Advanced Aerogels: From Design to Application

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 3687

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical Engineering, University of Castilla–La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain
Interests: thermochemical processes; aerogel; phase change materials; catalyst

Special Issue Information

Dear Colleagues,

Aerogels are a class of highly porous materials with unique properties such as low density, high surface area, and high thermal insulation. These materials have gained significant attention in various fields including energy storage, environmental remediation, and aerospace due to their exceptional properties. In recent years, significant advances have been made in the design and application of aerogels, leading to the development of advanced aerogel materials with enhanced properties and functionalities.

Another important aspect of advancing aerogel technology is the development of novel composite materials that combine aerogels with other functional materials to create materials with enhanced properties. For example, aerogel composites with carbon nanotubes have been shown to exhibit superior mechanical strength and conductivity, making them ideal for applications in structural materials and electronics. Overall, the advancements in aerogel technology have opened up new possibilities for the design and application of these unique materials.

This Special Issue, entitled “Advanced Aerogels: From Design to Application”, aims to highlight recent advances in research on aerogel materials. We welcome submissions covering key aspects of aerogel composites from all facets, including fundamental studies and application-focused research.

Prof. Dr. María Luz Sánchez Silva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aerogels
  • aerogel composites
  • synthesis and characterization
  • physicochemical properties
  • application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3212 KiB  
Article
Facile Hydrothermal Assisted Basic Catalyzed Sol Gel Synthesis for Mesoporous Silica Nanoparticle from Alkali Silicate Solutions Using Dual Structural Templates
by Khaled M. AlMohaimadi, Hassan M. Albishri, Khaled A. Thumayri, Awadh O. AlSuhaimi, Yassin T. H. Mehdar and Belal H. M. Hussein
Gels 2024, 10(12), 839; https://doi.org/10.3390/gels10120839 - 19 Dec 2024
Cited by 1 | Viewed by 1240
Abstract
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride [...] Read more.
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m2/g). The MSN materials were characterized by FTIR, Thermogravimetric (TG), Nitrogen adsorption and desorption and Field emission scanning electron microscopic analysis (FESEM). The materials feasibility as solid phase adsorbent has been demonstrated using cationic dyes; Rhodamine B (RB) and methylene blue (MB) as models. Due to the large surface area and variable pore width, the adsorption behaviors toward cationic dyes showed outstanding removal efficiency and a rapid sorption rate. The adsorption isotherms of RB and MB were well-fitted to the Langmuir and Freundlich models, while the kinetic behaviours adhered closely to the pseudo-second-order pattern. The maximum adsorption capacities were determined to be 256 mg/g for MB and 110.3 mg/g for RB. The findings suggest that MSNs hold significant potential as solid-phase nanosorbents for the extraction and purification of dye pollutants, particularly in the analysis and treatment of effluents containing cationic dyes. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Figure 1

16 pages, 9336 KiB  
Article
Enhancing Flame-Retardant Properties of Polyurethane Aerogels Doped with Silica-Based Particles
by Esther Pinilla-Peñalver, Óscar del Fresno, Darío Cantero, Adriana Moreira, Filipa Gomes, Francisca Miranda, Marcelo Oliveira, Mariana Ornelas, Luz Sánchez-Silva and Amaya Romero
Gels 2024, 10(7), 465; https://doi.org/10.3390/gels10070465 - 16 Jul 2024
Cited by 3 | Viewed by 1569
Abstract
In this work, polyurethane (PUR) aerogels doped with different SiO2 particles, derived from a renewable source, were successfully synthesized, and the effects of SiO2 content on the properties of PUR aerogels were investigated. Specifically, three types of SiO2-based particles [...] Read more.
In this work, polyurethane (PUR) aerogels doped with different SiO2 particles, derived from a renewable source, were successfully synthesized, and the effects of SiO2 content on the properties of PUR aerogels were investigated. Specifically, three types of SiO2-based particles obtained from rice husk through different procedures were evaluated to enhance the thermal stability of the composites with special attention given to flame-retardant properties. With the optimal SiO2 particles, obtained through acid digestion, the influence of their content between 0.5 and 3 wt.% on the physicochemical characteristics of the synthesized aerogels was thoroughly examined. The results showed that increasing the doping agent content improved the lightness, thermal stability, and flame-retardant properties of the resulting PUR aerogels, with the best performance observed at a 2 wt.% doping level. The doped aerogel samples with non-modified SiO2 particles significantly enhanced the fire safety performance of the material, exhibiting up to an eightfold increase in flame retardancy. However, modification of the SiO2 particles with phytic acid did not slow down the combustion velocity when filling the aerogels. This research highlights the promising potential of doped PUR/SiO2 aerogels in advancing materials science and engineering applications for withstanding high temperatures and improving fire safety. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

Review

Jump to: Research

33 pages, 6047 KiB  
Review
Advanced Aerogels for Water Remediation: Unraveling Their Potential in Fats, Oils, and Grease Sorption—A Comprehensive Review
by Adina-Elena Segneanu, Dumitru-Daniel Herea, Gabriela Buema, Ionela Amalia Bradu, Melinda Cepan and Ioan Grozescu
Gels 2025, 11(4), 268; https://doi.org/10.3390/gels11040268 - 4 Apr 2025
Viewed by 443
Abstract
The increasing contamination of water bodies by fats, oils, and grease (FOG) poses significant environmental and operational challenges, necessitating the development of advanced remediation technologies. Aerogels, with their ultra-lightweight structure, high porosity, and tunable surface chemistry, have emerged as promising sorbents for efficient [...] Read more.
The increasing contamination of water bodies by fats, oils, and grease (FOG) poses significant environmental and operational challenges, necessitating the development of advanced remediation technologies. Aerogels, with their ultra-lightweight structure, high porosity, and tunable surface chemistry, have emerged as promising sorbents for efficient FOG removal. This comprehensive review explores recent advancements in aerogel materials, highlighting novel formulations, functional modifications, and nanotechnology integrations that enhance sorption capacity and reusability. It delves into the mechanistic aspects of FOG sorption, providing insights into how surface interactions and structural properties influence performance. The sustainability of aerogels is emphasized, particularly the use of bio-based and eco-friendly materials that align with green remediation strategies. A comparative analysis with conventional sorbents underscores the advantages of aerogels in terms of efficiency, environmental impact, and cost-effectiveness. Furthermore, real-world applications, including oil spill cleanup and wastewater treatment, are discussed alongside challenges, regulatory considerations, and future research directions. By offering a holistic perspective on the potential of aerogels in water remediation, this review serves as a valuable resource for researchers and industry professionals seeking innovative and sustainable solutions for FOG management. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

Back to TopTop