Sustainable Pattern Innovation in Chenille Tufted Carpets: A Spatial Color Mixing Approach Using Dope-Dyed Filament
Abstract
1. Introduction
2. Materials and Methods
2.1. Space-Juxtaposed Color Mixing Model
2.2. Multi-Element Mixing System Development
2.3. Spinning Process of Chenille Yarns
2.4. Tufting Technology for Chenille Carpets
2.5. Finishing Process Development
2.6. Colorfastness and Performance Testing
3. Results and Discussion
3.1. Validation of Spatial Juxtaposition Mixing Model
3.2. CNC-Controlled Chenille Yarn Engineering
3.3. Critical Process Parameters for Optimal Pile Morphology
3.4. Innovative Thermal Treatment for Dope-Dyed Carpets
3.5. Comprehensive Performance Validation
3.6. Addressing Current Limitations and Industrial Considerations
3.7. Broader Implications and Future Research Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- İlhan, İ. An experimental investigation on strength and elongation properties of chenille yarn. Text. Appar. 2017, 27, 117–125. [Google Scholar]
- Grice-Venour, A. New conservation practices for a nineteenth-century chenille carpet at the National Trust Textile Conservation Studio. In Textile Conservation; Routledge: Abingdon, UK, 2024; pp. 285–294. [Google Scholar]
- Hassabo, A.G.; Zayed, M.; Bakr, M.; Othman, H. An overview of carpet manufacture: Design, dyeing, printing and finishing. J. Text. Color. Polym. Sci. 2022, 19, 269–290. [Google Scholar] [CrossRef]
- Cascio, A.J. Development of next generation carpet backings for facile recyclability. Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2006. [Google Scholar]
- Ponder, C.; Gregory, B.; Griffing, E.; Li, Y.; Overcash, M. Life cycle comparison of carpet dyeing processes. J. Adv. Manuf. Process. 2019, 1, e10012. [Google Scholar] [CrossRef]
- Chequer, F.M.D.; de Oliveira, G.A.R.; Ferraz, E.R.A.; Cardoso, J.C.; Zanoni, M.V.B.; de Oliveira, D.P. Textile dyes: Dyeing process and environmental impact. In Eco-Friendly Textile Dyeing and Finishing; IntechOpen: London, UK, 2013. [Google Scholar]
- Acquah, S.B.; Oduro, K. Traditional cloth dyeing enterprise at Ntonso: Challenges and opportunities. West Afr. J. Appl. Ecol. 2012, 20, 25–36. [Google Scholar]
- Bureekhampun, S.; Maneepun, C. Eco-friendly and community sustainable textile fabric dyeing methods from Thai buffalo manure: From pasture to fashion designer. SAGE Open 2021, 11, 21582440211058201. [Google Scholar] [CrossRef]
- Rahaman, M.T.; Pranta, A.D.; Repon, M.R.; Ahmed, M.S.; Islam, T. Green production and consumption of textiles and apparel: Importance, fabrication, challenges and future prospects. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100280. [Google Scholar] [CrossRef]
- Hassan, R.; Acerbi, F.; Terzi, S.; Rosa, P. Enabling the twin transition of the textile industry: A systematic literature review. Waste Manag. 2025, 195, 294–307. [Google Scholar] [CrossRef]
- Siliņa, L.; Dāboliņa, I.; Lapkovska, E. Sustainable textile industry—Wishful thinking or the new norm: A review. J. Eng. Fibers Fabr. 2024, 19, 15589250231220359. [Google Scholar] [CrossRef]
- Islam, M.T.; Jahan, R.; Jahan, M.; Howlader, M.S.; Islam, R.; Islam, M.M.; Hossen, M.S.; Kumar, A.; Robin, A. Sustainable textile industry: An overview. Non-Met. Mater. Sci. 2022, 4, 15–32. [Google Scholar] [CrossRef]
- Balakrishnan, N.K.; Siebert, S.; Richter, C.; Groten, R.; Seide, G. Effect of colorants and process parameters on the properties of dope-dyed polylactic acid multifilament yarns. Polymers 2022, 14, 5021. [Google Scholar] [CrossRef]
- Moges, G.; Pawlos, M.; Ademasu, Y.; Tesfaye, T. A review of exploring ionic and nonionic dyeing of polyester: Sustainable solutions and applications. Text. Res. J. 2025, 95, 00405175251322133. [Google Scholar] [CrossRef]
- Nitu, N.A.; Ma, Y.; Gong, Y.; Zhang, D.; Zhang, S.; Hasan, M.M.; Hu, Y. Wearable Colorful Nanofiber of Thermoplastic Polyurethane (TPU) Mechanical and Colorfastness Properties by Dope Dyeing. Fibers Polym. 2024, 25, 2485–2502. [Google Scholar] [CrossRef]
- Nygren, N.; Langhans, M.; Heimala, S.; Westerback, H.; Schlapp-Hackl, I.; Hummel, M. Production and Recycling of Dope-Dyed Lyocell Fibers with Pigment Dyes. ACS Sustain. Resour. Manag. 2025, 2, 1139–1146. [Google Scholar] [CrossRef]
- Vuola, J. Recycling of Dope Dyed Fibers. Bachelor’s Thesis, Aalto University, Espoo, Finland, 20 May 2025. [Google Scholar]
- Uglea, C.V.; Stan, V.N. The characterisation of dope dyed poly (ethylene terephthalate). Br. Polym. J. 1982, 14, 39–44. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, F.; Jin, X.; Zhang, S.; Zhu, C. Optimized Stearns-Noechel model to predict mixed color values of yarn-dyed fabrics. Sen’i Gakkaishi 2014, 70, 218–224. [Google Scholar] [CrossRef][Green Version]
- Daneshvar, E.; Amani Tehran, M.; Gorji Kandi, S.; Zeighami, F. Investigating the characteristics of two different methods in nanofiber yarn coloration. J. Text. Inst. 2016, 107, 833–841. [Google Scholar] [CrossRef]
- Çeven, E.K.; Ozdemir, O. Using Fuzzy Logic to Evaluate and Predicte Chenille Yarn’s Shrinkage Behaviour. Fibres Text. East. Eur. 2007, 15, 55. [Google Scholar]
- Fouda, A.; Těšinová, P.; Khalil, A.; Eldeeb, M. Thermo-physiological properties of polyester chenille single Jersey knitted fabrics. Alex. Eng. J. 2022, 61, 7029–7036. [Google Scholar] [CrossRef]
- Şener, A.; Koç, D.D.; Yılmaz, K.; Tosunoğlu, E.; Çam, P.; Gündübay, A.; Demirdelen, T. Chenille yarn production parameters improvement studies and evaluation of their effects. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 2022, 37, 1047–1060. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, X.; Shulan, J.; Jun, L.; Qunhao, L. Morphological structure regulation mechanism of the chenille yarn and its spinning process design. Adv. Text. Technol. 2023, 31, 36. [Google Scholar]
- Tusief, M.Q.; Ashraf, S.; Manzoor, H.; Waris, Z.; Siddique, A.; Hussain, F.; Raza, Z.; Zeeshan, M.; Saifullah, R.; Amjad, A. Application of Fancy Yarns for Weaving. Acad. Int. J. Soc. Sci. 2025, 4, 395–398. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, F.; Pan, R. Multiplexed Sensing Textiles Enabled by Reconfigurable Weaving Meso-Structures for Intricate Kinematic Posture Recognition and Thermal Therapy Healthcare. ACS Sens. 2025, 10, 3051–3060. [Google Scholar] [CrossRef] [PubMed]
- Attia, A. Innovating New Weaving Structural Components to Create Woven Jacquard Sports Footwear Fabrics. Int. Des. J. 2024, 14, 313–325. [Google Scholar] [CrossRef]
- Liu, H.; Shi, Y.; Pan, Y.; Wang, Z.; Wang, B. Sensory interactive fibers and textiles. NPJ Flex. Electron. 2025, 9, 23. [Google Scholar] [CrossRef]
- Yağız, A.; Usta, İ. Development of multifunctional textile surface with electromagnetic shielding effectiveness, water and oil repellency and flame retardancy features. Text. Appar. 2025, 35, 19–30. [Google Scholar]
- Khan, G.M.A.; Hasan, M.S.; Rahaman, M.H.; Aydid, A.; Rahman, M.M.; Hasanuzzaman, M.; Jahan, R.; Jannat-Al-Foisal, M. Cellulose and its composites in textiles and food industry. In Regenerated Cellulose and Composites: Morphology-Property Relationship; Springer: Berlin/Heidelberg, Germany, 2023; pp. 223–264. [Google Scholar]
- Tufted Carpets Market Size, Share & Industry Analysis, by Material (Animal-Made Yarn, Plant-Made Yarn, and Synthetic Fibers), by Application (Residential and Commercial), by Distribution Channel (E-Commerce/Online and Retail Outlets/Offline), and Regional Forecast, 2025–2032. Available online: https://www.fortunebusinessinsights.com/tufted-carpets-market-112909 (accessed on 4 August 2025).
- Cunningham, P.R.; Miller, S.A. A material flow analysis of carpet in the United States: Where should the carpet go? J. Clean. Prod. 2022, 368, 133243. [Google Scholar] [CrossRef]
- Harman, D.E. An Economic Evaluation of the Robotic Tufting Process Considering the Application of a Novel Composite Wing Rib Post. Doctor’s Thesis, University of Plymouth, Plymouth, UK, 2013. [Google Scholar]
- Zhang, Q.; Luo, H.; Zhu, W.; Qi, G.; Wang, Y. Design and implementation of a automatic carpet edge-cutting system. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 2582–2586. [Google Scholar]
- Wang, J.; Campbell, R.A.; Harwood, R.J. Automated inspection of carpets. In Proceedings of the Optics in Agriculture, Forestry, and Biological Processing, Boston, MA, USA, 31 October–4 November 1994; SPIE: Bellingham, DC, USA, 1995; pp. 180–191. [Google Scholar]
- Fairchild, M.D. Color Appearance Models; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Shevell, S.K. The Science of Color; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Nishida, S.y.; Watanabe, J.; Kuriki, I.; Tokimoto, T. Human visual system integrates color signals along a motion trajectory. Curr. Biol. 2007, 17, 366–372. [Google Scholar] [CrossRef]
- Pascucci, D.; Tanrikulu, Ö.D.; Ozkirli, A.; Houborg, C.; Ceylan, G.; Zerr, P.; Rafiei, M.; Kristjánsson, Á. Serial dependence in visual perception: A review. J. Vis. 2023, 23, 9. [Google Scholar] [CrossRef]
- Nguyen, L.C. Fiber Fusion: An Exploration of Color Gradients through Color Mixing of Blending Wool Fibers. Bachelor’s Thesis, Faculty of Textiles, Engineering and Business, Borås, Sweden, 2023. [Google Scholar]
- Chae, Y. Visual Color Mixing Effect of Yarns in Textile Fabrics. J. Korean Soc. Cloth. Text. 2019, 43, 373–383. [Google Scholar] [CrossRef]
- Seyam, A.-F.M.; Mathur, K. A general geometrical model for predicting color mixing of woven fabrics from colored warp and filling yarns. Fibers Polym. 2012, 13, 795–801. [Google Scholar] [CrossRef]
- Chae, Y. The color appearance shifts of woven fabrics induced by the optical blending of colored yarns. Text. Res. J. 2020, 90, 395–409. [Google Scholar] [CrossRef]
- Sun, X.; Xue, Y.; Liu, Y.; Wang, L.; Liu, L. A neural network algorithm and its prediction model towards the full color phase mixing process of colored fibers. Text. Res. J. 2023, 93, 2449–2463. [Google Scholar] [CrossRef]
- Navarro, R. The optical design of the human eye: A critical review. J. Optom. 2009, 2, 3–18. [Google Scholar] [CrossRef]
- Ashraf, M.; Chapiro, A.; Mantiuk, R.K. Resolution limit of the eye: How many pixels can we see? arXiv 2024, arXiv:2410.06068. [Google Scholar] [CrossRef]
- Bonaque-González, S.; Trujillo-Sevilla, J.M.; Velasco-Ocaña, M.; Casanova-González, Ó.; Sicilia-Cabrera, M.; Roqué-Velasco, A.; Ceruso, S.; Oliva-García, R.; Martín-Hernández, J.; Gomez-Cardenes, O. The optics of the human eye at 8.6 µm resolution. Sci. Rep. 2021, 11, 23334. [Google Scholar] [CrossRef]
- Hagh-Shenas, H.; Kim, S.; Interrante, V.; Healey, C. Weaving versus blending: A quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1270–1277. [Google Scholar] [CrossRef]
- Boynton, R.M.; Olson, C.X. Locating basic colors in the OSA space. Color Res. Appl. 1987, 12, 94–105. [Google Scholar] [CrossRef]
- Feisner, E.A.; Reed, R. Color Studies; A&C Black: London, UK, 2013. [Google Scholar]
- GB/T 12490-2014; Textiles-Tests for Colour Fastness-Colour Fastness to Domestic and Commercial Laundering. Standards Press of China: Beijing, China, 2014.
- GB/T 3920-2008; Textiles-Tests for Colour Fastnesscolour Fastness to Rubbing. China National Standardization Management Committee: Beijing, China, 2008.
- GB/T 8427-2008; Textiles-Tests for Colour Fastnesscolour Fastness to Artificial Light: Xenon Arc Fading Lamp Test. China National Standardization Management Committee: Beijing, China, 2008.
No. | Color | CIELAB Value | RGB Value | HSL Value | Color Swatch |
---|---|---|---|---|---|
1 | Red | (179, 80, 88) | (179, 80, 88) | (355.15°, 39.44, 50.78) | |
2 | Yellow | (74.60, −4.40, 65.1) | (209, 183, 53) | (50°, 62.90, 51.37) | |
3 | Green | (54.13, −29.84, 9.71) | (72, 143, 112) | (153.8°, 33.02, 42.16) | |
4 | Cyan | (66.59, −14.33, −24.27) | (95, 171, 205) | (198.55°, 52.38, 58.82) | |
5 | Blue | (43.22, 2.87, −26.03) | (78, 103, 145) | (217.61°, 30.04, 43.73) | |
6 | Magenta | (50.88, 42.80, 1.94) | (188, 89, 119) | (341.82°, 42.49, 54.31) | |
7 | White | (94.39, −0.14, 1.02) | (239, 239, 237) | (60°, 5.88, 93.33) | |
8 | Gray | (41.79, −0.57, −1.97) | (96, 99, 102) | (210°, 3.03, 38.82) | |
9 | Black | (35.44, 0.04, −0.96) | (83, 83, 85) | (240°, 1.19, 32.94) |
No. | Color | Color Code | Lab Value | HSL Value | Hue Angle |
---|---|---|---|---|---|
1 | Brown | N | (41.72, 13.06, 12.62) | (15°, 23, 40) | 15° |
2 | Champagne | C | (60.14, 15.57, 28.73) | (25°, 40, 55) | 25° |
3 | Off-white | W | (84.53, 3.94, 12.22) | (29°, 42, 82) | 29° |
4 | Fruit green | G | (68.25, −14.39, 48.25) | (62°, 39, 48) | 62° |
5 | Dark gray | D | (39.40, −0.78, −0.04) | (168°, 1, 36) | 168° |
6 | Lake blue | B | (66.28, −30.64, −11.01) | (182°, 49, 47) | 182° |
7 | Purple | P | (52.42, 24.01, −15.64) | (302°, 17, 52) | 302° |
8 | Gray | Y | (56.95, 1.23, −0.77) | (307°, 1, 54) | 307° |
9 | Rose red | M | (53.82, 48.51, −8.11) | (331°, 49, 57) | 331° |
10 | Bright red | R | (39.69, 45.59, 18.11) | (354°, 48, 43) | 354° |
No. | Pattern Type | Chenille Yarn Filament Combination | Chenille Yarn Arrangement Sequence | Tufting Program |
---|---|---|---|---|
1 | Mosaic | A: Champagne (2) + Gray (1) B: Gray (2) + Champagne (1) C: Fruit Green (2) + Gray (1) D: Fruit Green (2) + Purple (1) E: Purple (2) + White (1) | (4A + 4B + 4C + 4D + 4E) repeating sequence | Straight-line tufting. |
2 | Heather | A: Off-white (1) + Lake Blue (2) B: Brown (2) + Lake Blue (1) C: Beige (3) | (3A + 5B + 3C + 5B) repeating sequence | Stitches 1–6: Tuft 1, shift left 1 gauge; repeat. Stitches 7–9: Tuft 3 in a straight line. Stitches 10–15: Tuft 1, shift right 1 gauge; repeat. Stitches 16–18: Tuft 3 in a straight line. Repeat cycle. |
3 | Solid Color | A: Champagne (3) B: Off-white (3) C: Brown (3) | (5A + 3B + 6C + 3B) repeating sequence | Straight-line tufting. |
4 | Solid + Mosaic | A: Bright Red (3) B: Light Gray (1) + Off-white (2) C: Bright Red (1) + Light Gray (1) + Off-white (1) | 9A + (1B + 1C) × 5 + 1B repeating sequence | Stitch 1: Tuft 1, shift left 1 gauge. Stitch 2: Tuft 1, shift right 1 gauge. |
5 | Solid Color | A: Gray (3) B: Off-white (3) C: Purple (3) | (9A + 3B + 5C) repeating sequence | Straight-line tufting. |
6 | Heather | A: Lake Blue (1) + Dark Gray (1) + Off-white (1) B: Brown (1) + Rose Red (1) + Off-white (1) C: Bright Red (1) + Rose Red (1) + Off-white (1) | (6A + 6B + 6C) repeating sequence | Stitch 1: Tuft 1, shift left 1 gauge. Stitch 2: Tuft 1, shift right 1 gauge. |
Front-Roller Velocity (m/min) | Initial Measured Linear Density (tex) | Final Measured Linear Density (tex) | Measured Density Multiplier |
---|---|---|---|
5.54 | 1080 | 1665 | 1.5x |
4.21 | 1111 | 2133 | 1.9x |
3.34 | 1070 | 2675 | 2.5x |
2.81 | 1060 | 3200 | 3.0x |
2.39 | 1100 | 3500 | 3.2x |
2.10 | 1090 | 3567 | 3.3x |
Rotating-Head Speed (r/min) | Initial Measured Linear Density (tex) | Final Measured Linear Density (tex) | Measured Density Multiplier |
---|---|---|---|
14,525 | 1090 | 1635 | 1.5x |
19,090 | 1100 | 2195 | 2.0x |
24,070 | 1080 | 2780 | 2.5x |
28,635 | 1110 | 3300 | 3.0x |
33,615 | 1090 | 3815 | 3.5x |
38,180 | 1010 | 4010 | 4.0x |
Spacing-Plate Width (mm) | Initial Measured Linear Density (tex) | Final Measured Linear Density (tex) | Diameter Multiplier |
---|---|---|---|
7.0 | 820 | 901 | 1.2x |
8.0 | 807 | 1100 | 1.3x |
8.8 | 810 | 1152 | 1.5x |
10.0 | 811 | 1251 | 1.7x |
12.0 | 810 | 1510 | 2.0x |
15.0 | 801 | 1900 | 2.5x |
Spacing-Plate Width (mm) | 6.0 | 8.0 | 7.0 | 8.8 | 7.5 | 10.0 | 12.0 | 15.0 |
---|---|---|---|---|---|---|---|---|
Twist (twists·m−1) | 540 ± 20 | 540 ± 20 | 540 ± 20 | 540 ± 20 | 340 ± 20 | 540 ± 20 | 540 ± 20 | 340 ± 20 |
Spacing-Plate Width/mm | 6.0 | 7.0 | 7.5 | 8.0 | 8.8 | 10.0 | 12.0 | 15.0 |
---|---|---|---|---|---|---|---|---|
Weight per meter/(mg·m−1) | 950–1000 | 1400–1450 | 1800–1900 | 1250–1300 | 1650–1700 | 2200–2250 | 3150–3250 | 3400–3450 |
Pile yarn arrangement density/(fibers·cm−1) | 67–72 | 69–75 | 79–89 | 69–75 | 69–75 | 98–106 | 111–120 | 84–89 |
Dyeing Method | Conventional Dyeing | Dope-Dyed | ||||
---|---|---|---|---|---|---|
Color depth | Dark | Medium | Light | Dark | Medium | Light |
Sample No. | P1 | P2 | P3 | Y1 | Y2 | Y3 |
Sample No. | P1 | P2 | P3 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|
Sample color change/Grade | 4 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 |
Sample No | P1 | P2 | P3 | Y1 | Y2 | Y3 | |
---|---|---|---|---|---|---|---|
Dry rubbing/Grade | Longitudinal | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 |
Transverse | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | |
Wet rubbing/Grade | Longitudinal | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 |
Transverse | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 | 4–5 |
Sample No. | P1 | P2 | P3 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|
Light Fastness/Grade | 3–4 | 3–4 | 4 | 3–4 | 3–4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, P.; Xue, Y. Sustainable Pattern Innovation in Chenille Tufted Carpets: A Spatial Color Mixing Approach Using Dope-Dyed Filament. Fibers 2025, 13, 126. https://doi.org/10.3390/fib13090126
Cui P, Xue Y. Sustainable Pattern Innovation in Chenille Tufted Carpets: A Spatial Color Mixing Approach Using Dope-Dyed Filament. Fibers. 2025; 13(9):126. https://doi.org/10.3390/fib13090126
Chicago/Turabian StyleCui, Peng, and Yuan Xue. 2025. "Sustainable Pattern Innovation in Chenille Tufted Carpets: A Spatial Color Mixing Approach Using Dope-Dyed Filament" Fibers 13, no. 9: 126. https://doi.org/10.3390/fib13090126
APA StyleCui, P., & Xue, Y. (2025). Sustainable Pattern Innovation in Chenille Tufted Carpets: A Spatial Color Mixing Approach Using Dope-Dyed Filament. Fibers, 13(9), 126. https://doi.org/10.3390/fib13090126