Recent Advances in the Utilization of Cellulose from Food Processing Byproducts for the Generation of Aerogels
Abstract
:1. Introduction
2. Aerogels
3. Cellulose Aerogels
3.1. Overview of Cellulose and Its Extraction Process
3.2. Properties and Classification of Cellulose Aerogels
3.3. Synthesis of Cellulose Aerogels
3.4. Factors Influencing Properties and Structure of Cellulose Aerogels
4. Cellulose Aerogels from Food Processing Byproducts
Source | Cellulose Extraction Method | Aerogel/Cryogel Preparation Method | Physical Properties | Potential/Target Application | Reference |
---|---|---|---|---|---|
Spent ground coffee | - | Hot water rinsing → Ethanol/water solvent exchange → SC-CO2 drying |
| Wastewater treatment, food packaging and thermal insulation | [7] |
Apple pomace | - | Anhydrous ethanol mixing → Ethanol/water solvent exchange → SC-CO2 drying |
| Potential application in aq. media | [7] |
Arundo donax waste (leaves and stems) | Soxhlet treatment → NaClO2 → KOH treatment | Hot water extraction and ultrasound assisted treatment → Freeze drying |
| Superabsorbent pads to preserve meat quality | [4] |
Hemp stems | Soxhlet treatment → NaClO2 → KOH treatment | Citric acid gelation → Absolute ethanol solvent exchange → SC-CO2 drying |
| Food packaging | [8] |
Pomelo peels | NaOH → Sodium acetate buffer and NaClO2 → H2SO4 | Cellulose + graphene oxide → Gelatinization → Lypholization |
| Organic dye removal (Waste-water treatment) | [80] |
Posidonia oceanica waste | Soxhlet treatment → NaClO2 → KOH | Cellulose → H2SO4 → Homogenization → Freeze drying |
| Bioactive adsorbing pads in packaged fresh foods and preserving the quality of red meat | [81] |
Grape stalks | Soxhlet treatment → NaClO2 → KOH | Cellulose + Salep solution → Homogenization → Freeze drying |
| Intelligent Meat packaging | [3] |
Coir fibers | NaOH treatment | Fiber pulp → NaOH/Urea solution → Gelation → Ethanol solvent exchange → Freeze drying |
| Sorption application (Absorbent for liquid spill and dye removal), Thermal insulation | [85] |
Sugarcane bagasse | NaOH → H2O2 | Pulp + polyvinyl alcohol solution → Magnetic Stirring → Glyoxal → Homogenization → Freeze drying |
| Thermal, acoustic insulator, oil adsorbent | [84] |
Barley straw |
| Pulp + polyvinyl alcohol solution → Mixing → Sonication → Freeze drying |
| Oil spillage cleanup, dye removal | [48] |
Hemp stalk | H2SO4 dipping → Steam explosion in NaOH → H2O2 bleaching → HCl hydrolysis → Homogenization | Carboxymethyl cellulose solution + citric acid → Gelation → Deionized water washing → Freeze drying → ADP and urea encapsulation |
| Controlled release of fertilizers | [83] |
Wheat straw | Soxhlet Extraction → NaClO2 and glacial acetic acid → NaOH → HCl | Cellulose pulp + NaOH/PEG → HCl + distilled water + butanol → Freeze drying |
| Oil and dye absorbents | [82] |
Lupin hulls | Supercritical water treatment → NaClO2 | Cellulose fibers → Ultrasonication → SC-CO2 drying/Freeze drying |
| Food packaging, tissue engineering scaffolds | [62] |
Sugarcane bagasse | NaOH → NaClO2 + glacial acetic acid | Pulp → H2SO4 → Ultrasonication → Sugarcane bagasse cellulose nanocrystals + chitosan from crustacean shells → Homogenization → Freeze drying |
| Sustainable CO2 capture | [89] |
Pineapple peel | Fermentation by Acetobacter xylinum under aerobic conditions → NaOH | Cellulose fibers + water → Grinding → Freeze drying |
| Wastewater treatment | [90] |
Pineapple fibers | - | Blending → Polyvinyl alcohol crosslinking → Pre-freezing → Freeze drying |
| Thermal and acoustic insulation | [91] |
5. Environmental and Economic Benefits of Utilizing Food Processing Byproducts for Producing Cellulose Aerogels
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, L.Y.; Weng, Y.X.; Wang, Y.Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, S.; Sagardui, A.; Huitink, D.; Chen, J.; Ubeyitogullari, A. Cellulose-Starch Composite Aerogels as Thermal Superinsulating Materials. ACS Omega 2024, 9, 49205–49213. [Google Scholar] [CrossRef]
- Mirmoeini, S.S.; Moradi, M.; Tajik, H.; Almasi, H.; Gama, F.M. Cellulose/Salep-Based Intelligent Aerogel with Red Grape Anthocyanins: Preparation, Characterization and Application in Beef Packaging. Food Chem. 2023, 425, 136493. [Google Scholar] [CrossRef] [PubMed]
- Fontes-Candia, C.; Erboz, E.; Martínez-Abad, A.; López-Rubio, A.; Martínez-Sanz, M. Superabsorbent Food Packaging Bioactive Cellulose-Based Aerogels from Arundo Donax Waste Biomass. Food Hydrocoll. 2019, 96, 151–160. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; He, B.; Wang, S.; Kong, F. Synthesis of Cellulose Aerogels as Promising Carriers for Drug Delivery: A Review. Cellulose 2021, 28, 2697–2714. [Google Scholar] [CrossRef]
- Zaman, A.; Huang, F.; Jiang, M.; Wei, W.; Zhou, Z. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy Built Environ. 2020, 1, 60–76. [Google Scholar] [CrossRef]
- Gaggero, G.; Subrahmanyam, R.P.; Schroeter, B.; Gurikov, P.; Delucchi, M. Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization. Gels 2022, 8, 691. [Google Scholar] [CrossRef]
- Cabrera-Villamizar, L.; Pereira, J.F.; Castanedo, M.; López-Rubio, A.; Fabra, M.J. Hemp Cellulose-Based Aerogels and Cryogels: From Waste Biomass to Sustainable Absorbent Pads for Food Preservation. Carbohydr. Polym. 2025, 348, 122887. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Lee, D.; Shin, Y.; Park, J. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook. Polymers 2021, 13, 1347. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Ahmadzadeh, S.; Kandhola, G.; Kim, J.W. Polysaccharide-Based Porous Biopolymers for Enhanced Bioaccessibility and Bioavailability of Bioactive Food Compounds: Challenges, Advances, and Opportunities. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4610–4639. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Ciftci, O.N. Formation of Nanoporous Aerogels from Wheat Starch. Carbohydr. Polym. 2016, 147, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Dhua, S.; Gupta, A.K.; Mishra, P. Aerogel: Functional Emerging Material for Potential Application in Food: A Review. Food Bioprocess Technol. 2022, 15, 2396–2421. [Google Scholar] [CrossRef]
- Budtova, T. Cellulose II Aerogels: A Review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Mikkonen, K.S.; Parikka, K.; Ghafar, A.; Tenkanen, M. Prospects of Polysaccharide Aerogels as Modern Advanced Food Materials. Trends Food Sci. Technol. 2013, 34, 124–136. [Google Scholar] [CrossRef]
- Dhua, S.; Mishra, P. Development of Highly Reusable, Mechanically Stable Corn Starch-Based Aerogel Using Glycerol for Potential Application in the Storage of Fresh Spinach Leaves. Int. J. Biol. Macromol. 2023, 242, 125102. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Ubeyitogullari, A. Generation of Porous Starch Beads via a 3D Food Printer: The Effects of Amylose Content and Drying Technique. Carbohydr. Polym. 2023, 301, 120296. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.D.; Goñi, M.L.; Gañán, N.A. Effect of Supercritical CO2 Drying Variables and Gel Composition on the Textural Properties of Cellulose Aerogels. J. Supercrit. Fluids 2025, 215, 106414. [Google Scholar] [CrossRef]
- Khan, N.R.; Sharmin, T.; Bin Rashid, A. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon 2024, 10, e23102. [Google Scholar] [CrossRef]
- Bisson, A.; Rigacci, A.; Lecomte, D.; Rodier, E.; Achard, P. Drying of Silica Gels to Obtain Aerogels: Phenomenology and Basic Techniques. Dry. Technol. 2003, 21, 593–628. [Google Scholar] [CrossRef]
- Lee, K.H.; Arshad, Z.; Dahshan, A.; Alshareef, M.; Alsulami, Q.A.; Bibi, A.; Lee, E.J.; Nawaz, M.; Zubair, U.; Javid, A. Porous Aerogel Structures as Promising Materials for Photocatalysis, Thermal Insulation Textiles, and Technical Applications: A Review. Catalysts 2023, 13, 1286. [Google Scholar] [CrossRef]
- Aerogel Market Size & Forecast [Latest]. Available online: https://www.marketsandmarkets.com/Market-Reports/aerogel-market-714.html# (accessed on 9 March 2025).
- Smirnova, I.; Gurikov, P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Ferreira-Gonçalves, T.; Iglesias-Mejuto, A.; Linhares, T.; Coelho, J.M.P.; Vieira, P.; Faísca, P.; Catarino, J.; Pinto, P.; Ferreira, D.; Ferreira, H.A.; et al. Biological Thermal Performance of Organic and Inorganic Aerogels as Patches for Photothermal Therapy. Gels 2022, 8, 485. [Google Scholar] [CrossRef]
- Bin Rashid, A.; Shishir, S.I.; Mahfuz, M.A.; Hossain, M.T.; Hoque, M.E. Silica Aerogel: Synthesis, Characterization, Applications, and Recent Advancements. Part. Part. Syst. Charact. 2023, 40, 2200186. [Google Scholar] [CrossRef]
- Tudorache, G.; Bocioagă, D.-I.; Mihaiescu, M.; Hadibarata, D.E.; Grumezescu, T.; An, A.M.; Niculescu, A.-G.; Tudorache, D.-I.; Bocioagă, M.; Mihaiescu, D.E.; et al. An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials 2024, 14, 469. [Google Scholar] [CrossRef]
- Dhua, S.; M J, P.D.; Mishra, P. A Comprehensive Review on Multifunctional Smart Carbon Dots (C Dots) Based Aerogel. Food Chem. Adv. 2023, 3, 100341. [Google Scholar] [CrossRef]
- Sonu, S.S.; Rai, N.; Chauhan, I. Multifunctional Aerogels: A Comprehensive Review on Types, Synthesis and Applications of Aerogels. J. Sol-Gel Sci. Technol. 2023, 105, 324–336. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.; Wang, W.; Fang, Y.; Riffat, S.B.; Jiang, F. The Advances of Polysaccharide-Based Aerogels: Preparation and Potential Application. Carbohydr. Polym. 2019, 226, 115242. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.; Chauhan, I. A Review on Polysaccharide Based Aerogel Synthesis and Their Applications. Polym.-Plast. Technol. Mater. 2024, 63, 2122–2140. [Google Scholar] [CrossRef]
- Li, A.; Huber, T.; Barker, D.; Nazmi, A.R.; Najaf Zadeh, H. An Overview of Cellulose Aerogels and Foams for Oil Sorption: Preparation, Modification, and Potential of 3D Printing. Carbohydr. Polym. 2024, 343, 122432. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Y.; Yang, X.; Shang, Q.; Huang, Q.; Hu, L.; Jia, P.; Zhou, Y. Fabrication, Functionalization and Applications of Cellulose Based Aerogels: A Review. Int. J. Biol. Macromol. 2025, 284, 138114. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Khan, R.; Jolly, R.; Fatima, T.; Shakir, M. Extraction Processes for Deriving Cellulose: A Comprehensive Review on Green Approaches. Polym. Adv. Technol. 2022, 33, 2069–2090. [Google Scholar] [CrossRef]
- Sinha, A.; Martin, E.M.; Lim, K.-T.; Carrier, D.J.; Han, H.; Zharov, V.P.; Kim, J.-W. Cellulose Nanocrystals as Advanced “Green” Materials for Biological and Biomedical Engineering. J. Biosyst. Eng. 2015, 40, 373–393. [Google Scholar] [CrossRef]
- George, J.; Sabapathi, S.N. Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanotechnol. Sci. Appl. 2015, 8, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Shokri, J.; Adibkia, K.; Shokri, J.; Adibkia, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In Cellulose—Medical, Pharmaceutical and Electronic Applications; IntechOpen Limited: London, UK, 2013. [Google Scholar] [CrossRef]
- El Bourakadi, K.; Semlali, F.Z.; Hammi, M.; El Achaby, M. A Review on Natural Cellulose Fiber Applications: Empowering Industry with Sustainable Solutions. Int. J. Biol. Macromol. 2024, 281, 135773. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 478626. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and Its Applications: A Review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Marakana, P.G.; Dey, A.; Saini, B. Isolation of Nanocellulose from Lignocellulosic Biomass: Synthesis, Characterization, Modification, and Potential Applications. J. Environ. Chem. Eng. 2021, 9, 106606. [Google Scholar] [CrossRef]
- Tsalagkas, D.; Börcsök, Z.; Pásztory, Z.; Gryc, V.; Csóka, L.; Giagli, K. A Comparative Fiber Morphological Analysis of Major Agricultural Residues (Used or Investigated) as Feedstock in the Pulp and Paper Industry. Bioresources 2021, 16, 7935–7952. [Google Scholar] [CrossRef]
- Verdía Barbará, P.; Abouelela Rafat, A.; Hallett, J.P.; Brandt-Talbot, A. Purifying Cellulose from Major Waste Streams Using Ionic Liquids and Deep Eutectic Solvents. Curr. Opin. Green Sustain. Chem. 2023, 41, 100783. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Tech. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Pathania, S.; Sharma, N.; Handa, S. Utilization of Horticultural Waste (Apple Pomace) for Multiple Carbohydrase Production from Rhizopus delemar F2 under Solid State Fermentation. J. Genet. Eng. Biotechnol. 2018, 16, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical Composition of Grape Stalks of Vitis vinifera L. from Red Grape Pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Abir, N.; Anannya, F.R.; Nabi Khan, A.; Rahman, A.N.M.M.; Jamine, N. Coir Fiber as Thermal Insulator and Its Performance as Reinforcing Material in Biocomposite Production. Heliyon 2023, 9, e15597. [Google Scholar] [CrossRef]
- Nguyen, H.S.H.; Phan, H.H.; Huynh, H.K.P.; Nguyen, S.T.; Nguyen, V.T.T.; Phan, A.N. Understanding the Effects of Cellulose Fibers from Various Pre-Treated Barley Straw on Properties of Aerogels. Fuel Process. Technol. 2022, 236, 107425. [Google Scholar] [CrossRef]
- Marrot, L.; Candelier, K.; Valette, J.; Lanvin, C.; Horvat, B.; Legan, L.; DeVallance, D.B. Valorization of Hemp Stalk Waste Through Thermochemical Conversion for Energy and Electrical Applications. Waste Biomass Valorization 2022, 13, 2267–2285. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; Arantes, V.; Pereira, B.; Ornaghi, H.L.; de Oliveira, D.M.; Santagneli, S.H.; Cioffi, M.O.H. Effect of the Chemical Treatment Sequence on Pineapple Peel Fiber: Chemical Composition and Thermal Degradation Behavior. Cellulose 2022, 29, 8587–8598. [Google Scholar] [CrossRef]
- Chopra, L.; Manikanika. Extraction of Cellulosic Fibers from the Natural Resources: A Short Review. Mater Today Proc. 2022, 48, 1265–1270. [Google Scholar] [CrossRef]
- Pinto, E.; Aggrey, W.N.; Boakye, P.; Amenuvor, G.; Sokama-Neuyam, Y.A.; Fokuo, M.K.; Karimaie, H.; Sarkodie, K.; Adenutsi, C.D.; Erzuah, S.; et al. Cellulose Processing from Biomass and Its Derivatization into Carboxymethylcellulose: A Review. Sci. Afr. 2022, 15, e01078. [Google Scholar] [CrossRef]
- Jagtap, S.; Dhiman, S.; Kant Bhatia, S.; Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Chandra Deka, R.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Modenbach, A.A.; Nokes, S.E. Effects of Sodium Hydroxide Pretreatment on Structural Effects of Sodium Hydroxide Pretreatment on Structural Components of Biomass Components of Biomass. Trans. ASABE 2014, 57, 1187–1198. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; Erdocia, X.; Hernández-Ramos, F.; Alriols, M.G.; Labid, J. Lignin Separation and Fractionation by Ultrafiltration. In Separation of Functional Molecules in Food by Membrane Technology; Academic Press: Cambridge, MA, USA, 2019; pp. 229–265. [Google Scholar] [CrossRef]
- Agwuncha, S.C.; Anusionwu, C.G.; Owonubi, S.J.; Rotimi Sadiku, E.; Busuguma, U.A.; David Ibrahim, I. Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites. In Sustainable Polymer Composites and Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2019; pp. 37–64. [Google Scholar] [CrossRef]
- Klunklin, W.; Hinmo, S.; Thipchai, P.; Rachtanapun, P. Effect of Bleaching Processes on Physicochemical and Functional Properties of Cellulose and Carboxymethyl Cellulose from Young and Mature Coconut Coir. Polymers 2023, 15, 3376. [Google Scholar] [CrossRef]
- Acharya, S.; Liyanage, S.; Abidi, N.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13, 4344. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.; Wang, P.L.; Ma, M.G. Promising Cellulose-Based Aerogel Composites: Preparation Methods and Advanced Applications. Compos. B Eng. 2024, 281, 111559. [Google Scholar] [CrossRef]
- Gu, H.; Huo, X.; Chen, J.; El-Bahy, S.M.; El-Bahy, Z.M. An Overview of Cellulose Aerogel: Classification and Applications. ES Food Agrofor. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Nguyen, D.T.C.; Tran, T. Van Synthesis Strategies, Regeneration, Cost Analysis, Challenges and Future Prospects of Bacterial Cellulose-Based Aerogels for Water Treatment: A Review. Chemosphere 2024, 362, 142654. [Google Scholar] [CrossRef]
- Ciftci, D.; Ubeyitogullari, A.; Huerta, R.R.; Ciftci, O.N.; Flores, R.A.; Saldaña, M.D.A. Lupin Hull Cellulose Nanofiber Aerogel Preparation by Supercritical CO2 and Freeze Drying. J. Supercrit. Fluids 2017, 127, 137–145. [Google Scholar] [CrossRef]
- Ganguly, A.; Nag, S.; Gayen, K. Synthesis of Cellulosic and Nano-Cellulosic Aerogel from Lignocellulosic Materials for Diverse Sustainable Applications: A Review. Prep. Biochem. Biotechnol. 2024, 54, 419–434. [Google Scholar] [CrossRef]
- Nguyen, P.X.T.; Ho, K.H.; Nguyen, C.T.X.; Do, N.H.N.; Pham, A.P.N.; Do, T.C.; Le, K.A.; Le, P.K. Recent Developments in Water Treatment by Cellulose Aerogels from Agricultural Waste. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 012011. [Google Scholar] [CrossRef]
- Syeda, H.I.; Yap, P.S. A Review on Three-Dimensional Cellulose-Based Aerogels for the Removal of Heavy Metals from Water. Sci. Total Environ. 2022, 807, 150606. [Google Scholar] [CrossRef]
- Payanda Konuk, O.; Alsuhile, A.A.A.M.; Yousefzadeh, H.; Ulker, Z.; Bozbag, S.E.; García-González, C.A.; Smirnova, I.; Erkey, C. The Effect of Synthesis Conditions and Process Parameters on Aerogel Properties. Front. Chem. 2023, 11, 1294520. [Google Scholar] [CrossRef]
- Parajuli, P.; Acharya, S.; Shamshina, J.L.; Abidi, N. Tuning the Morphological Properties of Cellulose Aerogels: An Investigation of Salt-Mediated Preparation. Cellulose 2021, 28, 7559–7577. [Google Scholar] [CrossRef]
- Tomic, N.; Djekic, I.; Hofland, G.; Smigic, N.; Udovicki, B.; Rajkovic, A. Comparison of Supercritical CO2-Drying, Freeze-Drying and Frying on Sensory Properties of Beetroot. Foods 2020, 9, 1201. [Google Scholar] [CrossRef]
- Basak, S.; Singhal, R.S. The Potential of Supercritical Drying as a “Green” Method for the Production of Food-Grade Bioaerogels: A Comprehensive Critical Review. Food Hydrocoll. 2023, 141, 108738. [Google Scholar] [CrossRef]
- Şahin, İ.; Özbakır, Y.; İnönü, Z.; Ulker, Z.; Erkey, C. Kinetics of Supercritical Drying of Gels. Gels 2017, 4, 3. [Google Scholar] [CrossRef]
- Rostamitabar, M.; Seide, G.; Jockenhoevel, S.; Ghazanfari, S. Effect of Cellulose Characteristics on the Properties of the Wet-Spun Aerogel Fibers. Appl. Sci. 2021, 11, 1525. [Google Scholar] [CrossRef]
- Surapolchai, W.; Schiraldi, D.A. The Effects of Physical and Chemical Interactions in the Formation of Cellulose Aerogels. Polym. Bull. 2010, 65, 951–960. [Google Scholar] [CrossRef]
- Sozcu, S.; Venkataraman, M.; Wiener, J.; Tomkova, B.; Militky, J.; Mahmood, A. Incorporation of Cellulose-Based Aerogels into Textile Structures. Materials 2024, 17, 27. [Google Scholar] [CrossRef]
- Sharma, K.; Choudhary, P.; Majeed, A.; Guleria, S.; Kumar, M.; Rana, A.K.; Rajauria, G. Cellulose Based Membranes, Hydrogels and Aerogels for Water Treatment Application. Ind. Crops Prod. 2025, 225, 120474. [Google Scholar] [CrossRef]
- Franco, P.; Cardea, S.; Tabernero, A.; De Marco, I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26, 4440. [Google Scholar] [CrossRef] [PubMed]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products—Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023, 10, 27. [Google Scholar] [CrossRef]
- Salleh, K.M.; Selamat, M.E.; Nordin, N.A.; Zuo, Q. Understanding Nonwoody Cellulose Extractions, Treatments, and Properties for Biomedical Applications. Int. J. Biol. Macromol. 2025, 308, 142455. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Sharma, O.P.; Ganguly, S.K.; Srivastava, M.; Khatri, O.P. Fruit Waste-Derived Cellulose and Graphene-Based Aerogels: Plausible Adsorption Pathways for Fast and Efficient Removal of Organic Dyes. J. Colloid Interface Sci. 2022, 608, 2870–2883. [Google Scholar] [CrossRef]
- Benito-González, I.; López-Rubio, A.; Galarza-Jiménez, P.; Martínez-Sanz, M. Multifunctional Cellulosic Aerogels from Posidonia Oceanica Waste Biomass with Antioxidant Properties for Meat Preservation. Int. J. Biol. Macromol. 2021, 185, 654–663. [Google Scholar] [CrossRef]
- Li, J.; Wan, C.; Lu, Y.; Sun, Q. Fabrication of Cellulose Aerogel from Wheat Straw with Strong Absorptive Capacity. Front. Agric. Sci. Eng. 2014, 1, 46–52. [Google Scholar] [CrossRef]
- Kaur, J.; Sharma, K.; Kaushik, A. Waste Hemp-Stalk Derived Nutrient Encapsulated Aerogels for Slow Release of Fertilizers: A Step towards Sustainable Agriculture. J. Environ. Chem. Eng. 2023, 11, 109582. [Google Scholar] [CrossRef]
- Kumar, G.; Dora, D.T.K.; Jadav, D.; Naudiyal, A.; Singh, A.; Roy, T. Utilization and Regeneration of Waste Sugarcane Bagasse as a Novel Robust Aerogel as an Effective Thermal, Acoustic Insulator, and Oil Adsorbent. J. Clean. Prod. 2021, 298, 126744. [Google Scholar] [CrossRef]
- Fauziyah, M.; Widiyastuti, W.; Balgis, R.; Setyawan, H. Production of Cellulose Aerogels from Coir Fibers via an Alkali–Urea Method for Sorption Applications. Cellulose 2019, 26, 9583–9598. [Google Scholar] [CrossRef]
- Romruen, O.; Karbowiak, T.; Tongdeesoontorn, W.; Shiekh, K.A.; Rawdkuen, S. Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand. Polymers 2022, 14, 1830. [Google Scholar] [CrossRef] [PubMed]
- Sousa Pereira, A.L.; Feitosa, J.P.A.; Saraiva Morais, J.P.; Rosa, M. de F. Cellulose Source Tailors the Physical and Structural Properties of Double-Functionalized Aerogels. J. Nat. Fibers 2023, 20, 2140377. [Google Scholar] [CrossRef]
- Sankhla, S.; Neogi, S. Ambient-Dried, Scalable and Biodegradable Cellulose Nanofibers Aerogel for Oil-Spill Cleanup. J. Environ. Chem. Eng. 2024, 12, 112745. [Google Scholar] [CrossRef]
- Oghenekohwo, V.J.; Maamoun, A.A.; Zulfiqar, S.; Forrester, M.J.; Slovák, V.; Wang, T.P.; Cochran, E.W. Unlocking the Potential of Polymeric Aerogels from Food and Agricultural Waste for Sustainable CO2 Capture. ACS Appl. Polym. Mater. 2024, 6, 638–648. [Google Scholar] [CrossRef]
- Le, H.V.; Dao, N.T.; Bui, H.T.; Kim Le, P.T.; Le, K.A.; Tuong Tran, A.T.; Nguyen, K.D.; Mai Nguyen, H.H.; Ho, P.H. Bacterial Cellulose Aerogels Derived from Pineapple Peel Waste for the Adsorption of Dyes. ACS Omega 2023, 8, 33412–33425. [Google Scholar] [CrossRef]
- Do, N.H.N.; Luu, T.P.; Thai, Q.B.; Le, D.K.; Chau, N.D.Q.; Nguyen, S.T.; Le, P.K.; Phan-Thien, N.; Duong, H.M. Heat and Sound Insulation Applications of Pineapple Aerogels from Pineapple Waste. Mater. Chem. Phys. 2020, 242, 122267. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming Plant-Based Waste and by-Products into Valuable Products Using Various “Food Industry 4.0” Enabling Technologies: A Literature Review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef]
- Jeffri, N.I.; Mohammad Rawi, N.F.; Mohamad Kassim, M.H.; Abdullah, C.K. Unlocking the Potential: Evolving Role of Technical Lignin in Diverse Applications and Overcoming Challenges. Int. J. Biol. Macromol. 2024, 274, 133506. [Google Scholar] [CrossRef]
- Stark, F.W.; Thue, P.S.; Missio, A.L.; Machado, F.M.; Delucis, R.d.A.; Andreazza, R. Cellulose-Based Aerogels for Environmentally Sustainable Applications: A Review of the Production, Modification, and Sorption of Environmental Contaminants. Polymers 2025, 17, 236. [Google Scholar] [CrossRef]
- Turhan Kara, I.; Kiyak, B.; Colak Gunes, N.; Yucel, S. Life Cycle Assessment of Aerogels: A Critical Review. J. Solgel Sci. Technol. 2024, 111, 618–649. [Google Scholar] [CrossRef]
- Salvatore, I.; Leue-Rüegg, R.; Beretta, C.; Müller, N. Valorisation Potential and Challenges of Food Side Product Streams for Food Applications: A Review Using the Example of Switzerland. Future Foods 2024, 9, 100325. [Google Scholar] [CrossRef]
- Zong, S.; Zhu, L.; Lei, F.; Jiang, J.; Duan, J. Low Cost Non Freeze-Drying Construction Strategy of Cellulose Aerogels for Efficient Solar Desalination. Chem. Eng. J. 2024, 500, 156859. [Google Scholar] [CrossRef]
- García-González, C.A.; Budtova, T.; Durães, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules 2019, 24, 1815. [Google Scholar] [CrossRef]
Food Processing Byproducts | Cellulose (%, w/w) | Hemicellulose (%, w/w) | Lignin (%, w/w) | Reference |
---|---|---|---|---|
Spent ground coffee | 12 | 39 | 24 | [44] |
Apple pomace | 36 | 11 | 19 | [45] |
Hemp stem | 41 | 21 | 22 | [8] |
Grape stalks | 30 | 21 | 17 | [46] |
Coir fibers | 36–43 | 0.15–0.25 | 32–45 | [47] |
Sugarcane bagasse | 44 | 28 | 21 | [40] |
Barley straw | 37 | 34 | 28 | [48] |
Hemp stalk | 46 | 24 | 23 | [49] |
Wheat straw | 33 | 30 | 14 | [40] |
Pineapple peels | 24 | 30 | 6 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, J.; Ubeyitogullari, A. Recent Advances in the Utilization of Cellulose from Food Processing Byproducts for the Generation of Aerogels. Gels 2025, 11, 359. https://doi.org/10.3390/gels11050359
Kaur J, Ubeyitogullari A. Recent Advances in the Utilization of Cellulose from Food Processing Byproducts for the Generation of Aerogels. Gels. 2025; 11(5):359. https://doi.org/10.3390/gels11050359
Chicago/Turabian StyleKaur, Jaspreet, and Ali Ubeyitogullari. 2025. "Recent Advances in the Utilization of Cellulose from Food Processing Byproducts for the Generation of Aerogels" Gels 11, no. 5: 359. https://doi.org/10.3390/gels11050359
APA StyleKaur, J., & Ubeyitogullari, A. (2025). Recent Advances in the Utilization of Cellulose from Food Processing Byproducts for the Generation of Aerogels. Gels, 11(5), 359. https://doi.org/10.3390/gels11050359