Next Issue
Volume 11, June
Previous Issue
Volume 11, April
 
 

Gels, Volume 11, Issue 5 (May 2025) – 72 articles

Cover Story (view full-size image): The permeation and penetration of caffeine through the skin is limited due to its hydrophilicity and the lipophilic properties of stratum corneum. The preparation of the complex between caffeine and hydroxypropyl-β-cyclodextrin could be considered an appropriate strategy to overcome this issue. The complexation of caffeine increased its scavenging activity against ABTS radical, and a tendency for improved protective effects in an in vitro model of H2O2-induced oxidative stress in L929 fibroblasts was observed. Further, the complex was incorporated into a carbopol hydrogel, which showed enhanced spreadability and penetration in comparison with the empty gel. View this paper

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 5073 KiB  
Article
Bio-Inspired Synthesis of Injectable, Self-Healing PAA-Zn-Silk Fibroin-MXene Hydrogel for Multifunctional Wearable Capacitive Strain Sensor
by Rongjie Wang, Boming Jin, Jiaxin Li, Jing Li, Jingjing Xie, Pengchao Zhang and Zhengyi Fu
Gels 2025, 11(5), 377; https://doi.org/10.3390/gels11050377 - 21 May 2025
Viewed by 241
Abstract
Conductive hydrogels have important application prospects in the field of wearable sensing, which can identify various biological signals for human motion monitoring. However, the preparation of flexible conductive hydrogels with high sensitivity and stability to achieve reliable signal recording remains a challenge. Herein, [...] Read more.
Conductive hydrogels have important application prospects in the field of wearable sensing, which can identify various biological signals for human motion monitoring. However, the preparation of flexible conductive hydrogels with high sensitivity and stability to achieve reliable signal recording remains a challenge. Herein, we prepared a conductive hydrogel by introducing conductive Ti3C2Tx MXene nanosheets into a dual network structure formed by Zn2+ crosslinked polyacrylic acid and silk fibroin for use as a wearable capacitive strain sensor. The prepared injectable hydrogel has a uniform porous structure and good flexibility, and the elongation at break can reach 1750%. A large number of ionic coordination bonds and hydrogen bond interactions make the hydrogel exhibit good structural stability and a fast self-healing property (30 s). In addition, the introduction of Ti3C2Tx MXene as a conductive medium in hydrogel improves the conductivity. Due to the high conductivity of 0.16 S/m, the capacitive strain sensor assembled from this hydrogel presents a high gauge factor of 1.78 over a wide strain range of 0–200%, a fast response time of 0.2 s, and good cycling stability. As a wearable sensor, the hydrogel can accurately monitor the activities of different joints in real-time. This work is expected to provide a new approach for wearable hydrogel electronic devices. Full article
Show Figures

Figure 1

24 pages, 4277 KiB  
Article
The Behaviour of Contaflex Soft Contact Lens Material During Hydration
by Joseph Towler, Markus Zaplachinski, Roberto Montiel, Nikhil Murari, Christine Deng, Rimmo Lego, Arwa Fathy and Ahmed Abass
Gels 2025, 11(5), 376; https://doi.org/10.3390/gels11050376 - 21 May 2025
Viewed by 177
Abstract
The aim of this study was to quantitatively evaluate the swelling and transparency behaviour of Contaflex soft contact lens materials with varying water-content (38–77%) using high-resolution digital imaging and infrared LiDAR. Contaflex materials with 38%, 55%, 58%, 67% and 77% nominal water-contents, denoted [...] Read more.
The aim of this study was to quantitatively evaluate the swelling and transparency behaviour of Contaflex soft contact lens materials with varying water-content (38–77%) using high-resolution digital imaging and infrared LiDAR. Contaflex materials with 38%, 55%, 58%, 67% and 77% nominal water-contents, denoted as C38, C55, C58, C67, and C77, were tested. Hydrogel samples (N = 5 per group) were monitored over 24 h in pH 7.1 phosphate-buffered saline. Dimensional changes were assessed via linear and radial expansion factors (LEF and REF), and transparency was tracked during hydration. All groups exhibited rapid initial swelling followed by continued expansion. LEF and REF values increased with water-content; C77 reached LEF and REF values of 1.563 ± 0.093 and 1.536 ± 0.052, while C38 stabilised near 1.201 ± 0.019 and 1.179 ± 0.011, respectively. Refractive index decreased with hydration, from 1.552 in C38 to 1.372 in C77. Power simulations revealed deviations beyond ISO tolerance limits in most materials, particularly those with higher water-content. Transparency changes were consistent with swelling dynamics. These findings support the need for material-specific design adjustments to account for hydration-related dimensional and optical changes in soft contact lenses. Full article
(This article belongs to the Special Issue Innovative Gels: Structure, Properties, and Emerging Applications)
Show Figures

Graphical abstract

14 pages, 2204 KiB  
Article
Development and Application of a Modified Biochar-Calcium Alginate Composite (MB-CA) for In Situ Remediation of Cadmium-Contaminated Soil
by Sijia Sun, Yuying Wang, Yanru Zhang, Lina Wu, Xinyi Wang, Guoyu Wang, Weitao Sun, Dasong Lin and Yajun Wang
Gels 2025, 11(5), 375; https://doi.org/10.3390/gels11050375 - 20 May 2025
Viewed by 167
Abstract
Agricultural monitoring reveals cadmium (Cd) as the most prevalent heavy metal pollutant in Chinese agricultural soils, with 7.0% of sampled sites exceeding the national soil environmental quality standard (GB 15618-2018), creating substantial risks for crop safety. In situ remediation is a cost-effective method [...] Read more.
Agricultural monitoring reveals cadmium (Cd) as the most prevalent heavy metal pollutant in Chinese agricultural soils, with 7.0% of sampled sites exceeding the national soil environmental quality standard (GB 15618-2018), creating substantial risks for crop safety. In situ remediation is a cost-effective method that can modify the speciation and migration properties of Cd in soil. The previous stage of research studies conducted basic characterization of materials and predicted their adsorption capacity in solution environments. This study focuses on the application effects in soil environment. We cross-linked modified biochar and calcium alginate hydrogels to fabricate a composite material (MB-CA) and determined its excellent adsorption performance for cadmium. This study is a continuation of our previous work, focusing on determining the thermodynamic model of adsorption materials, the applicable environment of composite materials, the influence on soil microorganisms, and its effect on the reduction in Cd content in agricultural products. The research found that the adsorption of Cd2+ by MB-CA conforms to the Freundlich isotherm model. MB-CA has the ability to regulate pH, achieving outstanding adsorption capacity at pH 4–6. The effect of MB-CA on lettuce is verified through pot experiment and field experiment. The Cd2+ content in plants decreased by 63.11% and 76.92%, respectively. Additionally, MB-CA did not negatively impact microbial abundance. This study further discussed the performance and application effect of MB-CA, providing new solutions for soil remediation. Full article
(This article belongs to the Special Issue Social Implementation of Advanced Gel Materials)
Show Figures

Figure 1

18 pages, 1648 KiB  
Article
Exploring the Potential of Cleansing Hydrogel and Shampoo with Whey as a Contemporary Approach to Sustainability
by Maja Bjelošević Žiberna, Blaž Grilc, Mirjana Gašperlin and Mirjam Gosenca Matjaž
Gels 2025, 11(5), 374; https://doi.org/10.3390/gels11050374 - 20 May 2025
Viewed by 261
Abstract
Cosmetology is one of the fastest-growing scientific areas, and within it, individual needs and preferences have to be considered. Specifically, cosmetic products with incorporated biological macromolecules, i.e., proteins and peptides, that contribute to improved skin features are gaining in importance. Similar to other [...] Read more.
Cosmetology is one of the fastest-growing scientific areas, and within it, individual needs and preferences have to be considered. Specifically, cosmetic products with incorporated biological macromolecules, i.e., proteins and peptides, that contribute to improved skin features are gaining in importance. Similar to other fields, cosmetology is also faced with the zero-waste paradigm and strives for a collaboration with other industries. Whey is a co-product in milk production and represents a high environmental burden. In this regard, the idea of the present study was to utilise whey in order to develop sustainable cosmetic products, i.e., cleansing hydrogel and shampoo. The initial phase of the study was dedicated to the development of an optimised hydrogel and shampoo base, followed by whey integration and an in-depth physico-chemical characterisation of both prototypes. In the subsequent phases, particular emphasis was placed on evaluating the potential skin irritancy of the whey-based formulations in vitro, complemented by in vivo assessment on volunteers. The results obtained indicate that the incorporation of whey at concentrations of up to 30% (m/m) is feasible for both formulation types. Moreover, neither product exhibited any irritative effects and a study on volunteers showed that whey has great potential in terms of providing adequate skin hydration. Taken together, all the findings support the development of advanced cosmetic formulations with a zero-waste concept built-in, thus offering a promising platform for cross-sector collaboration, and representing a meaningful step toward potential hydrogel and shampoo commercialisation. Full article
(This article belongs to the Special Issue Global Excellence in Bioactive Gels)
Show Figures

Graphical abstract

26 pages, 19631 KiB  
Article
Design of a Foam-Actuated Nano-Emulgel for Perioceutic Drug Delivery: Formulation, Characterization, and Antimicrobial Efficacy
by Theresa P. K. Varughese, Poornima Ramburrun, Nnamdi I. Okafor, Sandy van Vuuren and Yahya E. Choonara
Gels 2025, 11(5), 373; https://doi.org/10.3390/gels11050373 - 20 May 2025
Viewed by 242
Abstract
Periodontitis is a prevalent oral condition worldwide. Azithromycin, a conventional lipophilic drug for periodontal treatment, often causes systemic side effects when administered orally. To address this, azithromycin-loaded nano-emulgels were developed using olive oil as a carrier within a xanthan gum aqueous gel phase. [...] Read more.
Periodontitis is a prevalent oral condition worldwide. Azithromycin, a conventional lipophilic drug for periodontal treatment, often causes systemic side effects when administered orally. To address this, azithromycin-loaded nano-emulgels were developed using olive oil as a carrier within a xanthan gum aqueous gel phase. This oil-in-aqueous gel emulsion was actuated into a foam for localized drug delivery in gingival and periodontal disease. The solubility of azithromycin in various vehicles was tested, with olive oil showing the best solubility (0.347 mg/mL). Thermodynamic stability testing identified viable nano-formulations, with encapsulation efficiencies ranging from 98 to 100%. These formulations exhibited rapid drug release within 2–8 h. Muco-adhesion studies and ex vivo permeability tests on porcine buccal mucosa highlighted the beneficial properties of xanthan gum for local drug retention within the oral cavity. Antimicrobial efficiency was assessed using minimum inhibitory concentrations against various oral pathogens, where the formulation with equal surfactant and co-surfactant ratios showed the most potent antibacterial activity, ranging from 0.390 to 1.56 µg/mL. This was supported by the shear-thinning, muco-adhesive, and drug-retentive properties of the xanthan gel base. The study also examined the influence of the oil phase with xanthan gum gel on foam texture, rheology, and stability, demonstrating a promising prototype for periodontitis treatment. Full article
(This article belongs to the Special Issue Hydrogels, Oleogels and Bigels Used for Drug Delivery)
Show Figures

Graphical abstract

33 pages, 9324 KiB  
Review
Hydrogels for Translucent Wearable Electronics: Innovations in Materials, Integration, and Applications
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Gels 2025, 11(5), 372; https://doi.org/10.3390/gels11050372 - 20 May 2025
Viewed by 362
Abstract
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical [...] Read more.
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical properties, particularly transparency, remain relatively unexplored. Transparent wearable electronics offer distinct advantages: they allow for non-invasive health monitoring by enabling a clear view of biological systems and improve aesthetics by minimizing the visual presence of electronics on the skin, thereby increasing user acceptance. Hydrogels have emerged as a key material for transparent wearable electronics due to their high water content, excellent biocompatibility, and tunable mechanical and optical properties. Their inherent softness and stretchability allow intimate, stable contact with dynamic biological surfaces. Furthermore, their ability to support ion-based conductivity is advantageous for bioelectronic interfaces and physiological sensors. Current research is focused on advancing hydrogel design to improve transparency, mechanical resilience, conductivity, and adhesion. The core components of transparent wearable systems include physiological sensors, energy storage devices, actuators, and real-time displays. These must collectively balance efficiency, functionality, and long-term durability. Practical applications span continuous health tracking and medical imaging to next-generation interactive displays. Despite progress, challenges such as material durability, scalable manufacturing, and prolonged usability remain. Addressing these limitations will be crucial for the future development of transparent, functional, and user-friendly wearable electronics. Full article
Show Figures

Figure 1

14 pages, 671 KiB  
Review
White Spot Lesion Treatment Options: A Systematic Review of Different Techniques for Masking These Lesions
by Michela Lamorgese, Nélio Veiga, Maria J. Correia, Ana T. P. C. Gomes, Sara Lopes, Lígia Lopes-Rocha, Rita Fidalgo-Pereira and Pedro C. Lopes
Gels 2025, 11(5), 371; https://doi.org/10.3390/gels11050371 - 19 May 2025
Viewed by 358
Abstract
White spot lesions (WSLs) are early clinical stages of enamel demineralization, often related to orthodontic treatment or poor oral hygiene. The use of gels such as fluoride for topical application inhibits demineralization and promotes remineralization of dental tissues through various mechanisms. A variety [...] Read more.
White spot lesions (WSLs) are early clinical stages of enamel demineralization, often related to orthodontic treatment or poor oral hygiene. The use of gels such as fluoride for topical application inhibits demineralization and promotes remineralization of dental tissues through various mechanisms. A variety of therapeutic approaches are available; however, recent research indicates that combined treatment strategies may yield superior clinical outcomes compared to monotherapy. The aim of this study was to critically compare the efficacy of combining multiple treatment techniques for WSLs compared to using these techniques alone. A systematic search was conducted in PubMed, Scopus, and Cochrane databases according to PRISMA guidelines. The PICO strategy was used to formulate the research question: Which clinical approaches combined or isolated (C) influence the treatment and prevention effectiveness (O) of white spot lesions (I) in humans (P) in the last ten years (T)? Inclusion criteria focused on clinical studies from the last ten years evaluating the combined use of at least two treatment techniques for WSL, resulting in a total of 8 randomized controlled trials selected from an initial pool of 1185 articles. Our results suggest that combined treatment strategies, including resin infiltration with fluoride varnish and ozone therapy combined with fluoride application, demonstrated enhanced efficacy in lesion masking and remineralization compared to single-treatment approaches. CPP-ACP and hydroxyapatite-based creams improved aesthetics, particularly when used alongside fluoride varnish. Our study concluded that the combination of remineralization agents like fluoride gel, infiltrative resins, and antimicrobial treatments offers superior outcomes on white spot lesion treatment than using these techniques alone. However, long-term clinical studies are needed to standardize treatment protocols and confirm durability. Full article
(This article belongs to the Special Issue Functional Gels for Dental Applications)
Show Figures

Figure 1

23 pages, 5188 KiB  
Article
Dynamic Boronate Ester Based Hydrogel with Enhanced Mechanical Properties and Multi-Stimuli-Triggered Release for Tissue Repair and Antioxidant Therapy
by Fangyi Liu, Gaoyang Li, Zhenhui An, Sijia Wang, Shouhong Xu and Honglai Liu
Gels 2025, 11(5), 370; https://doi.org/10.3390/gels11050370 - 18 May 2025
Viewed by 313
Abstract
Oxidative stress and chronic inflammation play pivotal roles in causing impaired tissue regeneration and delaying wound healing processes. Epigallocatechin gallate (EGCG) demonstrates robust anti-inflammatory and antioxidant characteristics, thereby emerging as a highly promising therapeutic substance for tissue repair applications. In order to counteract [...] Read more.
Oxidative stress and chronic inflammation play pivotal roles in causing impaired tissue regeneration and delaying wound healing processes. Epigallocatechin gallate (EGCG) demonstrates robust anti-inflammatory and antioxidant characteristics, thereby emerging as a highly promising therapeutic substance for tissue repair applications. In order to counteract the pathological characteristics of the wound microenvironment, including increased levels of reactive oxygen species (ROS), low pH (weak acidic conditions), and elevated glucose concentrations, a hydrogel with pH/ROS/glucose-responsive properties was fabricated. This hydrogel was modified with phenylboronic acid (PBA) groups, which not only enhance its mechanical strength but also endow it with multi-stimuli responsiveness via dynamic boronate ester bonds. The impacts of grafting of PBA and loading of EGCG on the rheological and mechanical properties, as well as the network structure of the hydrogels, were systematically investigated. Moreover, in vitro experiments showed that the hydrogel could achieve excellent sustained and controlled release of both small-molecule and macromolecular drugs. Additionally, cell viability tests verified the hydrogel’s outstanding biocompatibility, and antioxidant experiments demonstrated its efficient ability to scavenge intracellular ROS. In conclusion, this injectable and biodegradable hydrogel possesses multi-stimuli responsiveness, controllable drug release behavior, and antioxidant capacity, presenting a promising approach to alleviate oxidative damage and promote tissue repair. This study offers valuable perspectives for the design of advanced hydrogel materials aimed at treating wound healing. Full article
Show Figures

Figure 1

15 pages, 2205 KiB  
Article
Highly Stretchable, Low Hysteresis, and Transparent Ionogels as Conductors for Dielectric Elastomer Actuators
by Limei Zhang, Hong Li, Zhiquan Li, Weimin Pan, Yi Men, Niankun Zhang, Jing Xu and Xuewei Liu
Gels 2025, 11(5), 369; https://doi.org/10.3390/gels11050369 - 17 May 2025
Viewed by 308
Abstract
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce [...] Read more.
As conductive materials, ionogels have attracted significant attention for their potential applications in flexible wearable electronics. However, preparing an ionogel with mechanical properties akin to human skin while also achieving transparency, adhesion, and low hysteresis through simple processes remains challenging. Here, we introduce a multifunctional ionogel synthesized via a one-step photopolymerization method. By leveraging the good compatibility between the ionic liquid and the polymer network, as well as the hydrogen bonding and chemical crosslinking within the gel network, we achieved an ionogel with high transparency (>98%), stretchability (fracture strain of 19), low hysteresis (<5.83%), strong adhesion, robust mechanical stability, excellent electrical properties, a wide operating temperature range, and a tunable modulus (1–103 kPa) that matches human skin. When used as a conductor in soft actuators, the ionogel enabled a large area strain of 36% and a fast electromechanical conversion time of less than 1 s. The actuator demonstrated good actuation performance with voltage and frequency dependence, electrochemical stability, and outstanding durability over millions of cycles. This study provides a simple and effective method to produce multifunctional ionogels with tailored mechanical properties that match those of human skin, paving the way for their application in flexible wearable electronics. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 9987 KiB  
Article
Preparation of Janus-Structured Evaporators for Enhanced Solar-Driven Interfacial Evaporation and Seawater Desalination
by Junjie Liao, Luyang Hu, Haoran Wang, Zhe Yang, Xiaonan Wu and Yumin Zhang
Gels 2025, 11(5), 368; https://doi.org/10.3390/gels11050368 - 17 May 2025
Viewed by 271
Abstract
Solar-driven interfacial evaporation has emerged as a sustainable and highly efficient technology for seawater desalination, attracting considerable attention for its potential to address global water scarcity. However, challenges such as low evaporation rates and salt accumulation significantly hinder the performance and operational lifespan [...] Read more.
Solar-driven interfacial evaporation has emerged as a sustainable and highly efficient technology for seawater desalination, attracting considerable attention for its potential to address global water scarcity. However, challenges such as low evaporation rates and salt accumulation significantly hinder the performance and operational lifespan of evaporators. Here, we present an innovative Janus-structured evaporator featuring distinct operational mechanisms through the integration of a hydrophobic PVDF-HFP@PPy photothermal membrane and a hydrophilic PVA-CF@TA-Fe3+ hydrogel, coupled with a unidirectional flow configuration. Distinct from conventional Janus evaporators that depend on interfacial water transport through asymmetric layers, our design achieves two pivotal innovations: (1) the integration of a lateral fluid flow path with the Janus architecture to enable sustained brine replenishment and salt rejection and (2) the creation of dual vapor escape pathways (hydrophobic and hydrophilic layers) synergized with hydrogel-mediated water activation to elevate evaporation kinetics. Under 1 sun illumination, the evaporator achieves a maximum evaporation rate of 2.26 kg m−2 h−1 with a photothermal efficiency of 84.6%, in both unidirectional flow and suspension modes. Notably, the evaporation performance remains stable across a range of saline conditions, demonstrating remarkable resistance to salt accumulation. Even during continuous evaporation of highly saline water (10% brine), the evaporator maintains an evaporation rate of 2.10 kg m−2 h−1 without observable salt precipitation. The dual anti-salt strategies—enabled by the Janus structure and unidirectional flow design—underscore the evaporator’s capability for sustained high performance and long-term stability in saline environments. These findings provide valuable insights into the development of next-generation solar evaporators that deliver high performance, long-term stability, and robustness in saline and hypersaline environments. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Graphical abstract

20 pages, 4445 KiB  
Article
Investigating the Interactions of Peptide Nucleic Acids with Multicomponent Peptide Hydrogels for the Advancement of Healthcare Technologies
by Sabrina Giordano, Monica Terracciano, Enrico Gallo, Carlo Diaferia, Andrea Patrizia Falanga, Antonella Accardo, Monica Franzese, Marco Salvatore, Gennaro Piccialli, Nicola Borbone and Giorgia Oliviero
Gels 2025, 11(5), 367; https://doi.org/10.3390/gels11050367 - 17 May 2025
Viewed by 235
Abstract
This study reports the development of peptide-based hydrogels for the encapsulation and controlled release of peptide nucleic acids in drug delivery applications. Ultrashort aromatic peptides, such as Fmoc-FF, self-assemble into biocompatible hydrogels with nanostructured architectures. The functionalization of tripeptides (Fmoc-FFK and Fmoc-FFC) with [...] Read more.
This study reports the development of peptide-based hydrogels for the encapsulation and controlled release of peptide nucleic acids in drug delivery applications. Ultrashort aromatic peptides, such as Fmoc-FF, self-assemble into biocompatible hydrogels with nanostructured architectures. The functionalization of tripeptides (Fmoc-FFK and Fmoc-FFC) with lysine (K) or cysteine (C) enables electrostatic or covalent interactions with model PNAs engineered with glutamic acid or cysteine residues, respectively. Hydrogels were polymerized in situ in the presence of PNAs, and component ratios were systematically varied to optimize mechanical properties, loading efficiency, and release kinetics. The formulations obtained with a 1/10 ratio of Fmoc-FF(K or C)/Fmoc-FF provided an optimal balance between structural integrity and delivery performance. All hydrogel formulations demonstrated high stiffness (G′ > 19,000 Pa), excellent water retention, and minimal swelling under physiological conditions (ΔW < 4%). The release studies over 10 days showed that electrostatic loading enabled faster and higher release (up to 90%), while covalent bonding resulted in slower, sustained delivery (~15%). These findings highlight the tunability of the hydrogel system for diverse therapeutic applications. Full article
Show Figures

Figure 1

20 pages, 6700 KiB  
Article
The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells
by Xiaoshan Long, Shucheng Liu, Xianqing Yang, Yongqiang Zhao, Shaoling Yang, Ya Wei, Chuang Pan, Shengjun Chen, Peihong Jiang, Bo Qi and Xiao Hu
Gels 2025, 11(5), 366; https://doi.org/10.3390/gels11050366 - 15 May 2025
Viewed by 215
Abstract
The aim of this study was to investigate the hypoglycemic activity and mechanism of G. lemaneiformis polysaccharide gels (GLP and GLP-HV) based on IR/IRS-2/PI3k/Akt/Glut4 and glycometabolism signaling pathways in HepG2 cells. After H2O2-Vc degradation, the molecular weight of G. [...] Read more.
The aim of this study was to investigate the hypoglycemic activity and mechanism of G. lemaneiformis polysaccharide gels (GLP and GLP-HV) based on IR/IRS-2/PI3k/Akt/Glut4 and glycometabolism signaling pathways in HepG2 cells. After H2O2-Vc degradation, the molecular weight of G. lemaneiformis polysaccharide gel declined from 1478 kDa to 16 kDa. Molecular weight chromatogram and distribution indicated that GLP-HV had a high molecular weight homogeneity compared to GLP. G. lemaneiformis polysaccharide gels significantly decreased the TC, TG, LDL-C, MDA, and LDH contents and enhanced the activities of HDL-C, T-AOC, CAT, GSH-PX, SOD, insulin, and glycogen in HepG2 cells. Fluorescent staining results showed that G. lemaneiformis polysaccharide gels reduced ROS and calcium ions levels in HepG2 cells. GLP and GLP-HV displayed excellent hypoglycemic activity, with GLP-HV performing better. Furthermore, qPCR and Western blot analysis revealed that G. lemaneiformis polysaccharide gels remarkably strengthened the levels of IR, IRS-2, PI3K, Akt, Glut4, HK, G6PD, PFK, PEPCK, GK, PK genes, and proteins. Spearman’s correlation analysis revealed that the IR/IRS-2/PI3k/Akt/Glut4 signaling pathway played a dominant role in regulating activity. These results show that G. lemaneiformis polysaccharide gels present a prominent hypoglycemic effect mediated by the IR/IRS-2/PI3k/Akt/Glut4 and glycometabolism signaling pathways, with the former playing a dominant role. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and New Applications)
Show Figures

Figure 1

22 pages, 5233 KiB  
Article
A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH2/TOCNF for the Removal of Azo Anionic Dyes
by Rabia Amen, Islam Elsayed, Yunsang Kim, Gregory T. Schueneman, Emad M. El-Giar and El Barbary Hassan
Gels 2025, 11(5), 365; https://doi.org/10.3390/gels11050365 - 15 May 2025
Viewed by 339
Abstract
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue [...] Read more.
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

25 pages, 3964 KiB  
Article
Development of Liposome-Based Hydrogel Patches Incorporating Essential Oils of African Plants and Deep Eutectic Solvents
by Wanhang Jiang, Sara Toufouki, Subhan Mahmood, Ali Ahmad, Alula Yohannes, Yang Xiang and Shun Yao
Gels 2025, 11(5), 364; https://doi.org/10.3390/gels11050364 - 15 May 2025
Viewed by 321
Abstract
A nanoliposome-integrated polymeric hydrogel was developed for the controlled release of essential oils (Argania spinosa, Passiflora edulis). A deep eutectic solvent (DES) composed of betaine and phytic acid enhanced the solubility and stability of essential oils, facilitating uniform encapsulation within nanoliposomes. The hydrogel [...] Read more.
A nanoliposome-integrated polymeric hydrogel was developed for the controlled release of essential oils (Argania spinosa, Passiflora edulis). A deep eutectic solvent (DES) composed of betaine and phytic acid enhanced the solubility and stability of essential oils, facilitating uniform encapsulation within nanoliposomes. The hydrogel exhibited a swelling capacity of 100% and retained 51.7% of water after 7 h, ensuring prolonged hydration. Structural analysis confirmed a homogeneous dispersion of nanoliposomes, contributing to the gradual release of bioactive components. Additionally, the hydrogel demonstrated high mechanical strength (7.5 MPa), ensuring flexibility and durability. The polymeric network, formed by acrylamide, sodium alginate, and bentonite, provided a stable and elastic matrix, optimizing water retention and mechanical performance. The controlled diffusion mechanism of the nanoliposomes was validated through in vitro release studies, indicating Fickian-controlled release behavior. These findings highlight the potential of this polymeric hydrogel system as a functional material for skincare formulations, offering enhanced hydration and sustained bioactive delivery. Full article
Show Figures

Graphical abstract

22 pages, 15068 KiB  
Article
Utilization of Cassava Starch–Glycerol Gel as a Sustainable Material to Decrease Metal Ion Surface Contamination
by Rezky Anggakusuma, Gemilang Lara Utama, Dadan Sumiarsa, Permata Apriliani Dewi Muslimah and Ali Asgar
Gels 2025, 11(5), 363; https://doi.org/10.3390/gels11050363 - 14 May 2025
Viewed by 311
Abstract
Many studies have examined the ability of polymer-based gels or hydrogels to serve various purposes, particularly as absorbents. Several studies have reported that polyvinyl alcohol (PVA), with specific compositions and additives, is an absorbent and a decontamination material usable for heavy metals and [...] Read more.
Many studies have examined the ability of polymer-based gels or hydrogels to serve various purposes, particularly as absorbents. Several studies have reported that polyvinyl alcohol (PVA), with specific compositions and additives, is an absorbent and a decontamination material usable for heavy metals and radioactive substances. PVA has a high cost and is slowly degradable under anaerobic conditions. This study investigated the potential of natural materials, namely cassava starch, which is an environmentally friendly, non-toxic, and readily available gel-forming polymer that, notably, is inexpensive in Indonesia. The FTIR analysis showed a bond and polymer formation between cassava starch and glycerol. The cassava starch–glycerol–water mixture was applied to media such as glass, aluminum plates, and ceramics contaminated with heavy-metal stable ions which correspond to a radionuclide. The media, stored at room temperature for 24 h, becomes a film. According to the SEM and XRF results, the gel becomes a film that binds and absorbs metals when dried. The SEM results showed the presence of metals corresponding with the sources of contamination, and the XRF results showed that the quantity of metals absorbed was large. The cassava starch gel absorption results indicated the formation of an amorphous compound, as indicated by the XRF results. Based on all the analyses, the cassava starch–glycerol gel has enormous potential. It is almost equivalent to a PVA gel as an absorbent material and heavy-metal decontamination material, when used for radioactive decontamination on the material’s surface. Full article
Show Figures

Graphical abstract

33 pages, 10150 KiB  
Review
Mechanical Properties of Cement-Based Gel Composites Reinforced by Plant Fiber: A Review
by Peng Zhang, Xiao Zhang, Jinjun Guo, Yuanxun Zheng and Zhen Gao
Gels 2025, 11(5), 362; https://doi.org/10.3390/gels11050362 - 14 May 2025
Viewed by 377
Abstract
Plant fibers (PFs) have been increasingly employed in cement-based gel composites (CCs) on account of their excellent mechanical properties, toughness and sustainability. Researchers have engaged in a lot of studies on plant fiber-reinforced cement-based gel composites (PFRCCs). Based on these studies, the chemical [...] Read more.
Plant fibers (PFs) have been increasingly employed in cement-based gel composites (CCs) on account of their excellent mechanical properties, toughness and sustainability. Researchers have engaged in a lot of studies on plant fiber-reinforced cement-based gel composites (PFRCCs). Based on these studies, the chemical components and mechanical characteristics of PFs are summed up in this review. In addition, the modification methods for matrices and PFs are also discussed. The mechanical properties of PFRCCs, including static and dynamic properties, are reviewed. Predictive equations for the mechanical properties of PFRCCs are summarized in this paper. In the end, the characteristics of the interface transition zones between PFs and CCs are analyzed. According to the results of previous studies, the addition of PFs can enhance the flexural strength and tensile strength of CCs, but it can have an uncertain effect on compressive strength. The elastic modulus and fracture behavior of PFRCCs increases with the addition of PFs. At the same time, modification methods have been proved to be useful in reducing the degradation of PFs in CCs. Generally speaking, PFRCCs are new building materials which have extensive application prospects. The aim of this review is to help researchers understand the mechanical properties of PFRCCs and to promote the application of PFRCCs in future projects. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

24 pages, 6987 KiB  
Review
Advances in Carbon-Based Aerogels for CO2 Capture: Fundamental Design Strategies and Technological Progress
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Gazi A. K. M. Rafiqul Bari
Gels 2025, 11(5), 361; https://doi.org/10.3390/gels11050361 - 14 May 2025
Viewed by 381
Abstract
Carbon-based aerogels have garnered significant attention for CO2 capture owing to their low-cost precursors, tunable structures, and high porosity. Their performance in CO2 adsorption is intricately linked to their microstructural and textural features, including pore size distribution, surface area, and surface [...] Read more.
Carbon-based aerogels have garnered significant attention for CO2 capture owing to their low-cost precursors, tunable structures, and high porosity. Their performance in CO2 adsorption is intricately linked to their microstructural and textural features, including pore size distribution, surface area, and surface chemistry. Micropores (<2 nm) are particularly effective due to their size compatibility with CO2 molecules, while surface functional groups enhance adsorption through hydrogen bonding and electrostatic interactions. Strategic design approaches have focused on tailoring these properties to optimize CO2 uptake under realistic conditions. This review provides a comprehensive overview of recent advancements in the structural engineering of carbon aerogels, emphasizing the role of hierarchical porosity and heteroatom doping (nitrogen, oxygen, sulfur, etc.) in enhancing adsorption capacity and selectivity. Experimental and theoretical studies have highlighted how the synergistic control of microstructure and surface chemistry leads to superior adsorption performance. Furthermore, this review identifies current challenges, such as limited structural stability and insufficient mechanistic understanding, which hinder further progress. Future research directions are proposed, including advanced pore architecture control, functional group engineering, and the integration of in situ characterization techniques. Overall, this review serves as a guide for the rational design of next-generation carbon-based aerogels tailored for efficient and scalable CO2 capture technologies. Full article
(This article belongs to the Special Issue Aerogels: Recent Progress in Novel Applications)
Show Figures

Figure 1

1 pages, 219 KiB  
Correction
Correction: Ramírez-Chavarría et al. Study of Polyvinyl Alcohol Hydrogels Applying Physical-Mechanical Methods and Dynamic Models of Photoacoustic Signals. Gels 2023, 9, 727
by Roberto G. Ramírez-Chavarría, Argelia Pérez-Pacheco, Emiliano Terán and Rosa M. Quispe-Siccha
Gels 2025, 11(5), 360; https://doi.org/10.3390/gels11050360 - 14 May 2025
Viewed by 114
Abstract
In the original publication [...] Full article
19 pages, 1355 KiB  
Review
Recent Advances in the Utilization of Cellulose from Food Processing Byproducts for the Generation of Aerogels
by Jaspreet Kaur and Ali Ubeyitogullari
Gels 2025, 11(5), 359; https://doi.org/10.3390/gels11050359 - 14 May 2025
Viewed by 412
Abstract
Aerogels have garnered significant attention from the scientific community due to their extraordinary properties, including low density, high porosity, low thermal conductivity, and large surface area. These properties make them interesting candidates for diverse applications such as thermal insulation, drug delivery, catalysis, fillers, [...] Read more.
Aerogels have garnered significant attention from the scientific community due to their extraordinary properties, including low density, high porosity, low thermal conductivity, and large surface area. These properties make them interesting candidates for diverse applications such as thermal insulation, drug delivery, catalysis, fillers, tissue engineering, and biosensors. However, the production of conventional aerogels is often constrained by environmental issues, the high cost of raw materials, and energy-intensive fabrication methods. In contrast, cellulose aerogels have emerged as promising sustainable materials with the potential to transform various low-cost waste products into high-value biomaterials. Food-processing byproducts provide numerous untapped opportunities for the generation of aerogels. This review highlights the recent advancements in the development of cellulose aerogels derived from food processing byproducts, emphasizing their role in contributing to the circular bioeconomy. Specifically, this study focuses on the fabrication processes of cellulose aerogels from food processing byproducts, which would otherwise go to waste. The review discusses the extraction, gel formation, drying, and functionalization processes for cellulose aerogel formation, along with the environmental and economic benefits of utilizing these waste streams. Full article
(This article belongs to the Special Issue Aerogels: Promising Materials for Environmental Applications)
Show Figures

Graphical abstract

26 pages, 2841 KiB  
Review
Modified Phospholipid Vesicular Gel for Transdermal Drug Delivery: The Influence of Glycerin and/or Ethanol on Their Lipid Bilayer Fluidity and Penetration Characteristics
by Marwa H. Abdallah, Mona M. Shahien, Hemat El-Sayed El-Horany and Enas Haridy Ahmed
Gels 2025, 11(5), 358; https://doi.org/10.3390/gels11050358 - 13 May 2025
Viewed by 318
Abstract
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated [...] Read more.
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated with oral administration, and the elimination of the need for repeated doses. Nonetheless, the skin barrier obstructs the penetration of drugs, hence affecting its therapeutic efficacy. Carriers with phospholipid soft vesicles comprise a novel strategy used to augment drug delivery into the skin and boost therapeutic efficacy. These vesicles encompass chemicals that possess the ability to fluidize phospholipid bilayers, producing a pliable vesicle that facilitates penetration into the deeper layers of the skin. Phospholipid-based vesicular carriers have been extensively studied for improved drug delivery through dermal and transdermal pathways. Traditional liposomes are limited to the stratum corneum of the skin and do not penetrate the deeper layers. Ethosomes, glycerosomes, and glycethosomes are nanovesicular systems composed of ethanol, glycerol, or a combination of ethanol and glycerol, respectively. Their composition produce pliable vesicles by fluidizing the phospholipid bilayers, facilitating deeper penetration into the skin. This article examines the impact of ethanol and glycerol on phospholipid vesicles, and outlines their respective manufacturing techniques. Thus far, these discrepancies have not been analyzed comparatively. The review details several active compounds integrated into these nanovesicular gel systems and examined through in vitro, in vivo, or clinical human trials involving compositions with various active molecules for the treatment of various dermatological conditions. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

24 pages, 5625 KiB  
Review
A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization
by Zhenyu Zhu, Wanlin Zhang, Hongyan Huang, Wenjing Li, Hao Ling and Hao Zhang
Gels 2025, 11(5), 357; https://doi.org/10.3390/gels11050357 - 13 May 2025
Viewed by 400
Abstract
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so [...] Read more.
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so on. However, the degradation of the silica aerogel’s nanoporous structure at high temperatures seriously restricts their practical applications. Through a comprehensive review of the high-temperature structural evolution and sintering mechanisms of silica aerogels, this paper introduces two strategies to enhance their thermal stability, including heteroatom doping and surface heterogeneous structure construction. In particular, atomic layer deposition (ALD) of ultra-thin coatings on silica aerogel holds significant potential for enhancing thermal stability, while preserving its ultra-low thermal conductivity. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

19 pages, 5545 KiB  
Article
Core-Shell Hydrogels with Tunable Stiffness for Breast Cancer Tissue Modelling in an Organ-on-Chip System
by Ilaria Parodi, Maria Elisabetta Federica Palamà, Donatella Di Lisa, Laura Pastorino, Alberto Lagazzo, Fabio Falleroni, Maurizio Aiello, Marco Massimo Fato and Silvia Scaglione
Gels 2025, 11(5), 356; https://doi.org/10.3390/gels11050356 - 13 May 2025
Viewed by 346
Abstract
Breast cancer remains the most common malignancy in women, yet, many patients fail to achieve full remission despite significant advancements. This is largely due to tumour heterogeneity and the limitations of current experimental models in accurately replicating the complexity of in vivo tumour [...] Read more.
Breast cancer remains the most common malignancy in women, yet, many patients fail to achieve full remission despite significant advancements. This is largely due to tumour heterogeneity and the limitations of current experimental models in accurately replicating the complexity of in vivo tumour environment. In this study, we present a compartmentalised alginate hydrogel platform as an innovative in vitro tool for three-dimensional breast cancer cell culture. To mimic the heterogeneity of tumour tissues, we developed a core–shell structure (3.5% alginate core and 2% alginate shell) that mimic the stiffer, denser internal tumour matrix. The human triple-negative breast cancer cell line (MDA-MB-231) was embedded in core–shell alginate gels to assess viability, proliferation and hypoxic activity. Over one week, good cells proliferation and viability was observed, especially in the softer shell. Interestingly, cells within the stiffer core were more positive to hypoxic marker expression (HIF-1α) than those embedded in the shell, confirming the presence of a hypoxic niche, as observed in vivo. When cultured in the MIVO® milli fluidic organ-on-chip resembling the physiological fluid flow conditions, cancer cells viability became comparable between core and shell hydrogel area, emphasising the importance of the fluid flow in nutrients diffusion within three-dimensional matrixes. Cisplatin chemotherapy treatment further highlighted these differences: under static conditions, cancer cell death was prominent in the softer shell, whereas cells in the stiffer core remained resistant to cisplatin. Conversely, drug diffusion was more homogeneous in the core–shell structured treated in the organ-on-chip, leading to a uniform reduction in cell viability. These findings suggest that integrating a compartmentalised core–shell cell laden alginate model with the millifluidic organ on chip offers a more physiologically relevant experimental approach to deepening cancer cell behaviour and drug response. Full article
Show Figures

Graphical abstract

21 pages, 9758 KiB  
Article
Bionanocomposite Four-Channel Biosensor for Rapid and Convenient Monitoring of Glucose, Lactate, Ethanol and Starch
by Anna Kharkova, Lyubov Kuznetsova, Roman Perchikov, Maria Gertsen, Pavel Melnikov, Nikolay Zaitsev, Jun Zhang and Vyacheslav Arlyapov
Gels 2025, 11(5), 355; https://doi.org/10.3390/gels11050355 - 12 May 2025
Viewed by 357
Abstract
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine [...] Read more.
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine mediators to a biocompatible protein hydrogel, enhancing the packaging of the enzyme. Glucose oxidase (GOx), alcohol oxidase (AOx) and lactate oxidase (LOx) were used as biological materials, as well as a mixture of GOx with γ-amylase (Am). Redox gels were synthesized from bovine serum albumin (BSA) and phenazine derivatives. It was shown that a neutral red-based redox gel combined with single-walled carbon nanotubes is more promising than other substrates for enzyme immobilization. The lower limit of quantification for glucose, ethanol, lactate and starch using these systems is 0.035 mM, 2.3 mM, 15 mM and 2 mg/L, respectively. Biosensors were used to analyze the content of these substances in alcoholic, kvass and fermentation mass. Statistical analysis of the results showed that the values of glucose, ethanol, lactic acid and starch determined using biosensors and obtained by reference methods differ insignificantly. A set of biosensors developed on the basis of specifically selected enzymes is effective for controlling biotechnological processes and can be used as an alternative to classical analytical methods. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Figure 1

22 pages, 10357 KiB  
Article
Development of an Asymmetric Alginate Hydrogel Loaded with S-Nitrosoglutathione and Its Application in Chronic Wound Healing
by Jiafeng Tan, Minna Wen, Yifan Zhang, Shuyun Zhang, Min Fang, Junxiao Xiang, Xinshuo Liu, Jinhuan Tian, Lu Lu, Binghong Luo, Changren Zhou and Lihua Li
Gels 2025, 11(5), 354; https://doi.org/10.3390/gels11050354 - 12 May 2025
Viewed by 354
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays a critical role in wound healing. However, the gaseous nature, short half-life, and low stability of NO present challenges for its clinical application. To address these issues, this study introduces an innovative S-nitrosoglutathione [...] Read more.
Nitric oxide (NO) is an endogenous signaling molecule that plays a critical role in wound healing. However, the gaseous nature, short half-life, and low stability of NO present challenges for its clinical application. To address these issues, this study introduces an innovative S-nitrosoglutathione (GSNO)-loaded asymmetric alginate (SA) hydrogel (GSNO-SA) as a novel solution for treating infected chronic wounds. The hydrogel is designed with a layer-by-layer melting-permeation crosslinking approach, forming a dense upper layer and a sparse lower layer structure, effectively promoting exudate management while delaying NO release. The results demonstrate that the GSNO-SA hydrogel extends NO release for up to 48 h, exhibits rapid exudate absorption (72.3 ± 1.5% equilibrium swelling after 5 min), significant antibacterial activity (over 90% antibacterial rate against E. coli and S. aureus), and anti-inflammatory effects (marked reduction in TNF-α expression), and promotes angiogenesis (90.00 ± 5.92% migration rate at 48 h). Additionally, animal studies show that the GSNO-SA hydrogel accelerates wound healing, achieving a 99.2 ± 0.1% closure rate at 14 days. Histological and immunohistochemical evaluations further confirm its ability to regulate inflammation (13.34-fold upregulation of CD163) and promote angiogenesis (3.02-fold upregulation of α-SMA). Theoretically, this asymmetric design provides a novel strategy for developing exudate-managing dressings by integrating controlled NO release with hierarchical pore structures. Full article
Show Figures

Figure 1

19 pages, 1485 KiB  
Article
Polydextrose Reduces the Hardness of Cooked Chinese Sea Rice Through Intermolecular Interactions
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(5), 353; https://doi.org/10.3390/gels11050353 - 11 May 2025
Viewed by 249
Abstract
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) [...] Read more.
Supposing that polydextrose molecules could improve the hard texture of cooked rice based on intermolecular interactions and forming a hydrogel-like network structure, this study added polydextrose (moisture content 1%) at 0%, 3%, 5%, 7%, and 10% concentrations to rice (cv. Super Qianhao, SQ) milled from a 3-year-stored paddy and compared their cooking properties, their cooked rice texture, the pasting and thermal properties of their flours, the thermo-mechanical characteristics of their flour dough, and the microstructure of their cooked rice grains with a newly harvested japonica rice cv. Nanjing 5 (NJ5). With an increase in polydextrose addition, a General Linear Model (GLM) analysis showed that the cooking times of two japonica rice varieties was significantly (p < 0.05) reduced, and their gruel solid loss increased. Adding polydextrose significantly reduced the hardness, springiness, gumminess, and chewiness of cooked rice and increased the cohesiveness and resilience. By increasing polydextrose addition in rice flours, the peak, breakdown, and setback viscosities of pasting were significantly decreased, but the pasting temperature and peak time increased. Adding polydextrose reduced the gelatinization enthalpy and increased gelatinization peak temperature of the rice flour and significantly decreased the ageing of the retrograded rice flour paste stored at 4 °C when measured at 21 days. A Mixolab test showed that the stability time of the rice flour dough increased, and the protein weakening, gelatinization peak torque, and starch breakdown, as well as the starch setback and the speeds of heating, gelatinization, and enzymatic degradation all decreased. The addition of 5–10% polydextrose significantly reduced the amorphous and crystalline regions of starch and relative percent of β-sheet in cooked rice grains, with an increase in the relative percent of α-helix, random coil, and β-turn. Observing the microstructure, we confirmed that polydextrose addition facilitated the formation of a soft and evenly swollen honeycomb structure of the cooked rice. These results suggest that polydextrose might decrease the cooked rice hardness and improve the eating quality of sea rice through intermolecular interactions. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

20 pages, 22930 KiB  
Article
Poly(vinyl alcohol)/Gentamicin and Poly(vinyl alcohol)/Chitosan/Gentamicin: Promising Materials for Rapid Burn Wound Healing
by Anja Nikolić, Ivan Milošević, Ana Janković, Bogomir Bolka Prokić, Emilija Nićković, Danica Marković, Milena Stevanović, Maja Vukašinović-Sekulić, Vesna Mišković-Stanković and Tijana Lužajić Božinovski
Gels 2025, 11(5), 352; https://doi.org/10.3390/gels11050352 - 10 May 2025
Viewed by 240
Abstract
Scar formation and delayed wound healing pose significant challenges in treating skin injuries, especially in severe cases like burns and diabetic wounds. This study investigates the effectiveness of novel Poly(vinyl alcohol) (PVA)/Gentamicin (Gent) and PVA/Chitosan (CHI)/Gent hydrogels in promoting healing of second-degree burn [...] Read more.
Scar formation and delayed wound healing pose significant challenges in treating skin injuries, especially in severe cases like burns and diabetic wounds. This study investigates the effectiveness of novel Poly(vinyl alcohol) (PVA)/Gentamicin (Gent) and PVA/Chitosan (CHI)/Gent hydrogels in promoting healing of second-degree burn wounds in a rat model. Following in vitro testing, these hydrogels were deemed non-toxic and suitable for in vivo analysis. Clinical evaluations were conducted on the 3rd, 7th, 14th, and 21st post-injury days, assessing parameters such as blistering, edema, redness, crust, bleeding, secretion, scar tissue formation, and wound contraction percentage. Histological analyses focused on re-epithelization and dermal evaluation at specific time points. Results showed that both hydrogels significantly reduced inflammation, particularly redness, by the 14th day and improved re-epithelization, with the PVA/CHI/Gent group outperforming on the 14th day and the PVA/Gent group excelling on the 21st day. Histological findings indicated increased fibroblast proliferation and collagen deposition in treated groups, suggesting enhanced dermal healing. The PVA/CHI/Gent hydrogel demonstrated notable antibacterial properties, likely due to the synergistic effects of CHI and Gent, leading to reduced inflammation and edema. Overall, both hydrogels show promise as effective wound dressings, facilitating faster healing and improved tissue recovery in burn injuries. This study supports the use of biomimetic scaffolds for enhanced wound management in clinical practices. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Graphical abstract

9 pages, 270 KiB  
Editorial
Gels: Synthesis, Characterization and Applications in High Performance Chemistry (2nd Edition)
by Viorel-Puiu Paun and Maria-Alexandra Paun
Gels 2025, 11(5), 351; https://doi.org/10.3390/gels11050351 - 10 May 2025
Viewed by 224
Abstract
This Editorial of the Special Issue proposed and managed by Prof [...] Full article
(This article belongs to the Section Gel Applications)
32 pages, 14332 KiB  
Article
Research and Development of a High-Temperature-Resistant, Gel-Breaking Chemical Gel Plugging Agent and Evaluation of Its Physicochemical Properties
by Junwei Fang, Jinsheng Sun, Xingen Feng, Lijuan Pan, Yingrui Bai and Jingbin Yang
Gels 2025, 11(5), 350; https://doi.org/10.3390/gels11050350 - 8 May 2025
Viewed by 259
Abstract
Gas channeling phenomena in carbonate fracture-vuggy reservoirs frequently occur, primarily in the form of negative pressure gas channeling and displacement gas channeling, with the possibility of mutual conversion between the two. This is accompanied by the risk of hydrogen sulfide (H2S) [...] Read more.
Gas channeling phenomena in carbonate fracture-vuggy reservoirs frequently occur, primarily in the form of negative pressure gas channeling and displacement gas channeling, with the possibility of mutual conversion between the two. This is accompanied by the risk of hydrogen sulfide (H2S) release from the reservoir, which poses significant challenges to controlling safety. Currently, liquid bridging and gel plugging technologies are effective methods for mitigating complex issues such as downhole overflow, fluid loss, and heavy oil backflow. This paper focuses on the development and optimization of key treatment agents, including high-temperature-resistant polymers and crosslinking agents, to formulate a high-temperature chemical gel plugging agent. A gel-breaking, high-strength colloidal chemical gel plugging agent system capable of withstanding temperatures up to 150 °C was developed, and it has an apparent viscosity of about 7500 mPa·s, an energy storage modulus and a loss modulus of 51 Pa and 6 Pa, respectively, after gel formation at elevated temperatures, and an apparent viscosity retention rate of the gel of greater than 82% after aging for 9 d at a temperature of 150 °C. This system forms a stable gas isolation barrier in the wellbore, with performance remaining stable after 7 to 12 days of aging, and the degradation rate reaches 99.8% after 24 h at 150 °C. This technology is of significant importance in solving complex issues such as overflow, fluid loss, and heavy oil backflow in gas injection and recovery wells in high-temperature, high-pressure reservoir conditions. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Graphical abstract

23 pages, 16269 KiB  
Article
Development of Eco-Friendly Date Palm Biomass-Based Hydrogels for Enhanced Water Retention in Soil
by Faisal S. Alsubaie, Mouyed Srdar, Osama Fayraa, Faris M. Alsulami, Feras Omran and Khalid A. Alamry
Gels 2025, 11(5), 349; https://doi.org/10.3390/gels11050349 - 8 May 2025
Viewed by 493
Abstract
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. [...] Read more.
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. In this study, renewable and cost-effective HGs were prepared from all-lignocellulose fibers of date palm biomass after carboxymethylation followed by citric acid (CA) crosslinking. HGs showed high equilibrium swelling capacity (EWC%), even in salty media, whereas purified HGs showed about 700–400 EWC% in deionized water. Further, HGs’ effect on germination was studied on Chico III tomato, mint, Basilico red, and chia seeds. The results revealed that HGs enhanced the soil properties, with taller and healthier plants observed in HG-amended soil. FTIR, thermal analysis, and microscope imaging were utilized to evaluate HGs’ and raw materials’ characteristics. The findings in this study support the idea that all-lignocellulose could be used for HG production without separation. Full article
Show Figures

Graphical abstract

13 pages, 3042 KiB  
Article
A Mathematical Model of Myosin Heavy Chain Dynamics in the Disintegration of Golden Threadfin Bream Nemipterus virgatus Surimi Gel
by Ryoko Nakamizo, Tatsuya Hayashi, Yuri Kominami and Hideki Ushio
Gels 2025, 11(5), 348; https://doi.org/10.3390/gels11050348 - 8 May 2025
Viewed by 245
Abstract
Surimi gel, a type of hydrocolloidal food, is formed through the gelation of fish meat proteins. Myosin heavy chain (MHC), a key myofibrillar protein, plays a crucial role in the formation of the gel network via both transglutaminase (TGase)-catalyzed and non-enzymatic polymerization. Gel [...] Read more.
Surimi gel, a type of hydrocolloidal food, is formed through the gelation of fish meat proteins. Myosin heavy chain (MHC), a key myofibrillar protein, plays a crucial role in the formation of the gel network via both transglutaminase (TGase)-catalyzed and non-enzymatic polymerization. Gel disintegration in surimi is primarily attributed to the proteolytic degradation of MHC. This study focused on golden threadfin bream Nemipterus virgatus, a species characterized by low TGase activity and high protease activity at elevated temperatures. We investigated the competition between non-enzymatic polymerization and proteolytic degradation of MHC and their effects on gel mechanical properties using a mathematical model. A mathematical model based on kinetic reactions accurately reflected the changes in MHC observed through SDS-PAGE analysis during N. virgatus gel disintegration. Our results indicate that not only unpolymerized but also polymerized MHC was significantly degraded, which substantially contributed to the reduction in the mechanical properties of the N. virgatus surimi. Mathematically understanding the dynamics of MHC in surimi during heating helps promote the utilization of noncommercial fish species for surimi processing by enabling better control over surimi gel properties. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop