Previous Issue
Volume 11, April
 
 

Gels, Volume 11, Issue 5 (May 2025) – 53 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
26 pages, 2841 KiB  
Review
Modified Phospholipid Vesicular Gel for Transdermal Drug Delivery: The Influence of Glycerin and/or Ethanol on Their Lipid Bilayer Fluidity and Penetration Characteristics
by Marwa H. Abdallah, Mona M. Shahien, Hemat El-Sayed El-Horany and Enas Haridy Ahmed
Gels 2025, 11(5), 358; https://doi.org/10.3390/gels11050358 - 13 May 2025
Abstract
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated [...] Read more.
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated with oral administration, and the elimination of the need for repeated doses. Nonetheless, the skin barrier obstructs the penetration of drugs, hence affecting its therapeutic efficacy. Carriers with phospholipid soft vesicles comprise a novel strategy used to augment drug delivery into the skin and boost therapeutic efficacy. These vesicles encompass chemicals that possess the ability to fluidize phospholipid bilayers, producing a pliable vesicle that facilitates penetration into the deeper layers of the skin. Phospholipid-based vesicular carriers have been extensively studied for improved drug delivery through dermal and transdermal pathways. Traditional liposomes are limited to the stratum corneum of the skin and do not penetrate the deeper layers. Ethosomes, glycerosomes, and glycethosomes are nanovesicular systems composed of ethanol, glycerol, or a combination of ethanol and glycerol, respectively. Their composition produce pliable vesicles by fluidizing the phospholipid bilayers, facilitating deeper penetration into the skin. This article examines the impact of ethanol and glycerol on phospholipid vesicles, and outlines their respective manufacturing techniques. Thus far, these discrepancies have not been analyzed comparatively. The review details several active compounds integrated into these nanovesicular gel systems and examined through in vitro, in vivo, or clinical human trials involving compositions with various active molecules for the treatment of various dermatological conditions. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

24 pages, 5625 KiB  
Review
A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization
by Zhenyu Zhu, Wanlin Zhang, Hongyan Huang, Wenjing Li, Hao Ling and Hao Zhang
Gels 2025, 11(5), 357; https://doi.org/10.3390/gels11050357 - 13 May 2025
Abstract
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so [...] Read more.
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so on. However, the degradation of the silica aerogel’s nanoporous structure at high temperatures seriously restricts their practical applications. Through a comprehensive review of the high-temperature structural evolution and sintering mechanisms of silica aerogels, this paper introduces two strategies to enhance their thermal stability, including heteroatom doping and surface heterogeneous structure construction. In particular, atomic layer deposition (ALD) of ultra-thin coatings on silica aerogel holds significant potential for enhancing thermal stability, while preserving its ultra-low thermal conductivity. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

19 pages, 5545 KiB  
Article
Core-Shell Hydrogels with Tunable Stiffness for Breast Cancer Tissue Modelling in an Organ-on-Chip System
by Ilaria Parodi, Maria Elisabetta Federica Palamà, Donatella Di Lisa, Laura Pastorino, Alberto Lagazzo, Fabio Falleroni, Maurizio Aiello, Marco Massimo Fato and Silvia Scaglione
Gels 2025, 11(5), 356; https://doi.org/10.3390/gels11050356 - 13 May 2025
Abstract
Breast cancer remains the most common malignancy in women, yet, many patients fail to achieve full remission despite significant advancements. This is largely due to tumour heterogeneity and the limitations of current experimental models in accurately replicating the complexity of in vivo tumour [...] Read more.
Breast cancer remains the most common malignancy in women, yet, many patients fail to achieve full remission despite significant advancements. This is largely due to tumour heterogeneity and the limitations of current experimental models in accurately replicating the complexity of in vivo tumour environment. In this study, we present a compartmentalised alginate hydrogel platform as an innovative in vitro tool for three-dimensional breast cancer cell culture. To mimic the heterogeneity of tumour tissues, we developed a core–shell structure (3.5% alginate core and 2% alginate shell) that mimic the stiffer, denser internal tumour matrix. The human triple-negative breast cancer cell line (MDA-MB-231) was embedded in core–shell alginate gels to assess viability, proliferation and hypoxic activity. Over one week, good cells proliferation and viability was observed, especially in the softer shell. Interestingly, cells within the stiffer core were more positive to hypoxic marker expression (HIF-1α) than those embedded in the shell, confirming the presence of a hypoxic niche, as observed in vivo. When cultured in the MIVO® milli fluidic organ-on-chip resembling the physiological fluid flow conditions, cancer cells viability became comparable between core and shell hydrogel area, emphasising the importance of the fluid flow in nutrients diffusion within three-dimensional matrixes. Cisplatin chemotherapy treatment further highlighted these differences: under static conditions, cancer cell death was prominent in the softer shell, whereas cells in the stiffer core remained resistant to cisplatin. Conversely, drug diffusion was more homogeneous in the core–shell structured treated in the organ-on-chip, leading to a uniform reduction in cell viability. These findings suggest that integrating a compartmentalised core–shell cell laden alginate model with the millifluidic organ on chip offers a more physiologically relevant experimental approach to deepening cancer cell behaviour and drug response. Full article
Show Figures

Graphical abstract

21 pages, 9758 KiB  
Article
Bionanocomposite Four-Channel Biosensor for Rapid and Convenient Monitoring of Glucose, Lactate, Ethanol and Starch
by Anna Kharkova, Lyubov Kuznetsova, Roman Perchikov, Maria Gertsen, Pavel Melnikov, Nikolay Zaitsev, Jun Zhang and Vyacheslav Arlyapov
Gels 2025, 11(5), 355; https://doi.org/10.3390/gels11050355 - 12 May 2025
Abstract
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine [...] Read more.
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine mediators to a biocompatible protein hydrogel, enhancing the packaging of the enzyme. Glucose oxidase (GOx), alcohol oxidase (AOx) and lactate oxidase (LOx) were used as biological materials, as well as a mixture of GOx with γ-amylase (Am). Redox gels were synthesized from bovine serum albumin (BSA) and phenazine derivatives. It was shown that a neutral red-based redox gel combined with single-walled carbon nanotubes is more promising than other substrates for enzyme immobilization. The lower limit of quantification for glucose, ethanol, lactate and starch using these systems is 0.035 mM, 2.3 mM, 15 mM and 2 mg/L, respectively. Biosensors were used to analyze the content of these substances in alcoholic, kvass and fermentation mass. Statistical analysis of the results showed that the values of glucose, ethanol, lactic acid and starch determined using biosensors and obtained by reference methods differ insignificantly. A set of biosensors developed on the basis of specifically selected enzymes is effective for controlling biotechnological processes and can be used as an alternative to classical analytical methods. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Figure 1

22 pages, 10357 KiB  
Article
Development of an Asymmetric Alginate Hydrogel Loaded with S-Nitrosoglutathione and Its Application in Chronic Wound Healing
by Jiafeng Tan, Minna Wen, Yifan Zhang, Shuyun Zhang, Min Fang, Junxiao Xiang, Xinshuo Liu, Jinhuan Tian, Lu Lu, Binghong Luo, Changren Zhou and Lihua Li
Gels 2025, 11(5), 354; https://doi.org/10.3390/gels11050354 - 12 May 2025
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays a critical role in wound healing. However, the gaseous nature, short half-life, and low stability of NO present challenges for its clinical application. To address these issues, this study introduces an innovative S-nitrosoglutathione [...] Read more.
Nitric oxide (NO) is an endogenous signaling molecule that plays a critical role in wound healing. However, the gaseous nature, short half-life, and low stability of NO present challenges for its clinical application. To address these issues, this study introduces an innovative S-nitrosoglutathione (GSNO)-loaded asymmetric alginate (SA) hydrogel (GSNO-SA) as a novel solution for treating infected chronic wounds. The hydrogel is designed with a layer-by-layer melting-permeation crosslinking approach, forming a dense upper layer and a sparse lower layer structure, effectively promoting exudate management while delaying NO release. The results demonstrate that the GSNO-SA hydrogel extends NO release for up to 48 h, exhibits rapid exudate absorption (72.3 ± 1.5% equilibrium swelling after 5 min), significant antibacterial activity (over 90% antibacterial rate against E. coli and S. aureus), and anti-inflammatory effects (marked reduction in TNF-α expression), and promotes angiogenesis (90.00 ± 5.92% migration rate at 48 h). Additionally, animal studies show that the GSNO-SA hydrogel accelerates wound healing, achieving a 99.2 ± 0.1% closure rate at 14 days. Histological and immunohistochemical evaluations further confirm its ability to regulate inflammation (13.34-fold upregulation of CD163) and promote angiogenesis (3.02-fold upregulation of α-SMA). Theoretically, this asymmetric design provides a novel strategy for developing exudate-managing dressings by integrating controlled NO release with hierarchical pore structures. Full article
Show Figures

Figure 1

19 pages, 1485 KiB  
Article
Polydextrose Reduces the Hardness of Cooked Chinese Sea Rice Through Intermolecular Interactions
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(5), 353; https://doi.org/10.3390/gels11050353 - 11 May 2025
Viewed by 72
Abstract
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) [...] Read more.
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) milled from a 3-year-stored paddy and compared their cooking properties, their cooked rice texture, the pasting and thermal properties of their flours, the thermo-mechanical characteristics of their flour dough, and the microstructure of their cooked rice grains with a newly harvested japonica rice cv. Nanjing 5 (NJ5). With an increase in polydextrose addition, a General Linear Model (GLM) analysis showed that the cooking times of two japonica rice varieties was significantly (p < 0.05) reduced, and their gruel solid loss increased. Adding polydextrose significantly reduced the hardness, springiness, gumminess, and chewiness of cooked rice and increased the cohesiveness and resilience. By increasing polydextrose addition in rice flours, the peak, breakdown, and setback viscosities of pasting were significantly decreased, but the pasting temperature and peak time increased. Adding polydextrose reduced the gelatinization enthalpy and increased gelatinization peak temperature of the rice flour and significantly decreased the ageing of the retrograded rice flour paste stored at 4 °C when measured at 21 days. A Mixolab test showed that the stability time of the rice flour dough increased, and the protein weakening, gelatinization peak torque, and starch breakdown, as well as the starch setback and the speeds of heating, gelatinization, and enzymatic degradation all decreased. The addition of 5–10% polydextrose significantly reduced the amorphous and crystalline regions of starch and relative percent of β-sheet in cooked rice grains, with an increase in the relative percent of α-helix, random coil, and β-turn. Observing the microstructure, we confirmed that polydextrose addition facilitated the formation of a soft and evenly swollen honeycomb structure of the cooked rice. These results suggest that polydextrose might decrease the cooked rice hardness and improve the eating quality of sea rice through intermolecular interactions. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

20 pages, 22930 KiB  
Article
Poly(vinyl alcohol)/Gentamicin and Poly(vinyl alcohol)/Chitosan/Gentamicin: Promising Materials for Rapid Burn Wound Healing
by Anja Nikolić, Ivan Milošević, Ana Janković, Bogomir Bolka Prokić, Emilija Nićković, Danica Marković, Milena Stevanović, Maja Vukašinović-Sekulić, Vesna Mišković-Stanković and Tijana Lužajić Božinovski
Gels 2025, 11(5), 352; https://doi.org/10.3390/gels11050352 - 10 May 2025
Viewed by 89
Abstract
Scar formation and delayed wound healing pose significant challenges in treating skin injuries, especially in severe cases like burns and diabetic wounds. This study investigates the effectiveness of novel Poly(vinyl alcohol) (PVA)/Gentamicin (Gent) and PVA/Chitosan (CHI)/Gent hydrogels in promoting healing of second-degree burn [...] Read more.
Scar formation and delayed wound healing pose significant challenges in treating skin injuries, especially in severe cases like burns and diabetic wounds. This study investigates the effectiveness of novel Poly(vinyl alcohol) (PVA)/Gentamicin (Gent) and PVA/Chitosan (CHI)/Gent hydrogels in promoting healing of second-degree burn wounds in a rat model. Following in vitro testing, these hydrogels were deemed non-toxic and suitable for in vivo analysis. Clinical evaluations were conducted on the 3rd, 7th, 14th, and 21st post-injury days, assessing parameters such as blistering, edema, redness, crust, bleeding, secretion, scar tissue formation, and wound contraction percentage. Histological analyses focused on re-epithelization and dermal evaluation at specific time points. Results showed that both hydrogels significantly reduced inflammation, particularly redness, by the 14th day and improved re-epithelization, with the PVA/CHI/Gent group outperforming on the 14th day and the PVA/Gent group excelling on the 21st day. Histological findings indicated increased fibroblast proliferation and collagen deposition in treated groups, suggesting enhanced dermal healing. The PVA/CHI/Gent hydrogel demonstrated notable antibacterial properties, likely due to the synergistic effects of CHI and Gent, leading to reduced inflammation and edema. Overall, both hydrogels show promise as effective wound dressings, facilitating faster healing and improved tissue recovery in burn injuries. This study supports the use of biomimetic scaffolds for enhanced wound management in clinical practices. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Graphical abstract

9 pages, 270 KiB  
Editorial
Gels: Synthesis, Characterization and Applications in High Performance Chemistry (2nd Edition)
by Viorel-Puiu Paun and Maria-Alexandra Paun
Gels 2025, 11(5), 351; https://doi.org/10.3390/gels11050351 - 10 May 2025
Viewed by 86
Abstract
This Editorial of the Special Issue proposed and managed by Prof [...] Full article
(This article belongs to the Section Gel Applications)
32 pages, 14332 KiB  
Article
Research and Development of a High-Temperature-Resistant, Gel-Breaking Chemical Gel Plugging Agent and Evaluation of Its Physicochemical Properties
by Junwei Fang, Jinsheng Sun, Xingen Feng, Lijuan Pan, Yingrui Bai and Jingbin Yang
Gels 2025, 11(5), 350; https://doi.org/10.3390/gels11050350 - 8 May 2025
Viewed by 126
Abstract
Gas channeling phenomena in carbonate fracture-vuggy reservoirs frequently occur, primarily in the form of negative pressure gas channeling and displacement gas channeling, with the possibility of mutual conversion between the two. This is accompanied by the risk of hydrogen sulfide (H2S) [...] Read more.
Gas channeling phenomena in carbonate fracture-vuggy reservoirs frequently occur, primarily in the form of negative pressure gas channeling and displacement gas channeling, with the possibility of mutual conversion between the two. This is accompanied by the risk of hydrogen sulfide (H2S) release from the reservoir, which poses significant challenges to controlling safety. Currently, liquid bridging and gel plugging technologies are effective methods for mitigating complex issues such as downhole overflow, fluid loss, and heavy oil backflow. This paper focuses on the development and optimization of key treatment agents, including high-temperature-resistant polymers and crosslinking agents, to formulate a high-temperature chemical gel plugging agent. A gel-breaking, high-strength colloidal chemical gel plugging agent system capable of withstanding temperatures up to 150 °C was developed, and it has an apparent viscosity of about 7500 mPa·s, an energy storage modulus and a loss modulus of 51 Pa and 6 Pa, respectively, after gel formation at elevated temperatures, and an apparent viscosity retention rate of the gel of greater than 82% after aging for 9 d at a temperature of 150 °C. This system forms a stable gas isolation barrier in the wellbore, with performance remaining stable after 7 to 12 days of aging, and the degradation rate reaches 99.8% after 24 h at 150 °C. This technology is of significant importance in solving complex issues such as overflow, fluid loss, and heavy oil backflow in gas injection and recovery wells in high-temperature, high-pressure reservoir conditions. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

23 pages, 16269 KiB  
Article
Development of Eco-Friendly Date Palm Biomass-Based Hydrogels for Enhanced Water Retention in Soil
by Faisal S. Alsubaie, Mouyed Srdar, Osama Fayraa, Faris M. Alsulami, Feras Omran and Khalid A. Alamry
Gels 2025, 11(5), 349; https://doi.org/10.3390/gels11050349 - 8 May 2025
Viewed by 294
Abstract
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. [...] Read more.
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. In this study, renewable and cost-effective HGs were prepared from all-lignocellulose fibers of date palm biomass after carboxymethylation followed by citric acid (CA) crosslinking. HGs showed high equilibrium swelling capacity (EWC%), even in salty media, whereas purified HGs showed about 700–400 EWC% in deionized water. Further, HGs’ effect on germination was studied on Chico III tomato, mint, Basilico red, and chia seeds. The results revealed that HGs enhanced the soil properties, with taller and healthier plants observed in HG-amended soil. FTIR, thermal analysis, and microscope imaging were utilized to evaluate HGs’ and raw materials’ characteristics. The findings in this study support the idea that all-lignocellulose could be used for HG production without separation. Full article
Show Figures

Graphical abstract

13 pages, 3042 KiB  
Article
A Mathematical Model of Myosin Heavy Chain Dynamics in the Disintegration of Golden Threadfin Bream Nemipterus virgatus Surimi Gel
by Ryoko Nakamizo, Tatsuya Hayashi, Yuri Kominami and Hideki Ushio
Gels 2025, 11(5), 348; https://doi.org/10.3390/gels11050348 - 8 May 2025
Viewed by 152
Abstract
Surimi gel, a type of hydrocolloidal food, is formed through the gelation of fish meat proteins. Myosin heavy chain (MHC), a key myofibrillar protein, plays a crucial role in the formation of the gel network via both transglutaminase (TGase)-catalyzed and non-enzymatic polymerization. Gel [...] Read more.
Surimi gel, a type of hydrocolloidal food, is formed through the gelation of fish meat proteins. Myosin heavy chain (MHC), a key myofibrillar protein, plays a crucial role in the formation of the gel network via both transglutaminase (TGase)-catalyzed and non-enzymatic polymerization. Gel disintegration in surimi is primarily attributed to the proteolytic degradation of MHC. This study focused on golden threadfin bream Nemipterus virgatus, a species characterized by low TGase activity and high protease activity at elevated temperatures. We investigated the competition between non-enzymatic polymerization and proteolytic degradation of MHC and their effects on gel mechanical properties using a mathematical model. A mathematical model based on kinetic reactions accurately reflected the changes in MHC observed through SDS-PAGE analysis during N. virgatus gel disintegration. Our results indicate that not only unpolymerized but also polymerized MHC was significantly degraded, which substantially contributed to the reduction in the mechanical properties of the N. virgatus surimi. Mathematically understanding the dynamics of MHC in surimi during heating helps promote the utilization of noncommercial fish species for surimi processing by enabling better control over surimi gel properties. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Figure 1

14 pages, 4242 KiB  
Article
Study on Filter Cake Removal Fluid of EZFLOW Weak Gel Drilling Fluid
by Haohan Hu, Youlin Hu and Xuejing Weng
Gels 2025, 11(5), 347; https://doi.org/10.3390/gels11050347 - 8 May 2025
Viewed by 143
Abstract
EZFLOW weak gel drilling fluid, a drilling fluid system with distinctive internal architecture, has been extensively implemented in horizontal well drilling operations at the Western South China Sea oilfields. Its unique internal structure causes specific functional mechanisms. The rheological mechanism was investigated through [...] Read more.
EZFLOW weak gel drilling fluid, a drilling fluid system with distinctive internal architecture, has been extensively implemented in horizontal well drilling operations at the Western South China Sea oilfields. Its unique internal structure causes specific functional mechanisms. The rheological mechanism was investigated through microstructural characterization, revealing that the microstructure comprises a reversible network structure with sol particles either encapsulated within the network or embedded at nodal points. This distinctive spatial network configuration endows the system with exceptional rheological properties. The plugging mechanism was elucidated via pre- and post-PPA test characterization of sand disc surface morphology. Experimental results demonstrate that the rheology modifier EZVIS forms deformable aggregates and films through intermolecular or intramolecular association in aqueous solutions, effectively plugging micro-nano pores/throats and microfractures to inhibit drilling fluid filtrate invasion. Concurrently, the rigid plugging material EZCARB establishes physical barriers at micro-nano pores/throats through bridging mechanisms. Notably, the dense filter cake formed by EZFLOW weak gel drilling fluid exhibits poor flowback characteristics, potentially inducing reservoir damage. Based on mechanistic analyses of rheological behavior, plugging performance, and filter cake composition, a filter cake removal fluid formulation was developed through: (1) creation of retarded acid HWCP to degrade polymer EZVIS and dissolve temporary plugging agent EZCARB; (2) development of corrosion inhibitor HWCI to mitigate corrosion rates. Laboratory evaluations demonstrated effective filter cake elimination and reservoir protection capabilities. Post-treatment analysis of EZFLOW-contaminated reservoir cores showed complete filter cake removal at core end faces with permeability recovery values exceeding 95%, indicating superior filter cake dissolution capacity and reservoir protection performance that significantly reduces formation damage. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

30 pages, 12571 KiB  
Article
Injectable and Conductive Polyurethane Gel with Load-Responsive Antibiosis for Sustained Root Canal Disinfection
by Bo Mu, Xiaoyu Lei, Yinglong Zhang, Jingzheng Zhang, Qingda Du, Yuping Li, Dongyu Huang, Li Wang, Jidong Li, Yubao Li and Yi Zuo
Gels 2025, 11(5), 346; https://doi.org/10.3390/gels11050346 - 7 May 2025
Viewed by 120
Abstract
To address the limitations of conventional antibacterial therapies, we developed an injectable, conductive polyurethane-based composite gel system for sustained root canal disinfection. This gel incorporates piezoelectric nanoparticles (n-BaTiO3) and conductive segments (aniline trimer, AT) within a polyurethane matrix, which synergistically interact [...] Read more.
To address the limitations of conventional antibacterial therapies, we developed an injectable, conductive polyurethane-based composite gel system for sustained root canal disinfection. This gel incorporates piezoelectric nanoparticles (n-BaTiO3) and conductive segments (aniline trimer, AT) within a polyurethane matrix, which synergistically interact with a static antimicrobial agent (n-ZnO) to achieve dynamic, mechano-responsive antibacterial activity. Under cyclic compression (simulating mastication), the piezoelectric gels exhibited enhanced electroactivity via the mechano-electric coupling effect, generating 2-fold higher voltage and a 1.8–1.9× increase in current compared to non-piezoelectric controls. The dynamic electroactivity of the gels enabled superior long-term performance, achieving 92–97% biofilm eradication, significantly higher than the static n-ZnO-only gel (88%). XPS and UV-vis spectroscopy analyses confirmed mechano-electrochemically amplified reactive oxygen species (ROS) generation, which contributed to improved biofilm disruption. The ISO-compliant gel provides durable, load-responsive disinfection while maintaining good biocompatibility, offering a promising solution to prevent post-treatment reinfection. Full article
Show Figures

Graphical abstract

34 pages, 7587 KiB  
Review
Multifunctional Carbon-Based Nanocomposite Hydrogels for Wound Healing and Health Management
by Tianyi Lu, Yaqian Chen, Meng Sun, Yuxian Chen, Weilong Tu, Yuxuan Zhou, Xiao Li and Tao Hu
Gels 2025, 11(5), 345; https://doi.org/10.3390/gels11050345 - 6 May 2025
Viewed by 335
Abstract
Compared with acute wounds, typical chronic wounds (infection, burn, and diabetic wounds) are susceptible to bacterial infection and hard to heal. As for the complexity of chronic wounds, biocompatible hydrogel dressings can be employed to regulate the microenvironment and accelerate wound healing with [...] Read more.
Compared with acute wounds, typical chronic wounds (infection, burn, and diabetic wounds) are susceptible to bacterial infection and hard to heal. As for the complexity of chronic wounds, biocompatible hydrogel dressings can be employed to regulate the microenvironment and accelerate wound healing with their controllable physical and chemical properties. Recently, various nanomaterials have been introduced into hydrogel networks to prepare functional nanocomposite hydrogels. Among them, carbon-based nanomaterials (CBNs) have attracted wide attention in the biomedical field due to their outstanding physicochemical properties. However, comprehensive reviews on the use of CBNs for multifunctional hydrogel wound dressings in the past 10 years are very scarce. This review focuses on the research progress on hydrogel dressings made with typical CBNs. Specifically, a series of CBNs (carbon dots, graphene quantum dots, fullerenes, nanodiamonds, carbon nanotubes, graphene, graphene oxide and reduced graphene oxide) employed in the preparation of hydrogels are described as well as carbon-based nanocomposite hydrogels (CBNHs) with versatility (conductivity, antibacterial, injectable and self-healing, anti-inflammatory and antioxidant properties, substance delivery, stimulus response and real-time monitoring). Moreover, applications of CBNHs in treating different chronic wounds are concretely discussed. This review may provide some new inspirations for the future development of CBNHs in wound care and tissue engineering. Full article
(This article belongs to the Special Issue Gel-Based Materials for Sensing and Monitoring)
Show Figures

Figure 1

27 pages, 7362 KiB  
Article
Preparation and Properties of a Novel Multi-Functional Viscous Friction Reducer Suspension for Fracturing in Unconventional Reservoirs
by Shenglong Shi, Jinsheng Sun, Shanbo Mu, Kaihe Lv, Yingrui Bai and Jian Li
Gels 2025, 11(5), 344; https://doi.org/10.3390/gels11050344 - 6 May 2025
Viewed by 104
Abstract
Aiming at the problem that conventional friction reducers used in fracturing cannot simultaneously possess properties such as temperature resistance, salt resistance, shear resistance, rapid dissolution, and low damage. Under the design concept of “medium-low molecular weight, salt-resistant functional monomer, supramolecular physical crosslinking aggregation, [...] Read more.
Aiming at the problem that conventional friction reducers used in fracturing cannot simultaneously possess properties such as temperature resistance, salt resistance, shear resistance, rapid dissolution, and low damage. Under the design concept of “medium-low molecular weight, salt-resistant functional monomer, supramolecular physical crosslinking aggregation, and enhanced chain mechanical strength”, acrylamide, sulfonic acid salt-resistant monomer 2-acrylamide-2-methylpropanesulfonic acid, hydrophobic association monomer, and rigid skeleton functional monomer acryloyl morpholine were introduced into the friction reducer molecular chain by free radical polymerization, and combined with the compound suspension technology to develop a new type of multi-functional viscous friction reducer suspension (SAMD), the comprehensive performance of SAMD was investigated. The results indicated that the critical micelle concentration of SAMD was 0.33 wt%, SAMD could be dissolved in 80,000 mg/L brine within 3.0 min, and the viscosity loss of 0.5 wt% SAMD solution was 24.1% after 10 min of dissolution in 80,000 mg/L brine compared with that in deionized water, the drag reduction rate of 0.1 wt% SAMD solution could exceed 70% at 120 °C and still maintained good drag reduction performance in brine with a salinity of 100,000 mg/L. After three cycles of 170 s−1 and 1022 s−1 variable shear, the SAMD solution restored viscosity quickly and exhibited good shear resistance. The Tan δ (a parameter characterizing the viscoelasticity of the system) of 1.0 wt% SAMD solution was 0.52, which showed a good sand-carrying capacity, and the proppant settling velocity in it could be as low as 0.147 mm/s at 120 °C, achieving the function of high drag reduction at low concentrations and strong sand transportation at high concentrations. The viscosity of 1.4 wt% SAMD was 95.5 mPa s after shearing for 120 min at 140 °C and at 170 s−1. After breaking a gel, the SAMD solution system had a core permeability harm rate of less than 15%, while the SAMD solution also possessed the performance of enhancing oil recovery. Compared with common friction reducers, SAMD simultaneously possessed the properties of temperature resistance, salt resistance, shear resistance, rapid dissolution, low damage, and enhanced oil recovery. Therefore, the use of this multi-effect friction reducer is suitable for the development of unconventional oil reservoirs with a temperature lower than 140 °C and a salinity of less than 100,000 mg/L. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

27 pages, 6626 KiB  
Review
Multifunctional Janus Hydrogels: Surface Design Strategies for Next-Generation Clinical Solutions
by Taoxu Yan, Junyao Cheng, Haoming Liu, Yifan Wang, Chuyue Zhang, Da Huang, Jianheng Liu and Zheng Wang
Gels 2025, 11(5), 343; https://doi.org/10.3390/gels11050343 - 6 May 2025
Viewed by 218
Abstract
Janus hydrogels, distinguished by their dual-sided structure with distinct physical and chemical properties, have garnered significant attention in the medical field, particularly for applications in drug delivery, tissue engineering, and wound healing. Their ability to simultaneously perform multiple functions, such as targeted drug [...] Read more.
Janus hydrogels, distinguished by their dual-sided structure with distinct physical and chemical properties, have garnered significant attention in the medical field, particularly for applications in drug delivery, tissue engineering, and wound healing. Their ability to simultaneously perform multiple functions, such as targeted drug release and biomimetic tissue interaction, positions them as a promising platform for advanced therapeutic strategies. The growing interest in these hydrogels is primarily driven by their multifunctionality and capacity to address complex biological needs. This review delves into the design, fabrication methods, and applications of Janus hydrogels in medicine, focusing on their potential to overcome the limitations of conventional therapies and providing a comprehensive overview of their role in contemporary biomedical applications. Full article
Show Figures

Figure 1

20 pages, 1353 KiB  
Review
Hydrogels in Simulated Microgravity: Thermodynamics at Play
by Azadeh Sepahvandi, Joseph Johnson, Ava Arasan, Ryan Cataldo and Seyed Majid Ghoreishian
Gels 2025, 11(5), 342; https://doi.org/10.3390/gels11050342 - 3 May 2025
Viewed by 254
Abstract
Hydrogels have become indispensable in biomedical research and regenerative therapies due to their high water content, tissue-like mechanics, and tunable biochemical properties. However, their behavior under altered gravitational conditions—particularly simulated microgravity (SMG)—presents a frontier of challenges and opportunities that remain underexplored. This comprehensive [...] Read more.
Hydrogels have become indispensable in biomedical research and regenerative therapies due to their high water content, tissue-like mechanics, and tunable biochemical properties. However, their behavior under altered gravitational conditions—particularly simulated microgravity (SMG)—presents a frontier of challenges and opportunities that remain underexplored. This comprehensive review provides a detailed comparative analysis of hydrogel performance in normal gravity versus SMG environments, focusing on the structural, physicochemical, and thermodynamic parameters that govern their functionality. We critically examine how microgravity influences polymer network formation, fluid dynamics, swelling behavior, mechanical stability, and degradation kinetics. SMG disrupts convection, sedimentation, and phase separation, often leading to inhomogeneous crosslinking and altered diffusion profiles. These changes can compromise hydrogel uniformity, anisotropy, and responsiveness, which are essential for biomedical applications such as drug delivery, tissue regeneration, and biosensing. To address these limitations, we propose a thermodynamic framework that integrates osmotic pressure regulation, entropy-driven swelling, and pressure–temperature control to enhance hydrogel stability and functionality in low-gravity environments. The integration of predictive modeling approaches—including finite element simulations, phase-field models, and swelling kinetics—provides a robust pathway to design space-adapted hydrogel systems. The review also outlines future directions for optimizing hydrogel platforms in extraterrestrial settings, advocating for synergistic advances in material science, biophysics, and space health. These insights offer a strategic foundation for the rational development of next-generation hydrogel technologies tailored for long-duration space missions and planetary biomedical infrastructure. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels (2nd Edition))
Show Figures

Figure 1

19 pages, 5379 KiB  
Article
Development of Edible Carbohydrate–Protein Sports Gels to Optimize the Muscle Glycogen Re-Synthesis
by Vishal Verma, Vishal Gill, Avinash Kumar and Shailendra Pratap Singh
Gels 2025, 11(5), 341; https://doi.org/10.3390/gels11050341 - 2 May 2025
Viewed by 326
Abstract
This study was aimed at providing athletes a solution to replenish the muscle glycogen re-synthesis at an optimal rate with hemp seeds as a natural protein source and Bengal gram dal and its use for the preparation of gel. The gel contains the [...] Read more.
This study was aimed at providing athletes a solution to replenish the muscle glycogen re-synthesis at an optimal rate with hemp seeds as a natural protein source and Bengal gram dal and its use for the preparation of gel. The gel contains the richest source of energy, and it is an effective way to provide energy and nutrients to athletes. The gel was prepared in three variations with different hemp seed concentrations. We then analyzed the gel for pH and macronutrient composition. The sensory characteristics were analyzed for seven parameters, including appearance, taste, color, texture, aroma, consistency, and acceptability, using a hedonic scale on 25 panelists. A sensory analysis showed that sample A received an overall acceptability score of 7.16 ± 0.99 from the sensory panel. The shelf life was observed at the recommended temperature of 4 degrees Celsius, which was 12 days. The best formulation was sample B with 38 g of hemp seeds, which showed better taste, color, aroma, and acceptability and a lower average pH value (6.68 ± 1.44, 6.56 ± 1.29, 7.6 ± 1.16, 7 ± 1.26, and 5.822 ± 0.0183, respectively). Sample B contained 30.8 g of protein, 16.09 g of carbohydrates, 8.4 g of fat, and 263.16 kcal of energy per 100 g. The resulting ratio of carbohydrates to protein is optimal for use as a high-protein post-workout meal. Hence, it can be considered a post-workout supplement. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

12 pages, 6442 KiB  
Article
Tandem Visual Recognition of Cu2+ and Chiral Tartaric Acid by Sequence Gel Formation and Collapse
by Jian Zeng, Yixuan Jiang, Xiao-Qi Yu and Shanshan Yu
Gels 2025, 11(5), 340; https://doi.org/10.3390/gels11050340 - 1 May 2025
Viewed by 153
Abstract
A chiral gelator (R)-H6L with multiple carboxyl groups based on a 1,1′-bi-2,2′-naphthol (BINOL) skeleton was prepared, and it could form a supramolecular gel under the induction of water in DMSO/H2O and DMF/H2O (1/1, v/ [...] Read more.
A chiral gelator (R)-H6L with multiple carboxyl groups based on a 1,1′-bi-2,2′-naphthol (BINOL) skeleton was prepared, and it could form a supramolecular gel under the induction of water in DMSO/H2O and DMF/H2O (1/1, v/v). In the EtOH/H2O system, the original partial gel transformed into a stable metal–organic gel (MOG), specifically with Cu2+ among 20 metal ions. It is proposed that Cu2+ coordinates with the carboxyl groups of (R)-H6L to form a three-dimensional network structure. With the addition of a variety of α-hydroxy acids and amino acids, the Cu2+-MOG collapsed with merely 0.06 equivalents of L-tartaric acid (L-TA), while other acids required much larger amounts to achieve the same effect, realizing the visual chemoselective and enantioselective recognition of tartaric acid. Therefore, the chiral gelator (R)-H6L achieved the tandem visual recognition of Cu2+ and chiral tartaric acid by sequence gel formation and collapse, offering valuable insights for visual sensing applications and serving as a promising model for future chiral sensor design. Full article
(This article belongs to the Special Issue Design of Supramolecular Hydrogels)
Show Figures

Graphical abstract

22 pages, 4241 KiB  
Article
Impact of Alkali-Activated Tannery Sludge-Derived Geopolymer Gel on Cement Properties: Workability, Hydration Process, and Compressive Strength
by Shoukai Chen, Beiying Liu, Phu Minh Vuong Nguyen, Jinping Liu, Jialin Chen and Fei Zhou
Gels 2025, 11(5), 339; https://doi.org/10.3390/gels11050339 - 1 May 2025
Viewed by 148
Abstract
The utilization of tannery sludge (TS) in construction materials not only effectively reduces pollution and resource consumption associated with waste disposal, but also promotes low carbon transformation in the building materials sector, further advancing sustainable development of green construction. This study aims to [...] Read more.
The utilization of tannery sludge (TS) in construction materials not only effectively reduces pollution and resource consumption associated with waste disposal, but also promotes low carbon transformation in the building materials sector, further advancing sustainable development of green construction. This study aims to investigate the impact of sludge-based geopolymer gel on cementitious material performance, revealing the evolution mechanisms of material fluidity, setting time, hydration process, and compressive strength under the coupled effects of tannery sludge and alkali activation, thereby providing a reusable technical pathway to address the resource utilization challenges of similar special solid wastes. A series of alkali-activated composite cementitious materials (AACC) were prepared in the study by partially substituting cement with alkaline activators, TS, and fly ash (FA), through adjustments in TS–FA ratios and alkali equivalent (AE) variations. The workability, hydration process, and compressive strength evolution of AACC were systematically investigated. The experimental results indicated that as the TS content increased from 0% to 100%, the fluidity of fresh AACC decreased from 147 mm to 87 mm, while the initial and final setting times exhibited an exponential upward trend. The incorporation of TS was found to inhibit cement hydration, though this adverse effect could be mitigated by alkaline activation. Notably, 20–40% sludge dosages (SD) enhanced early-age compressive strength. Specifically, the compressive strength of the 0% TS group at 3 d age was 24.3 MPa, that of the 20% TS group was 25.9 MPa (an increase rate of 6.58%), and that of the 40% TS group was 24.5 MPa (an increase rate of 0.82%), whereas excessive additions resulted in the reduction of hydration products content and diminished later stage strength development. Furthermore, the investigation into AE effects revealed that maximum compressive strength (37.4 MPa) was achieved at 9% AE. These findings provide critical data support for realizing effective utilization of industrial solid wastes. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Graphical abstract

23 pages, 427 KiB  
Article
Effects of Gelatin/Chitosan and Chitosan Active Films with Rice Bran Extract for the Preservation of Fresh Pork Meat
by María Cabeza de Vaca, Rosario Ramírez, Javier Rocha-Pimienta, David Tejerina and Jonathan Delgado-Adámez
Gels 2025, 11(5), 338; https://doi.org/10.3390/gels11050338 - 30 Apr 2025
Viewed by 95
Abstract
Films formulated with gelatin and chitosan (GL/CH) or chitosan (CH), without or with 0.3% and 0.5% concentrations of rice bran extract (RBE), have been developed. The migrations of rice bran extract and the antioxidant and antimicrobial properties in vitro have been assessed. The [...] Read more.
Films formulated with gelatin and chitosan (GL/CH) or chitosan (CH), without or with 0.3% and 0.5% concentrations of rice bran extract (RBE), have been developed. The migrations of rice bran extract and the antioxidant and antimicrobial properties in vitro have been assessed. The effects of the film formulations in maintaining color stability, oxidative status and microbial loads on fresh pork meat during 9 days of refrigerated storage were studied. For the films, releases of γ-oryzanol only were observed in low polarity simulant. The highest migrations and antioxidant activity were related to gelatine films, enhanced with the addition of rice bran extract. Only chitosan films showed antimicrobial activity in vitro against Escherichia coli and Listeria innocua, reaching decreases of 7.68 and 8.06 Log CFU at 72 h, respectively. Both gelatin/chitosan and chitosan films prevented the color changes in meat during storage, preventing the paleness, and chitosan films also provoked an increment of redness until 2.88 units of CIE b* at day 9. The films did not prevent either lipid or protein oxidation in meat, despite the rice bran extract inclusion, even increasing the lipid oxidations with chitosan films. However, all films helped to control the microbial counts in meat throughout all the storage, with chitosan being the most effective films, especially with the addition of RBE. Overall, gelatin/chitosan and chitosan films offer a sustainable alternative for fresh pork meat packaging. Full article
(This article belongs to the Special Issue Nature Polymer Gels for Food Packaging)
20 pages, 9466 KiB  
Article
Oil Recovery Mechanism of Polymer Gel Injection Between Injection Wells and Production Wells to Block the Dominant Channel of Water Flow
by Dong Zhang, Yan Wang, Peng Ye, Shutong Li, Jianguang Wei, Lianbin Zhong and Runnan Zhou
Gels 2025, 11(5), 337; https://doi.org/10.3390/gels11050337 - 30 Apr 2025
Viewed by 156
Abstract
Gel system profile control and flooding is a novel profile control technology designed to address the issue of inefficient and ineffective water circulation in high water cut reservoirs during their later stages, demonstrating significant development potential. This system expands on the swept volume [...] Read more.
Gel system profile control and flooding is a novel profile control technology designed to address the issue of inefficient and ineffective water circulation in high water cut reservoirs during their later stages, demonstrating significant development potential. This system expands on the swept volume and enhances oil displacement efficiency, ultimately improving oil recovery. In this study, a new “injection well + intermediate well” configuration was employed to conduct physical simulation experiments on core modules using the gel system (Partially Hydrolyzed Polyacrylamide + Cr3+ cross-linker + Stabilizer). By adjusting the gel system dosage and the location of the intermediate well (0.123 PV + midway between the injection and production wells), changes in the recovery rate, water cut, seepage field, pressure field, oil saturation field, and swept volume were observed. The experimental results indicate that under these conditions, the model achieved the highest total recovery rate, with optimal displacement of remaining oil. Additionally, the gel system exhibited strong stability after formation and was resistant to breakthrough. Compared to single-injection well profile control and flooding, the configuration increased the recovery rate by 16.7%, demonstrating promising development prospects and application potential. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Graphical abstract

14 pages, 2989 KiB  
Article
Ultra-High Dose Rate Electron Beam Dosimetry Using Ag Nanoparticle-Enhanced nPAG and NIBMAGAT Gels
by Mantvydas Merkis, Akvile Slektaite-Kisone, Marius Burkanas, Aleksandras Cicinas, Mindaugas Dziugelis, Vaidas Klimkevicius, Diana Adliene and Jonas Venius
Gels 2025, 11(5), 336; https://doi.org/10.3390/gels11050336 - 30 Apr 2025
Viewed by 145
Abstract
FLASH radiation therapy is an emerging technique that provides several advantages over conventional radiotherapy. By delivering ultra-high dose rate radiation, the damage to healthy tissues surrounding the treatment area is minimized, treatment time is reduced and treatment outcomes of radioresistant tumors are improved. [...] Read more.
FLASH radiation therapy is an emerging technique that provides several advantages over conventional radiotherapy. By delivering ultra-high dose rate radiation, the damage to healthy tissues surrounding the treatment area is minimized, treatment time is reduced and treatment outcomes of radioresistant tumors are improved. Despite its promising potential, FLASH radiation therapy remains relatively understudied, particularly in the field of dosimetry. Polymer gel dosimetry is a promising technique for verifying FLASH radiation therapy because it enables volumetric dose distribution measurements with high spatial accuracy. This study investigates the applicability of two commonly used polymer gel dosimeters, nPAG and NIBMAGAT, enhanced with nanoparticles, in ultra-high dose rate radiation therapy. The results indicate that NIBMAGAT gel, enriched with Ag nanoparticles, outperforms nPAG. NIBMAGAT gel exhibits less saturation at high doses, maintains dose rate independence and offers comparable sensitivity to nPAG formulation. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

13 pages, 4750 KiB  
Article
Three-Dimensional Gel Dosimetry in a Simulated Postmastectomy with Expandable Prosthesis Radiotherapy
by Juliana Fernandes Pavoni, Jessica Caroline Lizar, Leandro Frederiche Borges, Patricia Nicolucci, Yanai Krutman and Oswaldo Baffa
Gels 2025, 11(5), 335; https://doi.org/10.3390/gels11050335 - 30 Apr 2025
Viewed by 282
Abstract
Postmastectomy radiation therapy (PMRT) is an adjuvant treatment for breast cancer. Some mastectomized women undergoing PMRT can have breast reconstruction with expander implant reconstruction. However, the expander implant contains a magnetic metal port for its inflation, and in patients with a high risk [...] Read more.
Postmastectomy radiation therapy (PMRT) is an adjuvant treatment for breast cancer. Some mastectomized women undergoing PMRT can have breast reconstruction with expander implant reconstruction. However, the expander implant contains a magnetic metal port for its inflation, and in patients with a high risk of recurrence, the PMRT is performed before the expander replacement. The difficulties in radiation treatment near high-Z metals are mainly due to dose alterations around them. Therefore, this study proposes using a realistic breast phantom and gel dosimetry to investigate the effects of the metallic parts of the expandable prosthesis on the 3D delivery of the treatment. A conformal radiation treatment was planned and delivered to the gel phantom with the metal port. MAGIC-f gel was used with magnetic resonance imaging for dose assessment. The treatment plan dose distribution was compared to the measured dose distribution by gamma analysis (3%/3 mm/15% threshold). A significant gamma fail region was found near the metal port, corresponding to a dose reduction of approximately 5%. This underdose is within the tolerance threshold for dose heterogeneity established by the International Commission on Radiation Units (ICRU), but should be considered when treating these patients. Full article
(This article belongs to the Special Issue Gel Dosimetry (2nd Edition))
Show Figures

Graphical abstract

29 pages, 6444 KiB  
Article
Novel Gels for Post-Piercing Care: Evaluating the Efficacy of Pranoprofen Formulations in Reducing Inflammation
by Negar Ahmadi, Maria Rincón, Mireia Mallandrich, Joaquim Suñer-Carbó, Lilian Sosa, Mireya Zelaya, Sergio Martinez-Ruiz, Cecilia Cordero and Ana C. Calpena
Gels 2025, 11(5), 334; https://doi.org/10.3390/gels11050334 - 30 Apr 2025
Viewed by 356
Abstract
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral [...] Read more.
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral NSAIDs may have systemic side effects; for this reason, we propose a topical anti-inflammatory approach. Four pranoprofen-loaded gels were created using different gelling agents: Sepigel® 305 (PF-Gel-Sep), Carbopol® 940 (PF-Gel-Car), Pluronic® F-68 (PF-Gel-Plu), and Lutrol® F-127 (PF-Gel-Lut). The gels were assessed for pH, morphology, FT-IR spectroscopy, rheological properties, spreadability, swelling and degradation, drug release kinetics, skin permeation (cow and human skin), irritation potential (HET-CAM assay), and impact on skin barrier function (TEWL and SCH). The gels exhibited varied rheological properties with PF-Gel-Car showing high viscosity and PF-Gel-Plu very low viscosity. All gels had similar spreadability with PF-Gel-Lut showing the highest. PF-Gel-Car showed the highest amounts of PF released, whereas PF-Gel-Plu led to the highest amount of pranoprofen retained in human and bovine skin. The HET-CAM assay indicated that none of the PF-Gels were irritating. Additionally, PF-Gel-Car and PF-Gel-Plu showed no cytotoxic effects on HaCaT cells. In vivo testing on mice showed that PF-Gel-Car prevented inflammation, while the rest of the gels were able to revert it in 25 min. Skin tolerance tests revealed the gels did not affect TEWL, and some gels improved SCH. The study successfully formulated and characterized four PF-loaded topical gels with potential to be used as an alternative for treating inflammation from piercings and ear tags. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

11 pages, 2908 KiB  
Article
On the Conditions Determining the Formation of Self-Crosslinking Chitosan Hydrogels with Carboxylic Acids
by Nils Münstermann and Oliver Weichold
Gels 2025, 11(5), 333; https://doi.org/10.3390/gels11050333 - 29 Apr 2025
Viewed by 245
Abstract
The formation of self-crosslinking chitosan hydrogels using carboxylic acids has a number of limitations. Chitosan dissolves in oxalic, malonic, and succinic acids at a ratio of 1 amino group to 2 carboxyl groups into viscous solutions (G′ < G′′), but does not dissolve [...] Read more.
The formation of self-crosslinking chitosan hydrogels using carboxylic acids has a number of limitations. Chitosan dissolves in oxalic, malonic, and succinic acids at a ratio of 1 amino group to 2 carboxyl groups into viscous solutions (G′ < G′′), but does not dissolve with lower amounts of the acid. Mixing chitosan hydrochloride with disodium carboxylates does not afford gels, but only a coacervate in the case of disodium oxalate, which dissolves upon dialysis. In the homologous series of N-carboxyalkyl derivatives (alkyl = methyl, ethyl, propyl), all members form gels (G′ > G′′). At approx. 50% of substitution, the storage modulus increases from 40 Pa (methyl) to 30,000 Pa (propyl) indicating the increasing strength of intermolecular interactions with the increasing length of the alkyl spacer. This could indicate that a sufficiently long spacer is required to properly connect the chitosan helices. N-succinyl chitosan, where the spacer is attached to the backbone as an amide, also forms polymer gels across all degrees of N-acylation. When compared to N-carboxypropyl chitosan, the latter forms significantly stiffer gels that swell less. This indicates that one covalent bond, a sufficient length, and the conformational flexibility of the spacer are important for gelation. Full article
Show Figures

Graphical abstract

6 pages, 237 KiB  
Editorial
Innovations in Designing Hydrogels for Advanced Wound Dressing Applications: An Editorial Review
by Kannan Badri Narayanan and Rakesh Bhaskar
Gels 2025, 11(5), 332; https://doi.org/10.3390/gels11050332 - 29 Apr 2025
Viewed by 239
Abstract
Hydrogels are highly versatile biomaterials that play a crucial role in personal wound care and regenerative medicine [...] Full article
(This article belongs to the Special Issue Designing Gels for Wound Dressing)
12 pages, 1908 KiB  
Article
The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)-b-oligo(L-alanine)]
by Demetris E. Apostolides, George Michael, Costas S. Patrickios, Takamasa Sakai, Iro Kyroglou, Maria Kasimatis, Hermis Iatrou, Sylvain Prévost and Michael Gradzielski
Gels 2025, 11(5), 331; https://doi.org/10.3390/gels11050331 - 29 Apr 2025
Viewed by 242
Abstract
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and [...] Read more.
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in D2O using small-angle neutron scattering (SANS). Full article
Show Figures

Figure 1

16 pages, 1717 KiB  
Article
Comparison of Ultrasound- and Microwave-Assisted Extraction Techniques on Chemical, Technological, Rheological, and Microstructural Properties of Starch from Mango Kernel
by Luis Mieles-Gómez, Somaris E. Quintana and Luis A. García-Zapateiro
Gels 2025, 11(5), 330; https://doi.org/10.3390/gels11050330 - 29 Apr 2025
Viewed by 214
Abstract
The effect of emergent technologies for the starch extraction was studied. The evaluation of conventional extraction (MKS-WMP), ultrasound-assisted extraction (MKS-UAE), and microwave-assisted extraction (MKS-MAE) on chemical, technological, gelling, pasting, and microstructural properties of starch from mango kernel was carried out. The extraction yield [...] Read more.
The effect of emergent technologies for the starch extraction was studied. The evaluation of conventional extraction (MKS-WMP), ultrasound-assisted extraction (MKS-UAE), and microwave-assisted extraction (MKS-MAE) on chemical, technological, gelling, pasting, and microstructural properties of starch from mango kernel was carried out. The extraction yield was found in the values of 42.05, 50.40, and 47.43% for MKS-WMP, MKS-UAE, and MKS-MAE treatments, respectively. The amylose contents for MKS-UAE and MKS-MAE starches were significantly higher (p < 0.05) than MKS-WMP, with an increase of about 13–18%. The total phenolic content ranged from 84.89 to 90.85 mg GAE/g starch without significant differences (p > 0.05). The technological properties evidence a good water-holding capacity (80.48–90.05 g/100 g of starch) and oil-holding capacity (70.58–83.23 g/100 g of starch). The gelatinization temperature, measured by rheological analysis, ranged between 77 and 82 °C. Microstructural properties showed that ultrasound- and microwave-assisted treatments improved the shape and surface of starch granules, and that they are promising alternatives for starch extraction, providing some characteristics that could increase the applications in the food industry. Full article
Show Figures

Figure 1

17 pages, 4677 KiB  
Article
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking
by Hebat-Allah S. Tohamy
Gels 2025, 11(5), 329; https://doi.org/10.3390/gels11050329 - 28 Apr 2025
Viewed by 283
Abstract
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed [...] Read more.
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed the successful grafting of AMPS and incorporation of N-fullerenes, indicated by characteristic peaks and a shift in the N–H/O–H stretching frequency. Density Functional Theory (DFT) calculations revealed that the CMC–N-fullerene–AMPS hydrogel exhibited higher stability and a lower band gap energy (0.0871 eV) compared to the CMC–AMPS hydrogel, which means a high reactivity of CMC–N-fullerene–AMPS. The incorporation of N-fullerenes significantly enhanced the hydrogel’s antibacterial activity, demonstrating a 22 mm inhibition zone against E. coli and a 24 mm zone against S. aureus, suggesting potential for active food packaging applications. Critically, the hydrogel displayed a unique “turn-on” fluorescence response in the presence of bacteria, with distinct color changes observed upon interaction with E. coli (orange-red) and S. aureus (bright green). This fluorescence enhancement, coupled with the porous morphology observed via SEM (pore size 377–931 µm), suggests the potential of this hydrogel as a sensing platform for bacterial contamination within food packaging. These combined properties of enhanced antibacterial activity and a distinct, bacteria-induced fluorescence signal make the CMC–N-fullerene–AMPS hydrogel a promising candidate for developing intelligent food packaging materials capable of detecting bacterial spoilage. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop