Previous Issue
Volume 9, June
 
 

Big Data Cogn. Comput., Volume 9, Issue 7 (July 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
31 pages, 4896 KiB  
Article
A Consistency-Aware Hybrid Static–Dynamic Multivariate Network for Forecasting Industrial Key Performance Indicators
by Jiahui Long, Xiang Jia, Bingyi Li, Lin Zhu and Miao Wang
Big Data Cogn. Comput. 2025, 9(7), 163; https://doi.org/10.3390/bdcc9070163 - 20 Jun 2025
Abstract
The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series data, particularly the consistency of measurements [...] Read more.
The accurate forecasting of key performance indicators (KPIs) is essential for enhancing the reliability and operational efficiency of engineering systems under increasingly complex security challenges. However, existing approaches often neglect the heterogeneous nature of multivariate time series data, particularly the consistency of measurements and the influence of external factors, which limits their effectiveness in real-world scenarios. In this work, a Consistency-aware Hybrid Static-Dynamic Multivariate forecasting Network (CHSDM-Net) is proposed, which first applies a consistency-aware, optimization-driven segmentation to ensure high internal consistency within each segment across multiple variables. Secondly, a hybrid forecasting model integrating a Static Representation Module and a Dynamic Temporal Disentanglement and Attention Module for static and dynamic data fusion is proposed. For the dynamic data, the trend and periodic components are disentangled and fed into Trend-wise Attention and Periodic-aware Attention blocks, respectively. Extensive experiments on both synthetic and real-world radar detection datasets demonstrated that CHSDM-Net achieved significant improvements compared with existing methods. Comprehensive ablation and sensitivity analyses further validated the effectiveness and robustness of each component. The proposed method offers a practical and generalizable solution for intelligent KPI forecasting and decision support in industrial engineering applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop