Cognitive Networks and Text Analysis Identify Anxiety as a Key Dimension of Distress in Genuine Suicide Notes
Abstract
1. Introduction
Manuscript Aims and Research Questions
- RQ1: Using cognitive network science, do people with high/low anxiety or stress or depression tend to perform the same emotional associations compared to authors of genuine suicide notes?
- RQ2: Are there other negative emotional trends that are being obfuscated by a dominance of positive words and associations in suicide letters?
2. Transparency and Openness
3. Methods
3.1. Genuine Suicide Notes and ERT Data
3.2. Emotional Co-Occurrence Networks
- appear in the same list;
- be at a distance equal to or lower than L in the list.
3.3. Emotional Auras and Jaccard Similarity
3.4. Mathematical Characterization of the “Words Not Said” Analysis
3.5. Robustness of the “Words Not Said” Analysis
- In the moderate noise scenario for simulating 100 high distress networks (e.g., 100 high depression networks), we sample of recalls from high and from low when building AN that should be classified as high;
- In the moderate noise scenario for simulating 100 low distress networks (e.g., 100 low depression networks), we sample of recalls from low and from high when building AN that should be classified as low;
- In the high noise scenario for simulating 100 high distress networks (e.g., 100 high anxiety networks), we sample of recalls from high and from low when building AN that should be classified as high;
- In the high noise scenario for simulating 100 low distress networks (e.g., 100 low anxiety networks), we sample of recalls from low and from high when building AN that should be classified as low.
4. Results
4.1. Topics and Emotional Content of Suicide Notes
4.2. Topology of Emotional Networks for Anxiety, Stress, Depression and Suicide Notes
4.3. Suicide Notes’ Semantic Frames
4.4. “Words Not Said”, Suicide Letters and High Anxiety
4.5. The “Words Not Said” Analysis: Residual Emotional Levels in Suicide Notes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Preventing Suicide: A Global Imperative; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Oquendo, M.A.; Galfalvy, H.C.; Choo, T.H.; Kandlur, R.; Burke, A.K.; Sublette, M.E.; Miller, J.M.; Mann, J.J.; Stanley, B.H. Highly variable suicidal ideation: A phenotypic marker for stress induced suicide risk. Mol. Psychiatry 2021, 26, 5079–5086. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.M.; Choo, T.H.; Galfalvy, H.; Biggs, E.; Brodsky, B.S.; Oquendo, M.A.; Mann, J.J.; Stanley, B. Variability in suicidal ideation is associated with affective instability in suicide attempters with borderline personality disorder. Psychiatry 2019, 82, 173–178. [Google Scholar] [CrossRef] [PubMed]
- McAdams, D.P. The psychology of life stories. Rev. Gen. Psychol. 2001, 5, 100–122. [Google Scholar] [CrossRef]
- Proulx, T.; Heine, S.J. Death and black diamonds: Meaning, mortality, and the meaning maintenance model. Psychol. Inq. 2006, 17, 309–318. [Google Scholar] [CrossRef]
- Schneidman, E.S. Suicide notes and tragic lives. Suicide Life Threat. Behav. 1981, 11, 286–299. [Google Scholar] [CrossRef]
- Pestian, J.P.; Matykiewicz, P.; Linn-Gust, M.; South, B.; Uzuner, O.; Wiebe, J.; Cohen, K.B.; Hurdle, J.; Brew, C. Sentiment analysis of suicide notes: A shared task. Biomed. Inform. Insights 2012, 5, BII-S9042. [Google Scholar] [CrossRef]
- Handelman, L.D.; Lester, D. The content of suicide notes from attempters and completers. Crisis 2007, 28, 102–104. [Google Scholar] [CrossRef]
- Al-Mosaiwi, M.; Johnstone, T. In an absolute state: Elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 2018, 6, 529–542. [Google Scholar] [CrossRef]
- Pestian, J.; Nasrallah, H.; Matykiewicz, P.; Bennett, A.; Leenaars, A. Suicide note classification using natural language processing: A content analysis. Biomed. Inform. Insights 2010, 3, BII-S4706. [Google Scholar] [CrossRef]
- Schoene, A.M.; Dethlefs, N. Automatic identification of suicide notes from linguistic and sentiment features. In Proceedings of the 10th SIGHUM Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, Berlin, Germany, 11 August 2016; pp. 128–133. [Google Scholar]
- Castro, N.; Siew, C.S. Contributions of modern network science to the cognitive sciences: Revisiting research spirals of representation and process. Proc. R. Soc. A 2020, 476, 20190825. [Google Scholar] [CrossRef]
- Teixeira, A.S.; Talaga, S.; Swanson, T.J.; Stella, M. Revealing semantic and emotional structure of suicide notes with cognitive network science. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Stella, M.; Swanson, T.J.; Li, Y.; Hills, T.T.; Teixeira, A.S. Cognitive networks detect structural patterns and emotional complexity in suicide notes. Front. Psychol. 2022, 13, 917630. [Google Scholar] [CrossRef]
- Showers, C. Compartmentalization of positive and negative self-knowledge: Keeping bad apples out of the bunch. J. Personal. Soc. Psychol. 1992, 62, 1036. [Google Scholar] [CrossRef] [PubMed]
- Stella, M. Cognitive network science for understanding online social cognitions: A brief review. Top. Cogn. Sci. 2022, 14, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Fatima, A.; Li, Y.; Hills, T.T.; Stella, M. Dasentimental: Detecting depression, anxiety, and stress in texts via emotional recall, cognitive networks, and machine learning. Big Data Cogn. Comput. 2021, 5, 77. [Google Scholar] [CrossRef]
- Schoene, A.M.; Turner, A.; De Mel, G.R.; Dethlefs, N. Hierarchical multiscale recurrent neural networks for detecting suicide notes. IEEE Trans. Affect. Comput. 2021, 14, 153–164. [Google Scholar] [CrossRef]
- Sandin, B.; Chorot, P.; Santed, M.A.; Valiente, R.M.; Joiner Jr, T.E. Negative life events and adolescent suicidal behavior: A critical analysis from the stress process perspective. J. Adolesc. 1998, 21, 415–426. [Google Scholar] [CrossRef]
- Hawton, K.; i Comabella, C.C.; Haw, C.; Saunders, K. Risk factors for suicide in individuals with depression: A systematic review. J. Affect. Disord. 2013, 147, 17–28. [Google Scholar] [CrossRef]
- Sareen, J.; Cox, B.J.; Afifi, T.O.; de Graaf, R.; Asmundson, G.J.; Ten Have, M.; Stein, M.B. Anxiety disorders and risk for suicidal ideation and suicide attempts: A population-based longitudinal study of adults. Arch. Gen. Psychiatry 2005, 62, 1249–1257. [Google Scholar] [CrossRef]
- Naragon-Gainey, K.; Watson, D. The anxiety disorders and suicidal ideation: Accounting for co-morbidity via underlying personality traits. Psychol. Med. 2011, 41, 1437–1447. [Google Scholar] [CrossRef] [PubMed]
- Nepon, J.; Belik, S.L.; Bolton, J.; Sareen, J. The relationship between anxiety disorders and suicide attempts: Findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Depress. Anxiety 2010, 27, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.W.M.; How, C.H.; Ng, Y.P. Depression in primary care: Assessing suicide risk. Singap. Med J. 2017, 58, 72. [Google Scholar] [CrossRef]
- Li, Y.; Masitah, A.; Hills, T.T. The Emotional Recall Task: Juxtaposing recall and recognition-based affect scales. J. Exp. Psychol. Learn. Mem. Cogn. 2020, 46, 1782. [Google Scholar] [CrossRef]
- Boyd, R.L. Psychological text analysis in the digital humanities. In Data Analytics in Digital Humanities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 161–189. [Google Scholar]
- Goñi, J.; Arrondo, G.; Sepulcre, J.; Martincorena, I.; De Mendizábal, N.V.; Corominas-Murtra, B.; Bejarano, B.; Ardanza-Trevijano, S.; Peraita, H.; Wall, D.P.; et al. The semantic organization of the animal category: Evidence from semantic verbal fluency and network theory. Cogn. Process. 2011, 12, 183–196. [Google Scholar] [CrossRef]
- Mohammad, S. Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 english words. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 174–184. [Google Scholar]
- Mohammad, S.M.; Turney, P.D. Crowdsourcing a word–emotion association lexicon. Comput. Intell. 2013, 29, 436–465. [Google Scholar] [CrossRef]
- Fellbaum, C. WordNet. In Theory and Applications of Ontology: Computer Applications; Poli, R., Healy, M., Kameas, A., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Plutchik, R. Emotion. In A Psychoevolutionary Synthesis; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Golino, H.F.; Epskamp, S. Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE 2017, 12, e0174035. [Google Scholar] [CrossRef]
- Links, P.S.; Eynan, R.; Heisel, M.J.; Barr, A.; Korzekwa, M.; McMain, S.; Ball, J.S. Affective instability and suicidal ideation and behavior in patients with borderline personality disorder. J. Personal. Disord. 2007, 21, 72–86. [Google Scholar] [CrossRef]
- May, A.M.; Klonsky, E.D. What distinguishes suicide attempters from suicide ideators? A meta-analysis of potential factors. Clin. Psychol. Sci. Pract. 2016, 23, 5. [Google Scholar]
- Cannon, W.B. Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches into the Function of Emotional Excitement; D. Appleton & Co.: New York, NY, USA, 1925. [Google Scholar]
- Weishaar, M.E.; Beck, A.T. Hopelessness and suicide. Int. Rev. Psychiatry 1992, 4, 177–184. [Google Scholar] [CrossRef]
- Joiner, T.E. Why People Die by Suicide; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Wiebenga, J.X.; Eikelenboom, M.; Heering, H.D.; van Oppen, P.; Penninx, B.W. Suicide ideation versus suicide attempt: Examining overlapping and differential determinants in a large cohort of patients with depression and/or anxiety. Aust. N. Z. J. Psychiatry 2021, 55, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.D.; Yen, S.; Joiner, T.; Siegler, I.C. Capability for suicide interacts with states of heightened arousal to predict death by suicide beyond the effects of depression and hopelessness. J. Affect. Disord. 2015, 188, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Stanley, I.H.; Boffa, J.W.; Rogers, M.L.; Hom, M.A.; Albanese, B.J.; Chu, C.; Capron, D.W.; Schmidt, N.B.; Joiner, T.E. Anxiety sensitivity and suicidal ideation/suicide risk: A meta-analysis. J. Consult. Clin. Psychol. 2018, 86, 946. [Google Scholar] [CrossRef]
- Ng, W. Clarifying the relation between neuroticism and positive emotions. Personal. Individ. Differ. 2009, 47, 69–72. [Google Scholar] [CrossRef]
- Van Orden, K.A.; Witte, T.K.; Cukrowicz, K.C.; Braithwaite, S.R.; Selby, E.A.; Joiner Jr, T.E. The interpersonal theory of suicide. Psychol. Rev. 2010, 117, 575. [Google Scholar] [CrossRef]
- Klonsky, E.D.; May, A.M. The three-step theory (3ST): A new theory of suicide rooted in the “ideation-to-action” framework. Int. J. Cogn. Ther. 2015, 8, 114–129. [Google Scholar] [CrossRef]
- O’Connor, R.C. Towards an integrated motivational–volitional model of suicidal behaviour. Int. Handb. Suicide Prev. Res. Policy Pract. 2011, 1, 181–198. [Google Scholar]
- Bayliss, L.T.; Christensen, S.; Lamont-Mills, A.; du Plessis, C. Suicide capability within the ideation-to-action framework: A systematic scoping review. PLoS ONE 2022, 17, e0276070. [Google Scholar] [CrossRef]
- Burke, T.A.; Ammerman, B.A.; Knorr, A.C.; Alloy, L.B.; McCloskey, M.S. Measuring acquired capability for suicide within an ideation-to-action framework. Psychol. Violence 2018, 8, 277. [Google Scholar] [CrossRef]
- Smith, P.N.; Cukrowicz, K.C.; Poindexter, E.K.; Hobson, V.; Cohen, L.M. The acquired capability for suicide: A comparison of suicide attempters, suicide ideators, and non-suicidal controls. Depress. Anxiety 2010, 27, 871–877. [Google Scholar] [CrossRef]
- Stephens, C. Narrative analysis in health psychology research: Personal, dialogical and social stories of health. Health Psychol. Rev. 2011, 5, 62–78. [Google Scholar] [CrossRef]
- Pennebaker, J.W. Writing about emotional experiences as a therapeutic process. Psychol. Sci. 1997, 8, 162–166. [Google Scholar] [CrossRef]
- Huff, C.; Tingley, D. “Who are these people?” Evaluating the demographic characteristics and political preferences of MTurk survey respondents. Res. Politics 2015, 2, 2053168015604648. [Google Scholar] [CrossRef]
- Pestian, J.P.; Matykiewicz, P.; Linn-Gust, M. What’s in a note: Construction of a suicide note corpus. Biomed. Inform. Insights 2012, 5, BII-S10213. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- O’Driscoll, C.; Buckman, J.E.; Fried, E.I.; Saunders, R.; Cohen, Z.D.; Ambler, G.; DeRubeis, R.J.; Gilbody, S.; Hollon, S.D.; Kendrick, T.; et al. The importance of transdiagnostic symptom level assessment to understanding prognosis for depressed adults: Analysis of data from six randomised control trials. BMC Med. 2021, 19, 109. [Google Scholar] [CrossRef]
- Chesney, E.; Goodwin, G.M.; Fazel, S. Risks of all-cause and suicide mortality in mental disorders: A meta-review. World Psychiatry 2014, 13, 153–160. [Google Scholar] [CrossRef]
- Fu, X.L.; Qian, Y.; Jin, X.H.; Yu, H.R.; Wu, H.; Du, L.; Chen, H.L.; Shi, Y.Q. Suicide rates among people with serious mental illness: A systematic review and meta-analysis. Psychol. Med. 2023, 53, 351–361. [Google Scholar] [CrossRef]
- Xue, C.; Ge, Y.; Tang, B.; Liu, Y.; Kang, P.; Wang, M.; Zhang, L. A meta-analysis of risk factors for combat-related PTSD among military personnel and veterans. PLoS ONE 2015, 10, e0120270. [Google Scholar] [CrossRef]
- Ramchand, R.; Rudavsky, R.; Grant, S.; Tanielian, T.; Jaycox, L. Prevalence of, risk factors for, and consequences of posttraumatic stress disorder and other mental health problems in military populations deployed to Iraq and Afghanistan. Curr. Psychiatry Rep. 2015, 17, 37. [Google Scholar] [CrossRef]
- Hills, T.T.; Proto, E.; Sgroi, D.; Seresinhe, C.I. Historical analysis of national subjective wellbeing using millions of digitized books. Nat. Hum. Behav. 2019, 3, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Armed Forces Health Surveillance Center. Deaths by suicide while on active duty, active and reserve components, US Armed Forces, 1998–2011. Msmr 2012, 19, 7–10. [Google Scholar]
- Martin, J.; Ghahramanlou-Holloway, M.; Lou, K.; Tucciarone, P. A comparative review of US military and civilian suicide behavior: Implications for OEF/OIF suicide prevention efforts. J. Ment. Health Couns. 2009, 31, 101–118. [Google Scholar] [CrossRef]
- Stella, M. Text-mining forma mentis networks reconstruct public perception of the STEM gender gap in social media. Peerj Comput. Sci. 2020, 6, e295. [Google Scholar] [CrossRef]
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Mohammad, S.; Turney, P. Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Los Angeles, CA, USA, 5 June 2010; pp. 26–34. [Google Scholar]
(LCC) | (LCC) | c (LCC) | d (LCC) | ||
---|---|---|---|---|---|
HS | 185 | 185 | 385 | 0.139 | 3.890 |
LS | 218 | 204 | 455 | 0.194 | 3.591 |
HD | 196 | 176 | 400 | 0.196 | 3.462 |
LD | 217 | 203 | 420 | 0.151 | 3.676 |
HA | 209 | 189 | 398 | 0.152 | 3.834 |
LA | 227 | 193 | 436 | 0.179 | 3.709 |
SN | 120 | 120 | 303 | 0.393 | 3.034 |
Topic | Count | Keywords |
---|---|---|
1 | 29 | love, sorry, time, life, way, darling, think, always |
2 | 23 | love, know, good, sorry, just, like, life, time |
3 | 18 | love, way, good, things, make, happy, man, much |
4 | 18 | want, love, know, money, good, make, life |
5 | 17 | life, hope, god, people, help, sorry, father, love, dear |
6 | 12 | park, paris, mansfield, 10, 2000, matter, dear, son |
7 | 12 | got, like, january, told, loved, feel, time, good, years |
8 | 10 | life, going, way, like, people, friends, just, love |
Moderate Noise (20%) | High Noise (40%) | |||
---|---|---|---|---|
Accuracy (%) | F1 (%) | Accuracy (%) | F1 (%) | |
Anxiety | ||||
Depression | ||||
Stress |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stella, M.; Swanson, T.J.; Teixeira, A.S.; Richson, B.N.; Li, Y.; Hills, T.T.; Forbush, K.T.; Watson, D. Cognitive Networks and Text Analysis Identify Anxiety as a Key Dimension of Distress in Genuine Suicide Notes. Big Data Cogn. Comput. 2025, 9, 171. https://doi.org/10.3390/bdcc9070171
Stella M, Swanson TJ, Teixeira AS, Richson BN, Li Y, Hills TT, Forbush KT, Watson D. Cognitive Networks and Text Analysis Identify Anxiety as a Key Dimension of Distress in Genuine Suicide Notes. Big Data and Cognitive Computing. 2025; 9(7):171. https://doi.org/10.3390/bdcc9070171
Chicago/Turabian StyleStella, Massimo, Trevor James Swanson, Andreia Sofia Teixeira, Brianne N. Richson, Ying Li, Thomas T. Hills, Kelsie T. Forbush, and David Watson. 2025. "Cognitive Networks and Text Analysis Identify Anxiety as a Key Dimension of Distress in Genuine Suicide Notes" Big Data and Cognitive Computing 9, no. 7: 171. https://doi.org/10.3390/bdcc9070171
APA StyleStella, M., Swanson, T. J., Teixeira, A. S., Richson, B. N., Li, Y., Hills, T. T., Forbush, K. T., & Watson, D. (2025). Cognitive Networks and Text Analysis Identify Anxiety as a Key Dimension of Distress in Genuine Suicide Notes. Big Data and Cognitive Computing, 9(7), 171. https://doi.org/10.3390/bdcc9070171