15. [Google Scholar] [CrossRef]
- Guillard, V.; Broyart, B.; Bonazzi, C.; Guilbert, S.; Gontard, N. Preventing Moisture Transfer in a Composite Food Using Edible Films: Experimental and Mathematical Study. J. Food Sci. 2003, 68, 2267–2277. [Google Scholar] [CrossRef]
- Angellier-Coussy, H.; Gastaldi, E.; Gontard, N.; Guillard, V. Influence of processing temperature on the water vapour transport properties of wheat gluten based agromaterials. Ind. Crops Prod. 2011, 33, 457–461. [Google Scholar] [CrossRef]
- Díaz-Díaz, E.D.; Ribba, L.; Makovec, J.; Melaj, M.; Bernal, C.; Goyanes, S.; Salvay, A.G. Development of Biodegradable Films for Sustainable Agricultural Applications by Using Thermoplastic Potato Starch and PBAT. J. Appl. Polym. Sci. 2025, 142, e57685. [Google Scholar] [CrossRef]
- Rogers, C.E. Permeation of Gases and Vapours in Polymers. In Polymer Permeability; Comyn, J., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 11–73. [Google Scholar] [CrossRef]
- Roy, S.; Gennadios, A.; Weller, C.L.; Testin, R.F. Water vapor transport parameters of a cast wheat gluten film. Ind. Crops Prod. 2000, 11, 43–50. [Google Scholar] [CrossRef]
- Delgado, J.F.; Peltzer, M.A.; Wagner, J.R.; Salvay, A.G. Hydration and water vapour transport properties in yeast biomass based films: A study of plasticizer content and thickness effects. Eur. Polym. J. 2018, 99, 9–17. [Google Scholar] [CrossRef]
- Cuq, B.; Gontard, N.; Cuq, J.L.; Guilbert, S. Functional Properties of Myofibrillar Protein-based Biopackaging as Affected by Film Thickness. J. Food. Sci. 1996, 61, 580–584. [Google Scholar] [CrossRef]
- Park, H.J.; Weller, C.L.; Vergano, P.J.; Testin, R.F. Permeability and Mechanical Properties of Cellulose-Based Edible Films. J. Food Sci. 1993, 58, 1361–1364. [Google Scholar] [CrossRef]
- Pereda, M.; Aranguren, M.I.; Marcovich, N.E. Water vapor absorption and permeability of films based on chitosan and sodium caseinate. J. Appl. Polym. Sci. 2009, 111, 2777–2784. [Google Scholar] [CrossRef]
- Balaguer, M.P.; Cerisuelo, J.P.; Gavara, R.; Hernandez-Muñoz, P. Mass transport properties of gliadin films: Effect of cross-linking degree, relative humidity, and temperature. J. Memb. Sci. 2013, 428, 380–392. [Google Scholar] [CrossRef]
- Cuq, B.; Gontard, N.; Cuq, J.L.; Guilbert, S. Selected Functional Properties of Fish Myofibrillar Protein-Based Films As Affected by Hydrophilic Plasticizers. J. Agric. Food Chem. 1997, 45, 622–626. [Google Scholar] [CrossRef]
- Turhan, K.N.; Şahbaz, F. Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J. Food Eng. 2004, 61, 459–466. [Google Scholar] [CrossRef]
- Nascimento, P.; Marim, R.; Carvalho, G.; Mali, S. Nanocellulose Produced from Rice Hulls and its Effect on the Properties of Biodegradable Starch Films. Mater. Res. 2016, 19, 167–174. [Google Scholar] [CrossRef]
- Delgado, J.F.; de la Osa, O.; Salvay, A.G.; Cavallo, E.; Cerrutti, P.; Foresti, M.L.; Peltzer, M.A. Reinforcement of Yeast Biomass Films with Bacterial Cellulose and Rice Husk Cellulose Nanofibres. J. Polym. Environ. 2021, 29, 3242–3251. [Google Scholar] [CrossRef]
- Pongsuwan, C.; Boonsuk, P.; Sermwittayawong, D.; Aiemcharoen, P.; Mayakun, J.; Kaewtatip, K. Banana inflorescence waste fiber: An effective filler for starch-based bioplastics. Ind. Crops Prod. 2022, 180, 114731. [Google Scholar] [CrossRef]
- Averous, L.; Boquillon, N. Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydr. Polym. 2004, 56, 111–122. [Google Scholar] [CrossRef]
- Campos, A.; Sena Neto, A.R.; Rodrigues, V.B.; Luchesi, B.R.; Mattoso, L.H.C.; Marconcini, J.M. Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Ind. Crops Prod. 2018, 124, 149–154. [Google Scholar] [CrossRef]
- Cantor, C.R.; Schimmel, P.R. Biophysical Chemistry: Part III: The Behavior of Biological Macromolecules; W. H. Freeman: San Francisco, CA, USA, 1980. [Google Scholar]
- De La Cruz, G.V.; Torres, J.A.; Martín-Polo, M.O. Temperature effect on the moisture sorption isotherms for methylcellulose and ethylcellulose films. J. Food Eng. 2001, 48, 91–94. [Google Scholar] [CrossRef]
- ASTM-E96 2016; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
- Ladetto, M.F.; Ancarola, M.E.; Lamas, D.G.; Kollrich, B.A.; Cucher, M.A.; Álvarez, V.A.; Glisoni, R.J.; Castro, G.R.; Islan, G.A.; Cuestas, M.L. Enhanced antifungal efficacy of clotrimazole and itraconazole delivered via solid lipid nanoparticles for potential otomycosis therapy. J. Drug Deliv. Sci. Technol. 2025, 113, 107401. [Google Scholar] [CrossRef]
- Kaewtatip, K.; Thongmee, J. Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater. Des. 2012, 40, 314–318. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Kennedy, J.F. Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr. Polym. 2005, 62, 19–24. [Google Scholar] [CrossRef]
- Bénézet, J.C.; Stanojlovic-Davidovic, A.; Bergeret, A.; Ferry, L.; Crespy, A. Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind. Crops Prod. 2012, 37, 435–440. [Google Scholar] [CrossRef]
- Vallejos, M.E.; Curvelo, A.A.S.; Teixeira, E.M.; Mendes, F.M.; Carvalho, A.J.F.; Felissia, F.E.; Area, M.C. Composite materials of thermoplastic starch and fibers from the ethanol–water fractionation of bagasse. Ind. Crops Prod. 2011, 33, 739–746. [Google Scholar] [CrossRef]
- Gironès, J.; López, J.P.; Mutjé, P.; Carvalho, A.J.F.; Curvelo, A.A.S.; Vilaseca, F. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos. Sci. Technol. 2012, 72, 858–863. [Google Scholar] [CrossRef]
- López, O.V.; Versino, F.; Villar, M.A.; García, M.A. Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films. Carbohydr. Polym. 2015, 134, 324–332. [Google Scholar] [CrossRef]
- Aouada, F.A.; Mattoso, L.H.C.; Longo, E. Enhanced bulk and superficial hydrophobicities of starch-based bionanocomposites by addition of clay. Ind. Crops Prod. 2013, 50, 449–455. [Google Scholar] [CrossRef]
- Spiridon, I.; Teacǎ, C.A.; Bodîrlǎu, R.; Bercea, M. Behavior of Cellulose Reinforced Cross-Linked Starch Composite Films Made with Tartaric Acid Modified Starch Microparticles. J. Polym. Environ. 2013, 21, 431–440. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Y.; Chang, P.R.; Stumborg, M.; Huneault, M.A. Green composites reinforced with hemp nanocrystals in plasticized starch. J. Appl. Polym. Sci. 2008, 109, 3804–3810. [Google Scholar] [CrossRef]
- Das, S.; Basak, S.; Baite, H.; Bhowmick, M.; Debnath, S.; Roy, A.N. Jute fibre reinforced biodegradable composites using starch as a biological macromolecule: Fabrication and performance evaluation. Int. J. Biol. Macromol. 2024, 273, 132641. [Google Scholar] [CrossRef]
- Hafizulhaq, F.; Abral, H.; Kasim, A.; Arief, S.; Affi, J. Moisture Absorption and Opacity of Starch-Based Biocomposites Reinforced with Cellulose Fiber from Bengkoang. Fibers 2018, 6, 62. [Google Scholar] [CrossRef]
- Wani, S.A.; Kumar, P. Moisture sorption isotherms and evaluation of quality changes in extruded snacks during storage. LWT 2016, 74, 448–455. [Google Scholar] [CrossRef]
- van Soest, J.J.G.; Tournois, H.; de Wit, D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
- Rubens, P.; Snauwaert, J.; Heremans, K.; Stute, R. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr. Polym. 1999, 39, 231–235. [Google Scholar] [CrossRef]
- Dalmis, R. Description of a new cellulosic natural fiber extracted from Helianthus tuberosus L. as a composite reinforcement material. Physiol. Plant. 2023, 175, e13960. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, A.F.; Palencia, M.; Lerma, T.A. Physicochemical Characterization and Properties of Cassava Starch: A Review. Polymers 2025, 17, 1663. [Google Scholar] [CrossRef] [PubMed]
- Zobel, H.F. Starch Crystal Transformations and Their Industrial Importance. Starch–Stärke 1988, 40, 1–7. [Google Scholar] [CrossRef]
- Abral, H.; Dalimunthe, M.H.; Hartono, J.; Efendi, R.P.; Asrofi, M.; Sugiarti, E.; Sapuan, S.M.; Park, J.W.; Kim, H.J. Characterization of Tapioca Starch Biopolymer Composites Reinforced with Micro Scale Water Hyacinth Fibers. Starch–Stärke 2018, 70, 1700287. [Google Scholar] [CrossRef]
- Ek, P.; Gu, B.J.; Saunders, S.R.; Huber, K.; Ganjyal, G.M. Exploration of physicochemical properties and molecular interactions between cellulose and high-amylose cornstarch during extrusion processing. Curr. Res. Food Sci. 2021, 4, 588–597. [Google Scholar] [CrossRef]
Filler Content | Hydration Kinetics Parameters | ||||||
---|---|---|---|---|---|---|---|
(g/g) | (Days) | (Days) | (Days) | R2 | |||
0% | 0.49 ± 0.02 | 1.03 ± 0.23 | 0.60 ± 0.02 | 9.1 ± 0.7 | 0.40 ± 0.02 | 4.3 ± 0.7 | 0.999 |
5% | 0.45 ± 0.02 | 1.05 ± 0.23 | 0.62 ± 0.02 | 8.2 ±0.5 | 0.38 ± 0.02 | 3.8 ± 0.5 | 0.999 |
10% | 0.40 ± 0.02 | 0.99 ± 0.22 | 0.66 ± 0.02 | 6.6 ± 0.4 | 0.36 ± 0.02 | 3.0 ± 0.4 | 0.999 |
Filler Content | Water Sorption Isotherms Parameters | |||
---|---|---|---|---|
(g per g) | c | R2 | ||
0% | 0.051 ± 0.008 | 1.55 ± 0.76 | 0.999 ± 0.008 | 0.998 |
5% | 0.054 ± 0.009 | 1.43 ± 0.71 | 0.988 ± 0.006 | 0.997 |
10% | 0.056 ± 0.011 | 1.29 ± 0.63 | 0.971 ± 0.004 | 0.997 |
Filler Content | (mm) | (104 g m−3) | Water Transport Parameters | |||
---|---|---|---|---|---|---|
(10−3 gs−1m−2) | (10−10 gs−1m−1Pa−1) | (gm−3Pa−1) | (10−13 m2 s−1) | |||
0% | 0.43 ± 0.01 a | 121 ± 6 a | 4.60 ± 0.08 a | 9.3 ± 0.2 a | 281 ± 11 a | 33 ± 2 a |
5% | 0.43 ± 0.01 a | 123 ± 5 a | 4.29 ± 0.03 b | 8.7 ± 0.1 b | 262 ± 12 b | 33 ± 2 a |
10% | 0.43 ± 0.01 a | 125 ± 4 a | 3.97 ± 0.02 c | 8.2 ± 0.1 c | 236 ± 12 c | 35 ± 1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra Montes, L.F.; Lorenzo, M.C.; García, M.A.; Salvay, A.G.; Ribba, L. Hydration and Water Vapor Transport in Films Based on Cassava Starch Reinforced with Topinambur Fiber (Helianthus tuberosus). Fibers 2025, 13, 141. https://doi.org/10.3390/fib13100141
Sierra Montes LF, Lorenzo MC, García MA, Salvay AG, Ribba L. Hydration and Water Vapor Transport in Films Based on Cassava Starch Reinforced with Topinambur Fiber (Helianthus tuberosus). Fibers. 2025; 13(10):141. https://doi.org/10.3390/fib13100141
Chicago/Turabian StyleSierra Montes, Luisa F., María C. Lorenzo, Maria A. García, Andrés G. Salvay, and Laura Ribba. 2025. "Hydration and Water Vapor Transport in Films Based on Cassava Starch Reinforced with Topinambur Fiber (Helianthus tuberosus)" Fibers 13, no. 10: 141. https://doi.org/10.3390/fib13100141
APA StyleSierra Montes, L. F., Lorenzo, M. C., García, M. A., Salvay, A. G., & Ribba, L. (2025). Hydration and Water Vapor Transport in Films Based on Cassava Starch Reinforced with Topinambur Fiber (Helianthus tuberosus). Fibers, 13(10), 141. https://doi.org/10.3390/fib13100141