Next Issue
Volume 13, July
Previous Issue
Volume 13, May
 
 

Inorganics, Volume 13, Issue 6 (June 2025) – 33 articles

Cover Story (view full-size image): Pterin-fused phenanthroline (PteN˄N) ligands are notoriously insoluble, limiting their use in coordination chemistry. In this study, a mechanochemical approach enabled the selective synthesis of heteroleptic [Cu(PteN˄N)(P˄P)][BF4] complexes with bisphosphine co-ligands. Unlike traditional solution methods, solid-state grinding overcame solubility barriers and delivered stable, well-defined complexes. Remarkably, the transformation into copper complexes greatly enhanced solubility, enabling comprehensive spectroscopic and spectrometric characterization. While photophysical performance was modest, this work demonstrates the power of mechanochemistry to access challenging ligand frameworks and sets the stage for future development of photoactive materials. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 3386 KiB  
Article
Reversible Sodium Storage of CoTe2 Anode via Lanthanum Doping
by Haonan Xie, Xiaolin Xie, Taijiao Guo and Ting Deng
Inorganics 2025, 13(6), 207; https://doi.org/10.3390/inorganics13060207 - 19 Jun 2025
Viewed by 300
Abstract
Cobalt telluride (CoTe2) is considered an advanced anode material for sodium-ion batteries (SIBs) because of its high theoretical capacity and high conductivity. Nevertheless, the ionic radius of the Co2+ ion (0.74 Å) is smaller than that of the Na+ [...] Read more.
Cobalt telluride (CoTe2) is considered an advanced anode material for sodium-ion batteries (SIBs) because of its high theoretical capacity and high conductivity. Nevertheless, the ionic radius of the Co2+ ion (0.74 Å) is smaller than that of the Na+ ion, meaning the integrity of CoTe2 electrodes can be easily damaged when Na+ ions diffuse into CoTe2 and convert to large Na2Te. Herein, we propose a doping strategy by introducing an unreactive element but with a large radius to enhance the overall performance. Lanthanum (La) can be doped into the CoTe2 structure to counteract the size effect of Na2Te since La has a large radius. On the other hand, La with abundant electrons in CoTe2 can also facilitate the charge transfer during charge/discharge. As a result, La-doped CoTe2 (La-CoTe2) can deliver a maximum capacity of 345 mAh g−1 at 0.05 A g−1 and has a decent rate performance. After 2000 cycles at 2 A g−1, a capacity of 88 mAh g−1 remained, which is a notable improvement compared to undoped CoTe2. These results demonstrate the potential of rare earth elements in preparing advanced SIB electrode materials. Full article
Show Figures

Figure 1

9 pages, 859 KiB  
Article
The Impact of Arginine Side Chains on the Mechanism of Polycondensation of Silicic Acid in Bioinspired Mineralization
by Jose Lanuza and Enrico Ravera
Inorganics 2025, 13(6), 206; https://doi.org/10.3390/inorganics13060206 - 19 Jun 2025
Viewed by 303
Abstract
The polycondensation of silica from soluble silicic acid is at the basis of several chemical processes. The usual industrial route requires harsh pH conditions and high concentrations of the precursor molecules, not to mention a thermal treatment for obtaining condensed structures. On the [...] Read more.
The polycondensation of silica from soluble silicic acid is at the basis of several chemical processes. The usual industrial route requires harsh pH conditions and high concentrations of the precursor molecules, not to mention a thermal treatment for obtaining condensed structures. On the other hand, biological organisms can promote the precipitation of silica under physiological conditions, including temperature and pH, and low concentrations of precursors. The key to this process is the use of polycationic molecules. Despite the relevance of these processes in modern industrial inorganic chemistry, this fascinating process is still not completely understood. Recent studies converge in pointing out that the role of the polycation is to create supersaturation of silicic acid in its immediate proximity, which would explain the impact of the polycation on the reaction rates. However, it remains unclear whether these polycations also directly influence the reaction mechanism at a molecular level. In this manuscript, we address this question by analyzing the reaction pathway of silicic acid dimerization in the presence of guanidinium as a mimic of the arginine side chain, through DFT calculations. We found that the impact on the reaction pathway is minimal, which strengthens the hypothesis of the local supersaturation driven by the polycationic molecules. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Italy)
Show Figures

Graphical abstract

19 pages, 8776 KiB  
Article
Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties
by Mariya P. Shcherbakova-Sandu, Semyon A. Gulevich, Eugene P. Meshcheryakov, Kseniya I. Kazantseva, Aleksandr V. Chernyavskii, Alexey N. Pestryakov, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal and Irina A. Kurzina
Inorganics 2025, 13(6), 205; https://doi.org/10.3390/inorganics13060205 - 19 Jun 2025
Viewed by 346
Abstract
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized [...] Read more.
This work is devoted to the study of the effect of small Bi additives on the functional properties of Pdx:Bi/Al2O3 catalysts in the selective oxidation of glucose to gluconic acid. The catalysts obtained by the joint impregnation method were characterized (TEM) by high dispersion of bimetallic nanoparticles with a median diameter of 4–5 nm. The structure of the Pd-Bi solid solution was confirmed via XPS and showed a change in the valence state of Pd and Bi depending on the Bi content, as well as the fraction of the oxidized state of Bi. TPR-H2 revealed various forms of Pd, including PdO and mixed Pd-O-Bi structures. The Pd10:Bi1/Al2O3 catalyst demonstrated the highest efficiency (77.2% glucose conversion, 96% sodium gluconate selectivity), which is due to the optimal ratio between Pd and Bi, ensuring the stabilization of metallic Pd and preventing its oxidation. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

17 pages, 3400 KiB  
Article
In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects
by Zübeyda Akın-Polat, Neslihan Şahin, Shaima Hkiri, Bui Minh Thu Ly, İsmail Özdemir and David Sémeril
Inorganics 2025, 13(6), 204; https://doi.org/10.3390/inorganics13060204 - 18 Jun 2025
Viewed by 262
Abstract
The synthesis of a series of six chloro[N-alkyl-N-cinnamyl-benzimidazol-2-yliden]silver(I) complexes was successfully achieved, wherein allyl (3a), methoxymethyl (3b), benzyl (3c), 3-fluorobenzyl (3d), 4-fluorobenzyl (3e) and 4-methyl-benzyl (3f) substituents [...] Read more.
The synthesis of a series of six chloro[N-alkyl-N-cinnamyl-benzimidazol-2-yliden]silver(I) complexes was successfully achieved, wherein allyl (3a), methoxymethyl (3b), benzyl (3c), 3-fluorobenzyl (3d), 4-fluorobenzyl (3e) and 4-methyl-benzyl (3f) substituents were grafted on the benzimidazole ring. The isolated silver N-heterocyclic carbene (NHC) complexes were identified by microanalyses and mass spectrometry and characterized by FT-IR and NMR spectroscopic techniques. Conclusive evidence for the structures of complexes 3c and 3d was provided by single-crystal X-ray crystallography. The in vitro inhibitory activity of the six Ag-NHC complexes was tested against trophozoites and cysts of the pathogenic Acanthamoeba castellanii strain and the efficacy sequence is as follows: 3d > 3c > 3f > 3a > 3b > 3e. At a concentration of 100 µM in complexes 3c, 3d and 3f and after 72 h of incubation, 5.3, 3.2 and 6.3% A. castellanii trophozoite viabilities were observed, respectively. The utilization of elevated silver(I) drug concentrations, 1000 µM, resulted in the near-total eradication of pathogenic protozoa. Full article
Show Figures

Graphical abstract

18 pages, 4003 KiB  
Article
Exploring Layered Ruddlesden-Popper Structures for High-Performance Energy Devices
by Ahmad Hussain, Sumaira Zafar, Nawishta Jabeen, Muhammad Usman Khan, Imtiaz Ahmad Khan and Mahmoud M. Hessien
Inorganics 2025, 13(6), 203; https://doi.org/10.3390/inorganics13060203 - 17 Jun 2025
Viewed by 425
Abstract
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA [...] Read more.
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA approaches have been implemented using the CASTEP tool. The exchange–correlation approximation calculations show that the La2XO4 (where X = Ni, Fe, Ba, and Pb) compounds possess no band gap. The results indicate that the compounds are metallic, which are ideal for supercapacitor (SC) applications. The compound’s optical conductivity, dielectric function, extinction coefficients, absorption refractive index, loss function, and reflectivity are also analyzed for SC applications. UV spectra of the compounds observed high absorption coefficient (105 cm−1), dielectric function (9–10), optical conductivity (7 fs−1), and refractive index (4) values. Furthermore, as B/G > 1.75, the mechanical (elastic) properties have shown ductile behavior and mechanical stability. Using the Born stability criteria, the mechanical stability of the compounds is examined. All of the compounds are ductile, according to Pugh’s and Frantesvich ratios. Finally, time-simulations-dependent temperature stability plots for the compounds are computed by employing dynamical stability with norm-conserved pseudopotential, which confirm their potential for SC applications. Full article
Show Figures

Graphical abstract

15 pages, 928 KiB  
Communication
Accessing the Magnetic Morphology of Ferromagnetic Molecular-Based Nanoparticles from Polarized Small-Angle Neutron Scattering
by Grégory Chaboussant
Inorganics 2025, 13(6), 202; https://doi.org/10.3390/inorganics13060202 - 16 Jun 2025
Viewed by 246
Abstract
Polarized Small-Angle Neutron Scattering is a versatile low-energy neutron scattering technique that allows for the access of magnetic information on nanosize objects of size 2–100 nm, from individual properties like the magnetization distribution inside the object to the collective behaviors, e.g., spin-glass effects [...] Read more.
Polarized Small-Angle Neutron Scattering is a versatile low-energy neutron scattering technique that allows for the access of magnetic information on nanosize objects of size 2–100 nm, from individual properties like the magnetization distribution inside the object to the collective behaviors, e.g., spin-glass effects or long-range magnetic ordering. The multi-scale possibilities of this technique is particularly relevant to encompass simultaneously the individual and collective many-body phenomena. In this article, we report the direct measurement of the magnetic form factor of “Prussian Blue Analog” molecular-based Ferromagnetic nanoparticles CsxINiII[CrIII(CN)6] embedded in a polymer matrix with use of Polarized Small-Angle Neutron Scattering. We show that PSANS is particularly adapted to evaluate the internal magnetization distribution in nanoparticles and determine their magnetic morphology. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

13 pages, 3758 KiB  
Article
Effect of Sputtering Process Parameters on Physical Properties and Electron Emission Level of Titanium Nitride Films
by Yang Xia and Dan Wang
Inorganics 2025, 13(6), 201; https://doi.org/10.3390/inorganics13060201 - 16 Jun 2025
Viewed by 342
Abstract
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the [...] Read more.
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the magnetron sputtering parameters. The microscopic analyses show that the film thicknesses ranged from about 355 to 459 nm. Moreover, with the process parameters used in this work, TiN nanostructures are formed more easily when the nitrogen flow rate is ≤5 sccm, and compact TiN films are formed more easily when the nitrogen flow rate is ≥10 sccm. Elemental analyses showed that the N:Ti atomic ratios of the TiN films ranged from about 0.587 to 1.40. The results of surface analysis showed the presence of a certain amount of oxygen on the surface of the TiN film, indicating that the surface TiN may exist in the form of TiN:O. The electrical resistance test showed that the resistivity of the TiN coating ranges from 1.59 × 10−4 to 1.83 × 10−1 Ω·m. And the closer the N:Ti atomic ratio is to one, the lower the TiN film resistivity is. The electron emission coefficient (EEC) results show that among the film samples from #3 to #10, sample #8 has the lowest EEC, with a peak EEC of only 1.61. By comparing the resistivity and EEC data, a novel phenomenon was discovered: a decrease in the resistivity of TiN films leads to a decrease in their EEC values. The results show that the resistivity and EEC of TiN films can be adjusted according to the film-forming components, which is important for the application of TiN in the electronics industry. Full article
(This article belongs to the Special Issue Novel Inorganic Coatings and Thin Films)
Show Figures

Figure 1

14 pages, 4572 KiB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 602
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

13 pages, 4059 KiB  
Article
Mo-Dopant-Enhanced Energy Storage Performance of VS2 Microflowers as Electrode Materials for Supercapacitors
by Jingwei Wang, Xuejun Zheng, Long Xie, Zhenhua Xiang and Wenyuan He
Inorganics 2025, 13(6), 199; https://doi.org/10.3390/inorganics13060199 - 13 Jun 2025
Viewed by 420
Abstract
It is found that Mo doping can enhance the supercapacitor performance of VS2 microflowers. The X-ray diffraction combined with energy dispersive X-ray, X-ray photoelectron spectroscopy, and Raman spectra results verify the successful doping of Mo atoms into the VS2 matrix. As [...] Read more.
It is found that Mo doping can enhance the supercapacitor performance of VS2 microflowers. The X-ray diffraction combined with energy dispersive X-ray, X-ray photoelectron spectroscopy, and Raman spectra results verify the successful doping of Mo atoms into the VS2 matrix. As the electrode material of supercapacitors, the Mo-doped VS2 performs better electrochemical performance than pristine VS2, achieving the specific capacitance of 170 F g−1 at 0.5 A g−1 and 389.5 F g−1 at 5 mV s−1. Furthermore, the symmetric supercapacitor based on the Mo-doped VS2 exhibits good stability and ideal rate capability. The enhanced capability is presumably ascribed to the more accessible active sites and faster electrons/ions diffusion kinetics, which are caused by the increased specific surface area, expanded interlayer spacing, and improved conductivity after Mo doping. This strategy can also be extended to strengthen the capacitive properties of other transition metal dichalcogenides for advanced energy storage devices. Full article
Show Figures

Figure 1

24 pages, 2452 KiB  
Article
DNA Binding with Dipyrromethene Ruthenium(II) Complexes
by Maria Isabel Murillo, Carlos Felipe Mejia, Andrés Restrepo-Acevedo, Benjamin Barraud, Adrian L. Orjuela, Marcos Flores-Alamo, Rubén A. Toscano, Jorge Alí-Torres, Alexander D. Ryabov and Ronan Le Lagadec
Inorganics 2025, 13(6), 198; https://doi.org/10.3390/inorganics13060198 - 13 Jun 2025
Viewed by 633
Abstract
Four new arene–ruthenium(II) complexes [(η6-p-cymene)RuCl(dpm)], where dpm are hexa-(L3L5) and meso-substituted (L6) dipyrromethene ligands, were synthesized. These ligands and the corresponding complexes were thoroughly characterized by elemental analysis and spectroscopic techniques (MS, [...] Read more.
Four new arene–ruthenium(II) complexes [(η6-p-cymene)RuCl(dpm)], where dpm are hexa-(L3L5) and meso-substituted (L6) dipyrromethene ligands, were synthesized. These ligands and the corresponding complexes were thoroughly characterized by elemental analysis and spectroscopic techniques (MS, IR, 1H, 13C NMR, and UV–vis), and the structures of one ligand and three ruthenium complexes were determined by X-ray single-crystal analysis. The DNA-binding ability of the Ru-3Ru-6 complexes was evaluated by UV–vis DNA titration. Compound Ru-3 exhibited the highest binding energy, outperforming the complexes containing a dipyrrin ligand substituted by chlorides (Ru-4 and Ru-5) or a meso-substituted dipyrrin (Ru-6). Molecular docking revealed that the hypothetical Ru-1 and Ru-2 complexes, which contain iodide ligands in the dipyrrin structures, showed higher DNA-binding affinities than Ru-3. Computational calculations supported the experimental results, confirming that Ru-3 has a higher affinity for DNA than the other complexes. Full article
Show Figures

Graphical abstract

9 pages, 2327 KiB  
Article
First-Principles Calculations for the H Adsorption of Monolayer MoTe2 for Hydrogen Evolution Reaction
by Xujing Gao and Jianling Meng
Inorganics 2025, 13(6), 197; https://doi.org/10.3390/inorganics13060197 - 13 Jun 2025
Viewed by 311
Abstract
Hydrogen from water splitting is seen as a promising future energy source. Pt electrochemical catalysts with an ideal hydrogen evolution reaction (HER) performance face problems relating to their cost and scarcity. Research into transition metal dichalcogenides (TMDs) as alternative catalysts is in demand. [...] Read more.
Hydrogen from water splitting is seen as a promising future energy source. Pt electrochemical catalysts with an ideal hydrogen evolution reaction (HER) performance face problems relating to their cost and scarcity. Research into transition metal dichalcogenides (TMDs) as alternative catalysts is in demand. In our work, H adsorption on monolayer MoTe2 is investigated at different sites and rates. Through structure and charge distribution analysis, it is found that uniform charge distribution facilitates H adsorption. In addition, the enhanced electronic density of states and reduced band gap calculated by the electronic energy band structure are advantageous for H adsorption. And the Mo edge of MoTe2 is sensitive to the H adsorption rate. Finally, the H adsorbed on the sites is stable at 600 K, as shown in molecular dynamics (MD) calculations. Our work provides a further mechanism for H adsorption on MoTe2. Full article
Show Figures

Figure 1

17 pages, 8319 KiB  
Article
Photocatalytic Properties of Office-Paper-Waste-Derived Activated Carbon for Efficient Degradation of Organic Pollutants
by Ana Varadi, Adriana Popa, Dana Toloman, Cristian Leostean, Ioana Perhaiţă, Monica Dan, Arpad Mihai Rostas, Septimiu Tripon, Sergiu Macavei and Maria Stefan
Inorganics 2025, 13(6), 196; https://doi.org/10.3390/inorganics13060196 - 12 Jun 2025
Viewed by 365
Abstract
Sustainable waste recycling continues to be one of the most significant challenges in this century, especially for the office paper sector. On top of that, photocatalysis depends on solar radiation as an unlimited and environmentally friendly energy source for removing organic pollutants from [...] Read more.
Sustainable waste recycling continues to be one of the most significant challenges in this century, especially for the office paper sector. On top of that, photocatalysis depends on solar radiation as an unlimited and environmentally friendly energy source for removing organic pollutants from contaminated water. The obtaining of AC from office paper waste was carried out with the help of the chemical activation method using ZnCl2 as an activation agent, followed by heating the samples in adequate conditions. In the present research, we assessed the influence of the amount of ZnCl2 activator on the properties of AC. In our experimental conditions, a part of ZnCl2 was transformed into ZnO, deposited onto AC, and formed a composite. We attempted to minimize aggressive chemical agents through inexpensive technical solutions and experimental approaches. The properties of the obtained AC samples were evaluated by XRD, XPS, SEM/EDX, EPR, and surface area and porosity investigations. All of the samples exhibit photocatalytic activity toward Rhodamine B. The photocatalytic mechanism was evaluated considering the existence of reactive oxygen species (ROSs), as evidenced by spin-trapping experiments. Full article
(This article belongs to the Special Issue Novel Photo(electro)catalytic Environment Remediation)
Show Figures

Graphical abstract

10 pages, 2064 KiB  
Communication
Photocurrent, Photodegradation, and Proton Conductivity of the Stable Dipyridyl and Thiophene-Functionalized CuII2 Supramolecular Compound
by Jin-He Wang, Guang-Min Liang, Jiu-Yu Ji, Xiao-Jie Gong, Liang-Liang Huang, Li-Ping Zhao, Wen-Xuan Xie and Kun Zhou
Inorganics 2025, 13(6), 195; https://doi.org/10.3390/inorganics13060195 - 12 Jun 2025
Viewed by 400
Abstract
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been [...] Read more.
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been studied in detail. The current density of photocurrent of CuII2 is 1.87 μA·cm−2, and CuII2 degrades methylene blue (MB) with a degradation efficiency of 68.0% under xenon lamp. In addition, CuII2 shows remarkable proton conductivity of 1.79 × 10−3 S·cm−1 (at 75 °C and 98% relative humidity), superior to most copper(II)-based coordination polymers (CPs), and is expected to become a potential proton conductor in the future. Full article
(This article belongs to the Special Issue Supramolecular Chemistry: Prediction, Synthesis and Catalysis)
Show Figures

Figure 1

12 pages, 2936 KiB  
Article
Binder-Free Metal–Organic Framework-Derived Zn(CN)2/V2O3/Carbon Cathode Fabricated via Electrophoretic Deposition for High-Performance Zn-Ion Batteries
by Hyemin Lee and Byoungnam Park
Inorganics 2025, 13(6), 194; https://doi.org/10.3390/inorganics13060194 - 11 Jun 2025
Viewed by 395
Abstract
In this study, a Zn(CN)2–V2O3–C composite cathode was synthesized via AC electrophoretic deposition (EPD) and evaluated for application in aqueous zinc-ion batteries (ZIBs). Here, we report for the first time a binder-free Zn(CN)2–V2O [...] Read more.
In this study, a Zn(CN)2–V2O3–C composite cathode was synthesized via AC electrophoretic deposition (EPD) and evaluated for application in aqueous zinc-ion batteries (ZIBs). Here, we report for the first time a binder-free Zn(CN)2–V2O3–C composite cathode, using AC-EPD to create an ultrathin architecture optimized for probing the electrode–electrolyte interface without interference from additives or bulk effects. The composite combines Zn(CN)2 for structural support, V2O3 as the redox-active material, and carbon for improved conductivity. X-ray diffraction confirmed the presence of Zn(CN)2 and V2O3 phases, while scanning electron microscopy revealed a uniform, ultrathin film morphology. Electrochemical analysis demonstrated a hybrid charge storage mechanism with a b-value of 0.64, indicating both capacitive and diffusion-controlled contributions. The electrode delivered a high specific capacity (~250 mAh/g at 500 mA/g) with stable cycling performance. These results highlight the potential of metal–organic framework-derived composites for high-performance ZIB cathodes. The composite is especially effective when prepared via AC-EPD, which yields ultrathin, uniform films with strong adhesion and low agglomeration. This enhances energy storage performance and provides a reliable platform for focusing on interfacial charge storage, excluding the effect of binders on electrochemical performance. Full article
Show Figures

Figure 1

17 pages, 4192 KiB  
Article
Significant Enhancement of Strength and Ductility in Bioresorbable Zn–0.1Mg Alloy via ECAP Processing
by Iryna Cuperová, Martin Fujda, Róbert Kočiško, Patrik Petroušek, Zuzana Molčanová, Miloš Matvija, Róbert Džunda, Beáta Ballóková, Dávid Csík, Katarína Gáborová and Karel Saksl
Inorganics 2025, 13(6), 193; https://doi.org/10.3390/inorganics13060193 - 10 Jun 2025
Viewed by 470
Abstract
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable [...] Read more.
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable implants. This study investigates the effect of severe plastic deformation on the microstructure and mechanical properties of as-cast Zn–0.1Mg (wt.%) alloy. The as-cast alloy, characterised by a coarse-grained microstructure with intermetallic phases at grain boundaries and low strength and ductility, was subjected to two passes of Equal Channel Angular Pressing (ECAP). The intense plastic deformation transformed the coarse-grained structure into an ultrafine-grained solid solution matrix. This substantial microstructural refinement led to a significant enhancement in mechanical performance. The yield strength (YS) and ultimate tensile strength (UTS) more than doubled, reaching 198 MPa and 215 MPa, respectively. Remarkably, the elongation increased from 2.2% to 187% in tensile testing. These findings confirm the beneficial effect of grain refinement and dynamic recrystallisation on the mechanical behaviour of bioresorbable Zn–0.1Mg alloy and highlight the high potential of ECAP processing for optimising the mechanical properties of Zn-based biodegradable materials. Full article
Show Figures

Figure 1

23 pages, 4227 KiB  
Review
Redox Mediators for Li2CO3 Decomposition
by Zixuan Liu, Haoshen Huang, Zhengfei Chen, Haiyong He, Deyu Wang and Zhoupeng Li
Inorganics 2025, 13(6), 192; https://doi.org/10.3390/inorganics13060192 - 8 Jun 2025
Viewed by 469
Abstract
Lithium–air batteries (LABs) possess the highest energy density among all energy storage systems, and have drawn widespread interest in academia and industry. However, many arduous challenges are still to be conquered, one of them is Li2CO3, which is a [...] Read more.
Lithium–air batteries (LABs) possess the highest energy density among all energy storage systems, and have drawn widespread interest in academia and industry. However, many arduous challenges are still to be conquered, one of them is Li2CO3, which is a ubiquitous product in LABs. It is inevitably produced but difficult to decompose; therefore, Li2CO3 is perceived as the “Achilles’ heel of LABs”. Among various approaches to addressing the Li2CO3 issue, developing Li2CO3-decomposing redox mediators (RMs) is one of the most convenient and versatile, because they can be electrochemically oxidized at the gas cathode surface, then they diffuse to the solid-state products and chemically oxidize them, recovering the RMs to a pristine state and avoiding solid-state catalysts’ contact instability with Li2CO3. Furthermore, because of their function mechanism, they can double as catalysts for Li2O2/LiOH decomposition, which are needed in LABs/LOBs anyway regardless of Li2CO3 incorporation due to the sluggish kinetics of oxygen reduction/evolution reactions. This review summarizes the progress in Li2CO3-decomposing RMs, including halides, metal–chelate complexes, and metal-free organic compounds. The insights into and discrepancies in the mechanisms of Li2CO3 decomposition and corresponding catalysis processes are also discussed. Full article
(This article belongs to the Special Issue Novel Research on Electrochemical Energy Storage Materials)
Show Figures

Graphical abstract

11 pages, 11517 KiB  
Article
Kinetics-Controlled Simple Method for the Preparation of Au@Ag Hierarchical Superstructures for SERS Analysis
by Mengqi Lyu, Ming Jiang, Hanting Yu, Kailiang Wu, Peitao Zhu, Yingke Zhu, Yan Xia and Juan Li
Inorganics 2025, 13(6), 191; https://doi.org/10.3390/inorganics13060191 - 7 Jun 2025
Viewed by 421
Abstract
Silver nanostructures exhibit exceptional surface-enhanced Raman scattering (SERS) performance due to their strong plasmonic resonance. However, their practical applications are often hindered by structural instability, leading to deformation and performance degradation. In this study, we developed a kinetics-controlled synthetic strategy to fabricate gold-encapsulated [...] Read more.
Silver nanostructures exhibit exceptional surface-enhanced Raman scattering (SERS) performance due to their strong plasmonic resonance. However, their practical applications are often hindered by structural instability, leading to deformation and performance degradation. In this study, we developed a kinetics-controlled synthetic strategy to fabricate gold-encapsulated silver (Au@Ag) hierarchical superstructures (HSs) with enhanced SERS activity and stability. By leveraging polyvinylpyrrolidone (PVP) as a surface modifier and precisely regulating the introduction rate of reaction precursors, we achieved meticulous control over the galvanic replacement kinetics, thereby preserving the structural integrity of pre-synthesized Ag HSs during the formation of Au@Ag HSs. The resulting well-defined Au@Ag HSs demonstrated superior SERS performance, achieving a detection limit of 10−9 M for crystal violet (CV) while exhibiting outstanding signal reproducibility (relative standard deviation, RSD = 11.60%). This work provides a robust and scalable approach to designing stable, high-efficiency SERS-active nanostructures with broad potential in analytical and sensing applications. Full article
Show Figures

Figure 1

14 pages, 2999 KiB  
Article
The Growth-Inhibitory Effect of Glass Ionomer Liners Reinforced with Fluoride-Modified Nanotubes
by Ricardo De Jesús-Pascual, Elias Nahum Salmerón-Valdés, Adriana Alejandra Morales-Valenzuela, Leticia Verónica Jiménez-Rojas, Rodrigo Correa-Prado, Edith Lara-Carrillo, Víctor Hugo Toral-Rizo, Osmar Alejandro Chanes-Cuevas, Ulises Velázquez-Enríquez, Raúl Alberto Morales-Luckie and Javier Jaramillo-García
Inorganics 2025, 13(6), 190; https://doi.org/10.3390/inorganics13060190 - 7 Jun 2025
Viewed by 529
Abstract
The aim of this research was to compare the growth-inhibitory effect of halloysite-based nanotubes preloaded with sodium fluoride incorporated into two commercial glass ionomers (Vitrebond 3MTM and Ionobond VOCO) for indirect pulp capping. Methods: Sixty samples were prepared and were distributed into [...] Read more.
The aim of this research was to compare the growth-inhibitory effect of halloysite-based nanotubes preloaded with sodium fluoride incorporated into two commercial glass ionomers (Vitrebond 3MTM and Ionobond VOCO) for indirect pulp capping. Methods: Sixty samples were prepared and were distributed into two control groups, two positive control groups and two experimental groups. A total of 10% of the total weight of ionomer powder required to prepare each sample was replaced with nanotubes that had been preloaded at 2000 parts per million (minimum inhibitory dose for Streptococcus mutans established in this study using the McFarland index). The growth-inhibitory effect was determined by placing the samples in Petri dishes inoculated with S. mutans for 24 h at 37 °C. Results: Regarding the control groups, only Vitrebond demonstrated a growth inhibition zone; both experimental groups showed an inhibitory effect, and statistical differences were observed when the experimental Ionobond group and control groups were compared. Conclusions: The ionomers reinforced with fluorine-modified nanotubes showed an adequate inhibitory effect on Streptococcus mutans. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Graphical abstract

16 pages, 1384 KiB  
Article
Transition Metal (II) Coordination Chemistry Ligated by a New Coplanar Tridentate Ligand, 2,6-Bis(5-isopropyl-1H-pyrazol-3-yl)pyridine
by Kiyoshi Fujisawa, Yurika Minakawa and David James Young
Inorganics 2025, 13(6), 189; https://doi.org/10.3390/inorganics13060189 - 6 Jun 2025
Viewed by 926
Abstract
Transition metal (II) complexes stabilized by 2,6-di(pyrazol-3-yl)pyridine as a novel coplanar tridentate nitrogen-donor ligand have been reported for their unusual structures and photoluminescent properties. In this work, the ligand 2,6-bis(5-isopropyl-1H-pyrazole-3-yl)pyridine (denoted as L) and its transition metal (II) halogenido complexes [...] Read more.
Transition metal (II) complexes stabilized by 2,6-di(pyrazol-3-yl)pyridine as a novel coplanar tridentate nitrogen-donor ligand have been reported for their unusual structures and photoluminescent properties. In this work, the ligand 2,6-bis(5-isopropyl-1H-pyrazole-3-yl)pyridine (denoted as L) and its transition metal (II) halogenido complexes viz [ZnCl2(L)] (1), [ZnBr2(L)] (2), [CuCl2(L)] (3), and [CuCl(L)(thf)](PF6) (4) were synthesized and characterized by single crystal X-ray crystal analysis. Its structures contained N–H groups in its pyrazole rings and hydrogen bonds between these N–H donors and the coordinated halogenide ions and lattice solvent molecules. Tautomers between 3-pyridyl and 5-pyridyl substitutes were also observed. In L, the N–H group at the pyrazole nitrogen was located adjacent to the pyridine ring to form hydrogen bonds with adjacent pyrazoles. However, on complexation, the H atoms at the pyrazole nitrogens are shifted remotely to the pyridine. The zinc (II) complexes [ZnCl2(L)] (1) and [ZnBr2(L)] (2) possessed distorted trigonal pyramidal structures in the solid state. By comparison, the copper (II) complexes [CuCl2(L)] (3) and [CuCl(L)(thf)](PF6) (4) adopted square pyramidal geometry with a Jahn–Teller distortion resulting from their d9 electron configurations. Full article
Show Figures

Graphical abstract

15 pages, 5030 KiB  
Article
Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction
by Han Zheng, Fagang Wang and Weimeng Si
Inorganics 2025, 13(6), 188; https://doi.org/10.3390/inorganics13060188 - 6 Jun 2025
Viewed by 521
Abstract
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in [...] Read more.
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in a nitrogen atmosphere, to obtain FeNC. Subsequently, we combined FeNC with MXene produce FeNC/MXene composites. The FeNC/MXene catalyst achieved a half-wave potential of 0.857 V in an alkaline medium, exhibiting better oxygen reduction reaction (ORR) activity and durability than commercial Pt/C catalysts. The layered structure of MXene endows the material with a high specific surface area and facilitates efficient electron transfer pathways, thereby promoting rapid charge transfer and material diffusion. The cleavage of Ti-C bonds in Ti3C2 at elevated temperatures results in the transformation of MXene into TiO2, where the coexistence of anatase and rutile phases generates a synergistic effect that enhances both the mass transfer rate and the electrical conductivity of the catalytic layer. Additionally, the unique electronic structure of the FeNx sites simultaneously optimizes electrocatalytic activity and stability. Leveraging these structural advantages, the FeNC/MXene composite catalysts demonstrate exceptional catalytic activity and long-term stability in oxygen reduction reactions. Full article
Show Figures

Figure 1

19 pages, 3801 KiB  
Article
Effect of BaO Content on the Photoluminescence Properties of Mn2+ and Eu2+-Codoped Sr3−xBaxMgSi2O8 Phosphors
by Shu-Han Liao, Fang-Tzu Hsu, Cheng-Fu Yang and Kao-Wei Min
Inorganics 2025, 13(6), 187; https://doi.org/10.3390/inorganics13060187 - 6 Jun 2025
Viewed by 383
Abstract
In this study, Mn2+ and Eu2+-codoped Sr3−xBaxMgSi2O8 (x = 0–1.5) phosphors were synthesized at 1400 °C under a reducing atmosphere composed of 5% H2 and 95% N2 to produce [...] Read more.
In this study, Mn2+ and Eu2+-codoped Sr3−xBaxMgSi2O8 (x = 0–1.5) phosphors were synthesized at 1400 °C under a reducing atmosphere composed of 5% H2 and 95% N2 to produce materials with blue light emission. The resulting powders were characterized using several analytical techniques: X-ray diffraction (XRD) was employed to identify the crystalline phases, scanning electron microscopy (SEM) was used to observe the microstructure, and photoluminescence excitation (PLE) and emission (PL) spectra were measured using a fluorescence spectrophotometer. The results revealed several key findings. XRD analysis showed that the Sr3MgSi2O8 (Sr3−xBaxMgSi2O8) phase coexisted with secondary phases of Sr2SiO4 and Sr2MgSi2O7. SEM observations indicated that the synthesized powders exhibited a distinctive needle-like structure anchored on the surfaces of the particles. The PL and PLE intensities increased sharply as the BaO content increased from x = 0 to x = 0.6, followed by a more gradual increase, reaching a peak at x = 1.2. Additionally, as the value of x increased, the wavelengths corresponding to maximum PL and PLE intensities exhibited a blue shift, moving to shorter wavelengths. Further investigation focused on the excitation behavior by replotting the PLE spectra using energy (eV) as the x-axis. A Gaussian fitting function was applied to deconvolute the excitation bands, enabling an in-depth analysis of how compositional variations influenced the Stokes shift. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

14 pages, 3662 KiB  
Article
Size-Activity Relationship of TiO2-Supported Pt Nanoparticles in Hydrogenation Reactions
by Qi Zhang, Tianbo Li, Xiang-Ting Min, Shu-Xian Li, Xunzhu Jiang, Qian Zhang, Yangyang Li, Xinlong Yan, Rui Feng, Feifei Yang, Wei Zhou, Xiaoyan Hu, Botao Qiao and Zhonghai Ni
Inorganics 2025, 13(6), 186; https://doi.org/10.3390/inorganics13060186 - 6 Jun 2025
Viewed by 463
Abstract
Quantitative assessments of the geometric influence on catalytic activity are crucial for catalyst design and understanding reaction mechanisms. In this study, we synthesized a series of catalysts comprising TiO2-supported Pt nanoparticles with varying particle sizes, which were systematically evaluated in representative [...] Read more.
Quantitative assessments of the geometric influence on catalytic activity are crucial for catalyst design and understanding reaction mechanisms. In this study, we synthesized a series of catalysts comprising TiO2-supported Pt nanoparticles with varying particle sizes, which were systematically evaluated in representative hydrogenation reactions. A consistent size–activity relationship is established, wherein overall turnover frequency (TOF) values (TOFoverall: calculated as moles of reactant converted per mole of Pt per hour) are modeled as functions of the average diameter of the supported Pt particles, yielding slope values consistently near −1 across a variety of common substrates. This finding underscores that catalytic activity predominantly originates from surface sites on the Pt nanoparticles rather than from interfacial, edge, or corner active sites. Full article
Show Figures

Figure 1

25 pages, 2617 KiB  
Review
Recent Advances in Zinc Complexes for Stereoselective Ring-Opening Polymerization and Copolymerization
by Xia Li, Yang Li, Gangqiang Zhang, Yat-Ming So and Yu Pan
Inorganics 2025, 13(6), 185; https://doi.org/10.3390/inorganics13060185 - 5 Jun 2025
Viewed by 807
Abstract
Recent advances in zinc complexes for stereoselective ring-opening polymerization (ROP) and copolymerization (ROCOP) highlight their pivotal role in synthesizing biodegradable aliphatic polyesters and polycarbonates. These materials address the urgent demand for sustainable alternatives to petroleum-based plastics, with stereochemical control directly impacting polymer crystallinity, [...] Read more.
Recent advances in zinc complexes for stereoselective ring-opening polymerization (ROP) and copolymerization (ROCOP) highlight their pivotal role in synthesizing biodegradable aliphatic polyesters and polycarbonates. These materials address the urgent demand for sustainable alternatives to petroleum-based plastics, with stereochemical control directly impacting polymer crystallinity, thermal stability, and degradability. Zinc catalysts, leveraging low toxicity and versatile coordination chemistry, enable precise stereoregulation, whose performance is modulated by ligand steric/electronic effects, coordination geometry, and reaction conditions. This review summarizes the recent developments in zinc complexes for stereoselective ROP and ROCOP, focusing on ligand design strategies to enhance catalytic performance. Full article
Show Figures

Graphical abstract

15 pages, 5342 KiB  
Article
Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts
by Ningyu Jia, Haoyu Han, Tao Yang, Meng Zhang and Zhongyi Liu
Inorganics 2025, 13(6), 184; https://doi.org/10.3390/inorganics13060184 - 5 Jun 2025
Viewed by 480
Abstract
The esterification of terephthalic acid (PTA) with methanol to dimethyl terephthalate (DMT) was investigated using commercially available zeolite catalysts as the eco-friendly solid acids. Six typical zeolites (ZSM-5-25, ZSM-5-50, ZSM-5-100, ZSM-35, MOR, and β) were systematically evaluated. Among them, β zeolite showed excellent [...] Read more.
The esterification of terephthalic acid (PTA) with methanol to dimethyl terephthalate (DMT) was investigated using commercially available zeolite catalysts as the eco-friendly solid acids. Six typical zeolites (ZSM-5-25, ZSM-5-50, ZSM-5-100, ZSM-35, MOR, and β) were systematically evaluated. Among them, β zeolite showed excellent catalytic performance, achieving nearly 100% PTA conversion and 76.1% DMT selectivity under the conditions of 200 °C, of 0.5 MPa N2 pressure, m(PTA):V(methanol) of 1:40 (g/mL), m(PTA):m(catalyst) of 10:1 over 4 h. The characterization results show that the catalytic efficiency was correlated with acid site strength, specific surface area, and mesoporous structure of the zeolite. After optimization, β zeolite achieved 100% PTA conversion and 94.1% DMT selectivity under the conditions of 200 °C, of 1 MPa N2 pressure, m(PTA)/V(methanol) of 1:30 (g/mL), m(PTA)/m(catalyst) of 8:1 over 8 h. Moreover, β zeolite exhibited superior stability, maintaining over 92% of its initial activity after five cycles, highlighting its potential for sustainable DMT production. Full article
(This article belongs to the Special Issue Inorganics Emerging Investigators Themed Collection 2024/2025)
Show Figures

Graphical abstract

30 pages, 3060 KiB  
Review
Solid–Solid Interface Design for Hydrogen Production by Direct Seawater Electrolysis: Progress and Challenges
by Bowei Zhou, Tong Wu, Yilin Dong, Yinbo Zhan, Fei Wei, Dongliang Zhang and Xia Long
Inorganics 2025, 13(6), 183; https://doi.org/10.3390/inorganics13060183 - 4 Jun 2025
Viewed by 882
Abstract
Using direct seawater electrolysis (DSE) for hydrogen production has garnered increasing scientific attention as a promising pathway toward sustainable energy solutions. Given the complex ionic environment of seawater, researchers have proposed a diverse range of strategies aimed at addressing the issue of enhancing [...] Read more.
Using direct seawater electrolysis (DSE) for hydrogen production has garnered increasing scientific attention as a promising pathway toward sustainable energy solutions. Given the complex ionic environment of seawater, researchers have proposed a diverse range of strategies aimed at addressing the issue of enhancing the corrosion resistance of anodes, yet no optimal solution has been found so far. Among the emerging approaches, a design using multilayer electrode architecture offers notable advantages by introducing abundant active sites, diverse chemical environments, and robust physical structures. Crucially, these configurations enable the synergistic integration of distinct material properties across different layers, thereby enhancing both electrochemical activity and structural stability in harsh seawater environments. Despite these benefits, a limited understanding of the role played by solid–solid interfaces has hindered the rational design and practical application of such electrodes. This review focuses on the design principles and functional roles of solid–solid interfaces in multilayer anodes for the oxygen evolution reaction (OER) under DSE conditions. In addition, we systematically summarize and discuss the representative fabrication methods for constructing solid–solid interfaces in hierarchically structured electrodes. By screening recent advances in these techniques, we further highlight how engineered interfaces influence interfacial bonding, electron transfer, and mass transport during DSE processes, enhancing the intrinsic catalytic activity, as well as protecting the metallic electrode from corrosion. Finally, current challenges and future research directions to deepen the mechanistic understanding of interface phenomena are discussed, with the aim of accelerating the development of robust and scalable electrodes for direct seawater electrolysis. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Graphical abstract

14 pages, 1214 KiB  
Communication
Variable Unidentate Ligands in Cu(I)(XXY) and Cu(I)(XYZ) Complexes—Structural Aspects
by Milan Melník, Veronika Mikušová and Peter Mikuš
Inorganics 2025, 13(6), 182; https://doi.org/10.3390/inorganics13060182 - 1 Jun 2025
Viewed by 557
Abstract
This manuscript provides a structural analysis of over eighty copper(I) compounds mostly reported in the Cambridge Structural Database (CSD) version 5.45 in which unidentate ligands build up various inner coordinate spheres. These complexes crystallized in four crystal classes: trigonal (1 example), triclinic (10 [...] Read more.
This manuscript provides a structural analysis of over eighty copper(I) compounds mostly reported in the Cambridge Structural Database (CSD) version 5.45 in which unidentate ligands build up various inner coordinate spheres. These complexes crystallized in four crystal classes: trigonal (1 example), triclinic (10 examples), orthorhombic (13 examples), and monoclinic (58 examples). The analyzed complexes can be divided into two groups according to the type of coordinating ligands (L = X, Y, Z) incorporated into their structure: Cu(XXY) (more common) and Cu(XYZ). The structural data of L-Cu-L bond angles show that the angular distortion from the regular trigonal geometry grows with total mean values of deviation from 120.0°, in the order within the first group: 3.2°(Cu(IIP)) < 6.1°(Cu(ClClY)) < 6.5°(Cu(SSY)) < 8.2°(Cu(PPY)) < 8.9°(Cu(BrBrY)) < 16.9°(Cu(NNY)) < 19.8°(Cu(CCY)) < 25.5°(Cu(SeSeY)) and within the second group: 3.1°(Cu(SIP)) < 14.3°(Cu(SClP) < 15.5°(Cu(SBrP). The donor atoms are responsible for the distortion as follows: the soft donor atoms diminish the distortion while the borderline and the hard growing amplify the distortion. Given the importance of Cu(I) compounds in (bio)inorganic functional materials and catalysis, the correct interpretation of the geometry of Cu(I) complexes in terms of the coordination polyhedra is crucial for understanding the properties of the respective compounds. Full article
(This article belongs to the Special Issue Applications and Future Trends for Novel Copper Complexes)
Show Figures

Graphical abstract

13 pages, 4213 KiB  
Article
Carbon Nanotubes-Doped Metal Oxides and Metal Sulfides Heterostructure Achieves 3D Morphology Deposition of Li2S and Stable Long-Cycle Lithium–Sulfur Batteries
by Yu-Lin Luo, Hai Huang, Cheng-Wei Zhu, Wen-Qi Lv, Ye Zeng, Gui-Fang Li, Xiao-Hong Fan, Ding-Rong Deng and Qi-Hui Wu
Inorganics 2025, 13(6), 181; https://doi.org/10.3390/inorganics13060181 - 1 Jun 2025
Viewed by 486
Abstract
The “shuttle effect” caused by the shuttling of soluble long-chain polysulfides between the anode and cathode electrodes has persistently hindered lithium–sulfur batteries (LSBs) from achieving stable and high-capacity performance. Numerous materials have been explored to mitigate the adverse effects of this phenomenon, among [...] Read more.
The “shuttle effect” caused by the shuttling of soluble long-chain polysulfides between the anode and cathode electrodes has persistently hindered lithium–sulfur batteries (LSBs) from achieving stable and high-capacity performance. Numerous materials have been explored to mitigate the adverse effects of this phenomenon, among which metal oxides and metal sulfides are regarded as promising solutions due to their strong adsorption capability toward lithium polysulfides (LiPSs). However, the poor electrical conductivity of the metal oxides and sulfides, coupled with their inherent morphological limitations, makes it challenging to sustainably suppress LiPS shuttling. In this study, we designed a heterostructured catalyst composed of a metal oxide–metal sulfide heterostructure integrated with carbon nanotubes (CNTs). This design addresses the low conductivity issue of metal oxides/sulfides while optimizing the material’s morphology, enabling persistent LiPSs adsorption. Furthermore, the composite successfully facilitates three-dimensional (3D) Li2S deposition. The assembled battery exhibits stable and high-capacity performance, delivering an initial discharge capacity of 622.45 mAh g−1 at 2C and retaining 569.5 mAh g−1 after 350 cycles, demonstrating exceptional cycling stability. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Graphical abstract

13 pages, 2415 KiB  
Article
Synthesis, Characterization, and Biological Activities of Rare Earth Metal Complexes with Gallic Acid
by Nguyen Thi Hien Lan, Hoang Phu Hiep, Dinh Cong Trinh and Pham Van Khang
Inorganics 2025, 13(6), 180; https://doi.org/10.3390/inorganics13060180 - 28 May 2025
Viewed by 464
Abstract
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 [...] Read more.
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 °C, pH 4–5) and characterized using the Ln3+ elemental content method, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mass spectrometry (MS), and fluorescence spectroscopy. IR spectra confirmed the coordination of rare earth ions (Ln3+) with gallic acid through carboxylate oxygen atoms. TGA revealed the thermal decomposition pathways, while MS identified the molecular ion peaks and fragmentation patterns. All complexes exhibited strong luminescence under UV excitation, with emission peaks corresponding to characteristic transitions of Sm3+, Eu3+, Tb3+, and Dy3+. Biological assays demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, with Dy(Gal)3·4H2O showing the highest efficacy. Additionally, the complexes displayed inhibitory effects on MCF7 breast cancer cells, with Tb(Gal)3·4H2O exhibiting the lowest IC50 value (11.3 µM). These findings suggest that rare earth metal complexes with gallic acid have potential applications in biomedical fields, particularly as antimicrobial and anticancer agents. Full article
Show Figures

Figure 1

12 pages, 1551 KiB  
Article
Experimental Attempts at and Theoretical Study of the Thermal Generation of o-Carborane-Supported N-Heterocyclic Carbenes
by Mei-Juan Liang, Ke-Cheng Chen, Zhongzheng Cui, Yan-Chang Zhou, Yan Wang, Fan Qi and Xu-Qiong Xiao
Inorganics 2025, 13(6), 179; https://doi.org/10.3390/inorganics13060179 - 25 May 2025
Viewed by 449
Abstract
N-Heterocyclic carbenes (NHCs) have been widely utilized over the past three decades due to their broad applications, yet synthetic methods for their preparation remain limited. A promising approach for NHC generation involves the thermolysis of NHC adducts. Herein, we report the synthesis of [...] Read more.
N-Heterocyclic carbenes (NHCs) have been widely utilized over the past three decades due to their broad applications, yet synthetic methods for their preparation remain limited. A promising approach for NHC generation involves the thermolysis of NHC adducts. Herein, we report the synthesis of NHC pentafluorobenzene adducts featuring an o-carboranyl group in the backbone (2), which, unlike previously studied systems, resists thermal decomposition. Density functional theory (DFT) calculations were used to investigate the discrepancy, revealing that the decomposition reaction is kinetically controlled. For widely studied NHC systems like IMes and SIMes, the activation barriers were calculated to be 246.3 kJ/mol and 267.3 kJ/mol, respectively, aligning with reactions requiring heating. In contrast, the o-carborane system exhibited a significantly higher barrier of 320.5 kJ/mol, primarily due to the structural influence of the o-carborane backbone. Further analysis indicates that delocalization of π-electrons from the backbone into the NHC’s p-orbitals lowers the activation barrier, whereas delocalization into an exo-NHC ring increases it. These findings provide new insights into the thermal generation of NHCs and we hope it can offer guidance for future NHC design and synthesis. Full article
(This article belongs to the Topic Heterocyclic Carbene Catalysis)
Show Figures

Graphical abstract

16 pages, 3874 KiB  
Article
Efficacy of Stenocereus queretaroensis-Derived Silver Nanoparticles Against Methicillin-Resistant Staphylococcus aureus Biofilms: Synthesis and Antibiofilm Activity
by Angélica Sofía González-Garibay, Iván Moisés Sánchez-Hernández, Ariadna Abigail Villarreal-Amézquita, Omar Ricardo Torres-González and Eduardo Padilla-Camberos
Inorganics 2025, 13(6), 178; https://doi.org/10.3390/inorganics13060178 - 24 May 2025
Viewed by 917
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for many infections, primarily due to its ability to form biofilms. Nanotechnology has recently been proposed as an alternative for controlling MRSA. In the present work, we evaluated the antimicrobial and antibiofilm activities of silver nanoparticles synthesized [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for many infections, primarily due to its ability to form biofilms. Nanotechnology has recently been proposed as an alternative for controlling MRSA. In the present work, we evaluated the antimicrobial and antibiofilm activities of silver nanoparticles synthesized with Stenocereus queretaroensis peel extract (SAgNPs). The biosynthesis process was optimized using a response surface design. The results showed antimicrobial activity against MRSA bacteria, with a minimum inhibitory concentration and minimum bactericidal concentration of 0.15 and 0.31 µg/mL, respectively. SAgNPs inhibited biofilm formation in multi-well plates and Congo red agar. Molecular docking analysis revealed that the presence of quercetin, one of the chemical components of S. queretaroensis peel, forms hydrogen bonds with six interacting amino acids. This suggests that quercetin presents a stable binding to this site, which in turn suggests that the mechanism of action of SAgNPs is related to their binding to PBP2a. Therefore, these findings suggest a promising, environmentally friendly approach to combating antibiotic-resistant infections, potentially reducing the reliance on traditional antibiotics. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop