In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Silver Complexes
2.2. Single-Crystal X-Ray Diffraction Studies
2.3. In Vitro Evaluation of Acanthamoeba castellanii
2.3.1. Effect on A. castellanii Trophozoites
2.3.2. Effect on A. castellanii Cysts
3. Materials and Methods
3.1. General
3.2. General Procedure for the Synthesis of Benzimidazolium Salts
3.3. General Procedure for the Preparation of Silver Complexes
3.4. X-Ray Crystal Structure Analysis
3.5. In Vitro Effects on A. castellanii
3.5.1. A. castellanii Strain and Culture
3.5.2. A. castellanii Trophozoites
3.5.3. A. castellanii Cysts
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisen, S.; Fiore-Donno, A.M.; Walochnik, J.; Bonkowski, M. Acanthamoeba everywhere: High diversity of Acanthamoeba in soils. Parasitol. Res. 2014, 113, 3151–3158. [Google Scholar] [CrossRef] [PubMed]
- Schustera, F.L.; Visvesvara, G.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 2004, 34, 1001–1027. [Google Scholar] [CrossRef]
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [Google Scholar] [CrossRef]
- Vyas, S.; Jain, V.; Goyal, M.K.; Radotra, B.D.; Khandelwal, N. Granulomatous amoebic meningoencephalitis. Neurol. India 2013, 61, 530–531. [Google Scholar] [CrossRef]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef]
- Niederkorn, J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021, 202, 108365. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Wei, Z.; Cao, K.; Zhang, Z.; Liang, Q. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. J. Infect. Public Health 2023, 16, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Varacalli, G.; Di Zazzo, A.; Mori, T.; Dohlman, T.H.; Spelta, S.; Coassin, M.; Bonini, S. Challenges in Acanthamoeba keratitis: A review. J. Clin. Med. 2021, 10, 942. [Google Scholar] [CrossRef]
- Petrillo, F.; Tortori, A.; Vallino, V.; Galdiero, M.; Fea, A.M.; De Sanctis, U.; Reibaldi, M. Understanding Acanthamoeba keratitis: An in-depth review of a sight-threatening eye infection. Microorganisms 2024, 12, 758. [Google Scholar] [CrossRef]
- Büchele, M.L.C.; Nunes, B.F.; Filippin-Monteiro, F.B.; Caumo, K.S. Diagnosis and treatment of Acanthamoeba keratitis: A scoping review demonstrating unfavorable outcomes. Contact Lens Anterior Eye 2023, 46, 101844. [Google Scholar] [CrossRef]
- Fanselow, N.; Sirajuddin, N.; Yin, X.-T.; Huang, A.J.W.; Stuart, P.M. Acanthamoeba keratitis, pathology, diagnosis and treatment. Pathogens 2021, 10, 323. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, U.; Anwar, A.; Ong, S.-K.; Anwar, A.; Khan, N.A. Applications of medicinal chemistry for drug discovery against Acanthamoeba infections. Med. Res. Rev. 2022, 42, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Batlle, M.; Sifaoui, I.; Rodríguez-Expósito, R.L.; Piñero, J.E.; Lorenzo-Morales, J. New insights in Acanthamoeba. Pathogens 2022, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Gasser, G.; Ott, S.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem. 2011, 54, 3–25. [Google Scholar] [CrossRef]
- Noffke, A.L.; Habtemariam, A.; Pizarro, A.M.; Sadler, P.J. Designing organometallic compounds for catalysis and therapy. Chem. Commun. 2012, 48, 5219–5246. [Google Scholar] [CrossRef]
- Middya, P.; Chattopadhyay, S. An overview of synthesis, structure and biological application of N-heterocyclic carbene complexes of silver. J. Mol. Struct. 2025, 1324, 140842. [Google Scholar] [CrossRef]
- Ceramella, J.; Catalano, A.; Mariconda, A.; D’Amato, A.; Aquila, S.; Saturnino, C.; Rosano, C.; Sinicropi, M.S.; Longo, P. Silver N-heterocyclic carbene (NHC) complexes as antimicrobial and/or anticancer agents. Pharmaceuticals 2025, 18, 9. [Google Scholar] [CrossRef]
- Şahin, N.; Mosrati, M.A.; Merghni, A.; Özdemir, İ.; Sellami, H.; Bedchiche, K.; Krayiem, S.; Aifa, S.; Abdelmalek, D.; Sémeril, D. Synthesis, antimicrobial and antibiofilm activities of silver(I) complexes with N-alkylbenzimidazole derivatives and their protein interaction modelling study. J. Mol. Struct. 2025, 1322, 140440. [Google Scholar] [CrossRef]
- Fischer, E.O.; Maasböl, A. On the existence of a tungsten carbonyl carbene complex. Angew. Chem. Int. Ed. 1964, 3, 580–581. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Köcher, C. N-Heterocyclic carbenes. Angew. Chem. Int. Ed. 2017, 36, 2162–2187. [Google Scholar] [CrossRef]
- Wanzlick, H.-W.; Schönherr, H.-J. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. 1968, 7, 141–142. [Google Scholar] [CrossRef]
- Öfele, K. 1,3-Dimethyl-4-Imidazolinyliden-(2)-Pentacarbonylchrom ein neuer Übergangsmetall-Carben-Komplex. J. Organomet. Chem. 1968, 12, 42–43. [Google Scholar] [CrossRef]
- Arduengo, A.J., III; Kline, M.; Calabrese, J.C.; Davidson, F. Synthesis of a reverse ylide from a nucleophilic carbene. J. Am. Chem. Soc. 1991, 113, 9704–9705. [Google Scholar] [CrossRef]
- Herrmann, W.A. N-Heterocyclic carbenes: A new concept in organometallic catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. [Google Scholar] [CrossRef]
- Cavallo, L.; Correa, A.; Costabile, C.; Jacobsen, H. Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals. J. Organomet. Chem. 2005, 690, 5407–5413. [Google Scholar] [CrossRef]
- Lasmari, S.; Ikhlef, S.; Boulcina, R.; Mokrani, E.H.; Bensouici, C.; Gürbüz, N.; Dündar, M.; Karcı, H.; Özdemir, İ.; Koç, A.; et al. New silver N-heterocyclic carbenes complexes: Synthesis, molecular docking study and biological activities evaluation as cholinesterase inhibitors and antimicrobials. J. Mol. Struct. 2021, 1238, 130399. [Google Scholar] [CrossRef]
- Ashraf, R.; Bhatti, H.N.; Iqbal, M.A.; Jamil, Y. Synthesis of aryl linked binuclear silver N-heterocyclic carbene complexes, DNA interaction study and biological potentials. Inorg. Chem. Commun. 2020, 119, 108077. [Google Scholar] [CrossRef]
- Hussaini, S.Y.; Haque, R.A.; Razali, M.R. Recent progress in silver(I)-, gold(I)/(III) -and palladium(II)-N-heterocyclic carbene complexes: A review towards biological perspectives. J. Organomet. Chem. 2019, 882, 96–111. [Google Scholar] [CrossRef]
- Sánchez, O.; González, S.; Higuera-Padilla, Á.R.; León, Y.; Coll, D.; Fernández, M.; Taylor, P.; Urdanibia, I.; Rangel, H.R.; Ortega, J.T.; et al. Remarkable in vitro anti-HIV activity of new silver(I)- and gold(I)-N-heterocyclic carbene complexes. Synthesis, DNA binding and biological evaluation. Polyhedron 2016, 110, 14–23. [Google Scholar] [CrossRef]
- Brown, M.R.W.; Anderson, R.A. The bactericidal effect of silver ions on Pseudomonas aeruginosa. J. Pharm. Pharmacol. 1968, 20, 1S–3S. [Google Scholar] [CrossRef] [PubMed]
- Melaiye, A.; Youngs, W.J. Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat. 2005, 15, 125–130. [Google Scholar] [CrossRef]
- Banti, C.N.; Hadjikakou, S.K. Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics 2013, 5, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical uses of silver: History, myths, and scientic evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef]
- Hendiger, E.B.; Padzik, M.; Sifaoui, I.; Reyes-Batlle, M.; López-Arencibia, A.; Rizo-Liendo, A.; Bethencourt-Estrella, C.J.; San Nicolás-Hernández, D.; Chiboub, O.; Rodríguez-Expósito, R.L.; et al. Silver nanoparticles as a novel potential preventive agent against Acanthamoeba keratitis. Pathogens 2020, 9, 350. [Google Scholar] [CrossRef]
- Niyyati, M.; Sasani, R.; Mohebali, M.; Ghazikhansari, M.; Kargar, F.; Hajialilo, E.; Rezaeian, M. Anti-Acanthamoeba effects of silver and gold nanoparticles and contact lenses disinfection solutions. Iran J. Parasitol. 2018, 13, 180–185. [Google Scholar]
- Padzik, M.; Hendiger, E.B.; Chomicz, L.; Grodzik, M.; Szmidt, M.; Grobelny, J.; Lorenzo-Morales, J. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol. Res. 2018, 117, 3519–3525. [Google Scholar] [CrossRef]
- Meng, G.; Kakalis, L.; Nolan, S.P.; Szostak, M. A simple 1H NMR method for determining the σ-donor properties of N-heterocyclic carbenes. Tetrahedron Lett. 2019, 60, 378–381. [Google Scholar] [CrossRef]
- Şahin, N.; Zengin, S.; Özdemir, İ.; Sémeril, D. C-H activation of furanyl and thiofuranyl substrates catalyzed by trans-dichloro [1-cinnamyl-3-arylmethyl-benzimidazol-2-yliden]pyridine palladium(II) complexes. Polyhedron 2024, 261, 117144. [Google Scholar] [CrossRef]
- Ray, S.; Mohan, R.; Singh, J.K.; Samantaray, M.K.; Shaikh, M.M.; Panda, D.; Ghosh, P. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc. 2007, 129, 15042–15053. [Google Scholar] [CrossRef]
- Garrison, J.C.; Youngs, W.J. Ag(I) N-heterocyclic carbene complexes: Synthesis, structure, and application. Chem. Rev. 2005, 105, 3978–4008. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, M.C.; Laguna, A.; Visbal, R. N-Heterocyclic carbene coinage metal complexes as intense blue-green emitters. Organometallics 2012, 31, 7146–7157. [Google Scholar] [CrossRef]
- Tulloch, A.A.D.; Danopoulos, A.A.; Winston, S.; Kleinhenz, S.; Eastham, G. N-Functionalised heterocyclic carbene complexes of silver. J. Chem. Soc. Dalton Trans. 2000, 4499–4506. [Google Scholar] [CrossRef]
- Laidlaw, G.; Wood, S.H.; Kennedy, A.R.; Nelson, D.J. An N-heterocyclic carbene with a saturated backbone and spatially-defined steric impact. Z. Anorg. Allg. Chem. 2019, 645, 105–112. [Google Scholar] [CrossRef]
- Tutar, U.; Çelik, C.; Üstün, E.; Özdemir, N.; Sahin, N.; Sémeril, D.; Gürbüz, N.; Özdemir, İ. Benzimidazol-2-ylidene silver complexes: Synthesis, characterization, antimicrobial and antibiofilm activities, molecular docking and theoretical investigations. Inorganics 2023, 11, 385. [Google Scholar] [CrossRef]
- Asekunowo, P.O.; Haque, R.A.; Razali, M.R. A comparative insight into the bioactivity of mono- and binuclear silver(I)-N-heterocyclic carbene complexes: Synthesis, lipophilicity and substituent effect. Rev. Inorg. Chem. 2017, 37, 29–50. [Google Scholar] [CrossRef]
- Ronga, L.; Varcamonti, M.; Tesauro, D. Structure-activity relationships in NHC-silver complexes as antimicrobial agents. Molecules 2023, 28, 4435. [Google Scholar] [CrossRef]
- Admetlab. Available online: https://admetlab3.scbdd.com/ (accessed on 22 May 2025).
- Tan, K.L.; Vasudevan, A.; Bergman, R.G.; Ellman, J.A.; Souers, A.J. Microwave-assisted C-H bond activation: A rapid entry into functionalized heterocycles. Org. Lett. 2003, 5, 2131–2134. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar]
- Schuster, F.L. Cultivation of pathogenic and opportunistic free-living amebas. Clin. Microbiol. Rev. 2002, 15, 342–354. [Google Scholar] [CrossRef] [PubMed]
Benzimidazolium Salts | Silver Complexes | ||||||
---|---|---|---|---|---|---|---|
FT-IR ν(CN) (cm−1) | 1H NMR NCHN (CDCl3; ppm) | 13C{1H} NMR NCHN (CDCl3; ppm) | FT-IR ν(CN) (cm−1) | 13C{1H} NMR NC(Ag)N (DMSO-d6; ppm) | |||
1a | 1556 | 11.78 (1JCH = 220 Hz) | 143.88 | 3a | 1387 | 188.49 | |
1b | 1556 | 11.94 (1JCH = 223 Hz) | 144.14 | 3b | 1379 | Not observed | |
1c | [39] | 1560 | 12.02 (1JCH = 221 Hz) | 144.03 | 3c | 1394 | Not observed |
1d | [39] | 1562 | 12.15 (1JCH = 220 Hz) | 144.26 | 3d | 1385 | 189.04 |
1e | [39] | 1562 | 10.07 (1JCH = 220 Hz) | 142.71 | 3e | 1391 | 188.64 |
1f | 1556 | 12.17 (1JCH = 225 Hz) | 144.09 | 3f | 1387 | Not observed |
Silver Complex | Calculated logP |
---|---|
3a | 3.99 |
3b | 3.42 |
3c | 4.60 |
3d | 4.82 |
3e | 4.86 |
3f | 5.01 |
3c | 3d | |
---|---|---|
CCDC depository | 2453683 | 2451735 |
Chemical formula | Ag2Cl2C46H40N4 | Ag2Cl2C46H38F2N4 |
Molar mass (g.mol−1) | 935.46 | 971.44 |
Temperature (K) | 173(2) | 120(2) |
Crystal system | Triclinic | Triclinic |
Space group | ||
a (Å) | 8.725(6) | 8.6142(3) |
b (Å) | 10.626(9) | 10.6406(4) |
c (Å) | 10.982(9) | 11.1741(4) |
α (°) | 106.338(10) | 107.7810(10) |
β (°) | 91.58(2) | 91.7150(10) |
γ (°) | 100.33(2) | 101.2310(10) |
Volume (Å3) | 957.9(13) | 952.22(6) |
Z | 1 | 1 |
ρcalc. (g·cm−3) | 1.622 | 1.694 |
μ (mm−1) | 1.201 | 1.219 |
F000 | 472 | 488 |
Crystral size (mm) | 0.180 × 0.140 × 0.120 | 0.140 × 0.120 × 0.080 |
Radiation (λ/Å) | 0.71073 Mo Kα | 0.71073 Mo Kα |
θ range for data collection (°) | 1.939 ≤ θ ≤ 27.947 | 2.42 ≤ θ ≤ 27.88 |
Reflections collected | 37155 | 35981 |
Rint | 0.0508 | 0.0468 |
Goodness-of-fit on F2 | 1.021 | 1.008 |
R1, wR2 [I > 2σ(I)] | R1 = 0.0334, wR2 = 0.0738 | R1 = 0.0264, wR2 = 0.0559 |
R1, wR2 (all data) | R1 = 0.0487, wR2 = 0.0816 | R1 = 0.0340, wR2 = 0.0594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akın-Polat, Z.; Şahin, N.; Hkiri, S.; Ly, B.M.T.; Özdemir, İ.; Sémeril, D. In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects. Inorganics 2025, 13, 204. https://doi.org/10.3390/inorganics13060204
Akın-Polat Z, Şahin N, Hkiri S, Ly BMT, Özdemir İ, Sémeril D. In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects. Inorganics. 2025; 13(6):204. https://doi.org/10.3390/inorganics13060204
Chicago/Turabian StyleAkın-Polat, Zübeyda, Neslihan Şahin, Shaima Hkiri, Bui Minh Thu Ly, İsmail Özdemir, and David Sémeril. 2025. "In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects" Inorganics 13, no. 6: 204. https://doi.org/10.3390/inorganics13060204
APA StyleAkın-Polat, Z., Şahin, N., Hkiri, S., Ly, B. M. T., Özdemir, İ., & Sémeril, D. (2025). In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects. Inorganics, 13(6), 204. https://doi.org/10.3390/inorganics13060204