Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Catalyst Samples
3.2. Catalytic Experiment
3.3. High Performance Liquid Chromatography
3.4. Low-Temperature Nitrogen Adsorption
3.5. X-Ray Fluorescence Analysis (XRF)
3.6. Transmission Electron Microscopy (TEM)
3.7. Scanning Electron Microscopy (SEM)
3.8. X-Ray Diffraction (XRD)
3.9. Temperature-Programmed Reduction (TPR-H2)
3.10. X-Ray Photoelectron Spectroscopy (XPS)
4. Conclusions
- During the preparation of catalysts, the granules of the γ-Al2O3 carrier are destroyed from a fraction of 125–250 μm to fine crumbs with rare inclusions of granules up to 80 μm.
- Pdx:Bi/Al2O3 catalysts obtained by the method of joint impregnation of γ-Al2O3 with Pd(C5H7O2)2 and Bi(CH3COO)3 precursors have a high degree of dispersion with average sizes from 3.9 to 4.5 nm. The average size decreases with decreasing Bi fraction, but the contribution from single inclusions of larger particles (>10 nm) increases. A small amount of larger particles (>10 nm) does not have a significant effect on the overall activity.
- Pd and Bi demonstrate close proximity on the surface of the support. No monometallic particles were found. An analysis of the composition of a random sample of individual particles showed that all particles contain both Pd and Bi in their composition. For Pd10:Bi1/Al2O3, the largest contribution is made by particles with an atomic Pd/Bi ratio of 8–10, which corresponds to the theoretically calculated value and the results of the XRF elemental analysis.
- Analysis of the particle structure in the catalysts showed the presence of signals (111), (200), (220), (311) of Pd fcc Fm-3m, and the absence of any signals that correspond to Bi. The measured values of the lattice spacings are increased in comparison with the standard values for Pd, which indicates the formation of a Pd-Bi solid solution with an fcc structure.
- The addition of a significant amount of Bi leads to a shift in the Pd0 state towards a lower binding energy, which leads to the formation of electron-rich Pd active centers. An increase in the Bi additive also increases the proportion of oxidized BiIII up to 72.5%, while a minimal Bi additive leads to the opposite effect, reducing the proportion of the oxidized state to 29.8%. With minimal addition of Bi, there is also a Bi0 shift towards greater binding energy. These dependences are explained by the strong intermetallic electronic interaction of Pd and Bi.
- It is shown that PdII can take the form of both PdOx and Pd-O-Bi. which reduced at different temperatures. Moreover, with a decrease in the Bi additive, the catalysts have a greater tendency to form a mixed Pd-O-Bi oxide. TPR analysis showed that Pdx:Bi/Al2O3 catalysts contain various forms of Pd, including PdO and mixed Pd-O-Bi structures, which are reduced in different temperature ranges.
- The Pd10:Bi1/Al2O3 catalyst demonstrated the highest efficiency in the reaction of selective oxidation of glucose to gluconic acid (77.2% glucose conversion, 96% selectivity for sodium gluconate). However, both Pd10:Bi1/Al2O3 and Pd5:Bi1/Al2O3 have almost identical rate constants and initial reaction rates, and the first 40 min proceed the same for both samples. However, the deactivation of Pd5:Bi1/Al2O3 begins a little earlier than that of Pd10:Bi1/Al2O3, which indicates that the exact optimal atomic ratio of Pd/Bi is between 5 and 10 (presumably closer to 10).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malcolmson, S.J.; Meek, S.J.; Sattely, E.S.; Schrock, R.R.; Hoveyda, A.H. Highly Efficient Molybdenum-Based Catalysts for Enantioselective Alkene Metathesis. Nature 2008, 456, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Lo, T.W.B.; Tsang, S.C.E. Recent Developments in Pd-Based Bimetallic Catalysts. ChemCatChem 2015, 7, 1998–2014. [Google Scholar] [CrossRef]
- Fan, J.; Du, H.; Zhao, Y.; Wang, Q.; Liu, Y.; Li, D.; Feng, J. Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catal. 2020, 10, 13560–13583. [Google Scholar] [CrossRef]
- Ellert, O.G.; Tsodikov, M.V.; Nikolaev, S.A.; Novotortsev, V.M. Bimetallic Nanoalloys in Heterogeneous Catalysis of Industrially Important Reactions: Synergistic Effects and Structural Organization of Active Components. Russ. Chem. Rev. 2014, 83, 718–732. [Google Scholar] [CrossRef]
- Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 93. [Google Scholar] [CrossRef]
- Lüsi, M.; Erikson, H.; Piirsoo, H.-M.; Paiste, P.; Aruväli, J.; Kikas, A.; Kisand, V.; Tamm, A.; Tammeveski, K. Oxygen Reduction Reaction on PdM/c (M = Pb, Sn, Bi) Alloy Nanocatalysts. J. Electroanal. Chem. 2022, 917, 116391. [Google Scholar] [CrossRef]
- Witońska, I.A.; Walock, M.J.; Dziugan, P.; Karski, S.; Stanishevsky, A.V. The Structure of Pd–M Supported Catalysts Used in the Hydrogen Transfer Reactions (M=In, Bi and Te). Appl. Surf. Sci. 2013, 273, 330–342. [Google Scholar] [CrossRef]
- Odularu, A.T. Bi as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry. J. Chem. 2020, 2020, 9802934. [Google Scholar] [CrossRef]
- Mandal, M.K.; Dey, S.; Basu, S. Investigation on Borohydride Oxidation Performance of Activated Charcol Supported Pd-Bi Nanoparticles Electrocatalyst for Fuel Cell Application. J. Appl. Electrochem. 2025, 55, 95–107. [Google Scholar] [CrossRef]
- Lima, F.S.; Fontes, E.H.; Nandenha, J.; de Souza, R.F.B.; Neto, A.O. Addition of Bi to Pt and Pd for Electric Power Generation with Selective Cogeneration of Acetate from Ethanol in a Fuel Cell Type Reactor. J. Fuel Chem. Technol. 2021, 49, 1540–1548. [Google Scholar] [CrossRef]
- Hossain, S.S.; Saleem, J.; Alwi, A.; Al-Odail, F.A.; Hossain, M.M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells—Part I—Fundamentals and Pd Based Catalysts. Chem. Rec. 2022, 22, e202200045. [Google Scholar] [CrossRef]
- Du, L.; Zheng, L.; Wei, H.; Zheng, S.; Zhu, Z.; Chen, J.; Yang, D. Pd/Bi Nanowires with Rough Surface for Stable Hydrogen Sensing at Low Temperatures. ACS Appl. Nano Mater. 2019, 2, 1178–1184. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, X.; Deng, C.; Cai, W.-B.; Jiang, K. Electrocatalytic CO2 and HCOOH Interconversion on Pd-Based Catalysts. Adv. Sens. Energy Mater. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Ten, S.A.; Kurmanova, M.D.; Kurmanbayeva, K.; Torbina, V.V.; Stonkus, O.A.; Vodyankina, O.V. Base-Free Cascade Glycerol Conversion to Lactic Acid over Pd-Bi Nanoparticles Immobilized in Metal-Organic Framework Zr-UiO-66. Appl. Catal. A 2024, 674, 119603. [Google Scholar] [CrossRef]
- Costa Santos, J.B.; Vieira, C.; Crisafulli, R.; Linares, J.J. Promotional Effect of Auxiliary Metals Bi on Pt, Pd, and Ag on Au, for Glycerol Electrolysis. Int. J. Hydrogen Energy 2019, 45, 25658–25671. [Google Scholar] [CrossRef]
- Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P. Self-Supported PdxBi Catalysts for the Electrooxidation of Glycerol in Alkaline Media. J. Am. Chem. Soc. 2014, 136, 3937–3945. [Google Scholar] [CrossRef]
- Wang, P.; Xu, L.; Zhu, J.; Gao, K.; Zhang, Y.; Wang, J. Reaction Induced Robust PdxBiy/SiC Catalyst for the Gas Phase Oxidation of Monopolistic Alcohols. RSC Adv. 2020, 10, 42564–42569. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Huang, Y.; Guo, Y. Bi-Modified Pd/c Catalyst via Irreversible Adsorption and Its Catalytic Activity for Ethanol Oxidation in Alkaline Medium. Electrochim. Acta 2013, 99, 22–29. [Google Scholar] [CrossRef]
- Yang, H.; Xie, J.; Liu, Y.; Dong, Q. Rational Design of PdBi Nanochains with Grain Boundaries for Enhanced Ethanol Oxidation Reaction. Int. J. Hydrogen Energy 2022, 47, 14859–14868. [Google Scholar] [CrossRef]
- Shi, J.; Dou, K.; Xie, D.; Zhang, F. Semi-Hydrogenation of Acetylenic Alcohol to Olefinic Alcohol Catalyzed by Pd Nanoparticles Embedded in Nitrogen-Enriched Porous Carbon Derived from ZIF-8. Appl. Catal. O 2024, 191, 206917. [Google Scholar] [CrossRef]
- Kang, H.; Wu, J.; Lou, B.; Wang, Y.; Zhao, Y.; Liu, J.; Zou, S.; Fan, J. Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules 2023, 28, 2335. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Lin, C.-L.; Chen, L.-C. A Binary Pd–Bi Nanocatalyst with High Activity and Stability for Alkaline Glucose Electrooxidation. J. Power Sources 2015, 287, 323–333. [Google Scholar] [CrossRef]
- Sandu, M.P.; Sidelnikov, V.S.; Geraskin, A.A.; Chernyavskii, A.V.; Kurzina, I.A. Influence of the Method of Preparation of the Pd-Bi/Al2O3 Catalyst on Catalytic Properties in the Reaction of Liquid-Phase Oxidation of Glucose into Gluconic Acid. Catalysts 2020, 10, 271. [Google Scholar] [CrossRef]
- Anastassiadis, S.; Morgunov, I.G. Gluconic Acid Production. Recent Pat. Biotechnol. 2007, 1, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Cañete-Rodríguez, A.M.; Santos-Dueñas, I.M.; Jiménez-Hornero, J.E.; Ehrenreich, A.; Liebl, W.; García-García, I. Gluconic Acid: Properties, Production Methods and Applications—An Excellent Opportunity for Agro-Industrial By-Products and Waste Bio-Valorization. Process Biochem. 2016, 51, 1891–1903. [Google Scholar] [CrossRef]
- Ramachandran, S.; Nair, S.; Larroche, C.; Pandey, A. Gluconic Acid. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–599. [Google Scholar] [CrossRef]
- Villa, A.; Wang, D.; Su, D.S.; Prati, L. New Challenges in Gold Catalysis: Bimetallic Systems. Catal. Sci. Technol. 2015, 5, 55–68. [Google Scholar] [CrossRef]
- Karski, S. Activity and Selectivity of Pd–Bi/SiO2 Catalysts in the Light of Mutual Interaction between Pd and Bi. J. Mol. Catal. A Chem. 2006, 253, 147–154. [Google Scholar] [CrossRef]
- Wenkin, M.; Ruiz, P.; Delmon, B.; Devillers, M. The Role of Bi as Promoter in Pd–Bi Catalysts for the Selective Oxidation of Glucose to Gluconate. J. Mol. Catal. A Chem. 2002, 180, 141–159. [Google Scholar] [CrossRef]
- Xia, S.; Wu, F.; Cheng, L.; Bao, H.; Gao, W.; Duan, J.; Niu, W.; Xu, G. Maneuvering the Peroxidase-like Activity of Palladium-Based Nanozymes by Alloying with Oxophilic Bismuth for Biosensing. Small 2022, 19, 2205997. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova-Sandu, M.P.; Saraev, A.A.; Knyazev, A.S.; Kurzina, I.A. Pd-Bi-Based Catalysts for Selective Oxidation of Glucose into Gluconic Acid: The Role of Local Environment of Nanoparticles in Dependence of Their Composition. Catalysts 2024, 14, 66. [Google Scholar] [CrossRef]
- Wenkin, M.; Renard, C.; Ruiz, P.; Delmon, B.; Devillers, M. Promoting Effects of Bi in Carbon-Supported Bimetallic Pd-Bi Catalysts for the Selective Oxidation of Glucose to Gluconic Acid. Stud. Surf. Sci. Catal. 1997, 110, 517–526. [Google Scholar] [CrossRef]
- Sandu, M.P.; Kovtunov, M.A.; Baturin, V.S.; Oganov, A.R.; Kurzina, I.A. Influence of the Pd : Bi Ratio on Pd–Bi/Al2O3 Catalysts: Structure, Surface and Activity in Glucose Oxidation. Phys. Chem. Chem. Phys 2021, 23, 14889–14897. [Google Scholar] [CrossRef]
- An, K.; Somorjai, G.A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem 2012, 4, 1512–1524. [Google Scholar] [CrossRef]
- Chen, Q.; Ren, Y.; Jin, H.; Wang, Z.; Cheng, T.; Sun, T.; Tian, J.; Zhu, Y. Icosahedral Pd Nanocrystal Catalysts with Dispersed Bi Atoms via Photochemical Route for Enhanced Formic Acid Oxidation Reaction. ChemNanoMat 2023, 9, e202300127. [Google Scholar] [CrossRef]
- Thiele, E.W. Relation between Catalytic Activity and Size of Particle. Ind. Eng. Chem. 1939, 31, 916–920. [Google Scholar] [CrossRef]
- Chen, J.; Yiu, Y.M.; Wang, Z.; Covelli, D.; Sammynaiken, R.; Finfrock, Y.Z.; Sham, T.-K. Elucidating the Many-Body Effect and Anomalous Pt and Ni Core Level Shifts in X-Ray Photoelectron Spectroscopy of Pt–Ni Alloys. J. Phys. Chem. C 2020, 124, 2313–2318. [Google Scholar] [CrossRef]
- Wang, X.; Chu, M.; Wang, M.; Zhong, Q.; Chen, J.; Wang, Z.; Cao, M.; Yang, H.; Cheng, T.; Chen, J.; et al. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne. ACS Nano 2022, 16, 16869–16879. [Google Scholar] [CrossRef]
- Sun, D.; Wang, Y.; Livi, K.J.T.; Wang, C.; Luo, R.; Zhang, Z.; Alghamdi, H.; Li, C.; An, F.; Gaskey, B.; et al. Ordered Intermetallic Pd3Bi Prepared by an Electrochemically Induced Phase Transformation for Oxygen Reduction Electrocatalysis. ACS Nano 2019, 13, 10818–10825. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.; Bai, C.; Liu, Q.; Chen, F.; Chen, R. General synthesis and atomic arrangement identification of ordered Bi-Pd intermetallics with tunable electrocatalytic CO2 reduction selectivity. Nat. Commun. 2024, 15, 1573. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ma, Z.; Li, X.; Kang, J.; Ma, D.; Chu, K. Single-Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia. Adv. Funct. Mater. 2023, 33, 2209890. [Google Scholar] [CrossRef]
- Hong, L.; Dong, Q.; Qin, Q.; Li, H.; Xie, J.; Yu, G.; Chen, H. PdBi Alloy Nanoparticle-Enhanced Catalytic Activity toward Formic Acid Oxidation. Int. J. Hydrogen Energy 2019, 44, 19900–19907. [Google Scholar] [CrossRef]
- Qin, F.; Li, G.; Xiao, H.; Lu, Z.; Sun, H.; Chen, R. Large-Scale Synthesis of Bismuth Hollow Nanospheres for Highly Efficient Cr(VI) Removal. Dalton Trans. 2012, 41, 11263. [Google Scholar] [CrossRef]
- Lao, X.; Yang, M.; Sheng, X.; Sun, J.; Wang, Y.; Zheng, D.; Pang, M.; Fu, A.; Li, H.; Guo, P. Monodisperse PdBi Nanoparticles with a Face-Centered Cubic Structure for Highly Efficient Ethanol Oxidation. ACS Appl. Energy Mater. 2021, 5, 1282–1290. [Google Scholar] [CrossRef]
- Militello, M.C.; Simko, S.J. Elemental Pd by XPS. Surf. Sci. Spectra 1994, 3, 387–394. [Google Scholar] [CrossRef]
- Mowery, D.L.; Graboski, M.S.; Ohno, T.R.; McCormick, R.L. Deactivation of PdO–Al2O3 Oxidation Catalyst in Lean-Burn Natural Gas Engine Exhaust: Aged Catalyst Characterization and Studies of Poisoning by H2O and SO2. Appl. Catal. B 1999, 21, 157–169. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, G.; Pu, Y. Conductivity of ZnO Nanomaterials Measured by Terahertz Time-Domain. SPIE Proc. 2011, 8195, 81950P. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, T.; Pan, H.; Fu, D.; Han, Y. Change of the Short-Range Scattering in the Graphene Covered with Bi2O3 Clusters. Physica E 2015, 78, 79–84. [Google Scholar] [CrossRef]
- Valero, M.C.; Raybaud, P.; Sautet, P. Interplay between Molecular Adsorption and Metal–Support Interaction for Small Supported Metal Clusters: CO and C2H4 Adsorption on Pd4/γ-Al2O3. J. Catal. 2007, 247, 339–355. [Google Scholar] [CrossRef]
- Witońska, I.; Królak, A.; Karski, S. Bi modified Pd/support (SiO2, Al2O3) catalysts for hydrodechlorination of 2,4-dichlorophenol. J. Mol. Catal. A Chem. 2010, 331, 21–28. [Google Scholar] [CrossRef]
- Bogdanchikova, N.; Pestryakov, A.; Tuzovskaya, I.; Zepeda, T.A.; Farias, M.H.; Tiznado, H.; Martynyuk, O. Effect of Redox Treatments on Activation and Deactivation of Gold Nanospecies Supported on Mesoporous Silica in CO Oxidation. Fuel 2012, 110, 40–47. [Google Scholar] [CrossRef]
- Besson, M.; Lahmer, F.; Gallezot, P.; Fuertès, P.; Flèche, G. Catalytic Oxidation of Glucose on Bismuth-Promoted Palladium Catalysts. J. Catal. 1995, 152, 116–121. [Google Scholar] [CrossRef]
- Tromans, D. Temperature and Pressure Dependent Solubility of Oxygen in Water: A Thermodynamic Analysis. Hydrometallurgy 1998, 48, 327–342. [Google Scholar] [CrossRef]
Sample/Al2O3 | Pd, eV | Part, % | Bi, eV | Part, % |
---|---|---|---|---|
Pd/Al2O3 | Pd0—334.9 | 86.6 | – | |
PdII—337.8 | 13.4 | |||
Bi/Al2O3 | – | Bi0—156.9 | 58.5 | |
BiIII—158.7 | 41.5 | |||
Pd5:Bi1/Al2O3 | Pd0—334.3 | 95.1 | Bi0—157.0 | 32.6 |
PdII—337.6 | 4.9 | BiIII—158.7 | 67.4 | |
Pd10:Bi1/Al2O3 | Pd0—334.6 | 94.3 | Bi0—157.0 | 27.5 |
PdII—337.6 | 5.7 | BiIII—158.7 | 72.5 | |
Pd15:Bi1/Al2O3 | Pd0—334.7 | 95.2 | Bi0—157.2 | 50.8 |
PdII—337.4 | 4.8 | BiIII—158.6 | 49.2 | |
Pd20:Bi1/Al2O3 | Pd0—334.8 | 92.5 | Bi0—157.3 | 70.2 |
PdII—337.5 | 7.5 | BiIII—158.6 | 29.8 |
Catalyst | Glucose Conversion XGlu, % | Sodium Gluconate Yield YNaGlu, % | Fructose Yield YFru, % | Sodium Gluconate Selectivity SNaGlu, % | Rate Constant k × 105, c −1 | Initial Reaction Rate W0 × 104, mol/(L × s) |
---|---|---|---|---|---|---|
No catalyst | 3.3 | − | 3.3 | − | − | − |
Pd/Al2O3 | 28.7 | 25.9 | 2.8 | 90.2 | 7.77 | 0.45 |
Pd5:Bi1/Al2O3 | 69.3 | 66.4 | 2.9 | 95.8 | 21.13 | 1.12 |
Pd10:Bi1/Al2O3 | 77.2 | 74.0 | 3.2 | 95.9 | 21.03 | 1.11 |
Pd15:Bi1/Al2O3 | 60.9 | 57.8 | 3.1 | 94.9 | 19.54 | 1.05 |
Pd20:Bi1/Al2O3 | 50.9 | 48.2 | 2.7 | 94.7 | 12.00 | 0.67 |
Sample/Al2O3 | Pd, wt. % | Bi, wt. % | Atomic Ratio Pd/Bi | Specific Surface Area Ssp., m2/g | Total Pore Volume V, cm3/g | Average Pore Diameter D, nm |
---|---|---|---|---|---|---|
Pd5:Bi1 | 3.5 | 1.6 | 4.2 | 133.7 | 0.27 | 6.2 |
Pd10:Bi1 | 4.1 | 0.8 | 10.4 | 127.1 | 0.27 | 6.2 |
Pd15:Bi1 | 4.2 | 0.5 | 15.5 | 135.8 | 0.28 | 6.3 |
Pd20:Bi1 | 3.9 | 0.4 | 19.2 | 133.1 | 0.28 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shcherbakova-Sandu, M.P.; Gulevich, S.A.; Meshcheryakov, E.P.; Kazantseva, K.I.; Chernyavskii, A.V.; Pestryakov, A.N.; Kushwaha, A.K.; Kumar, R.; Sonwane, A.K.; Samal, S.; et al. Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties. Inorganics 2025, 13, 205. https://doi.org/10.3390/inorganics13060205
Shcherbakova-Sandu MP, Gulevich SA, Meshcheryakov EP, Kazantseva KI, Chernyavskii AV, Pestryakov AN, Kushwaha AK, Kumar R, Sonwane AK, Samal S, et al. Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties. Inorganics. 2025; 13(6):205. https://doi.org/10.3390/inorganics13060205
Chicago/Turabian StyleShcherbakova-Sandu, Mariya P., Semyon A. Gulevich, Eugene P. Meshcheryakov, Kseniya I. Kazantseva, Aleksandr V. Chernyavskii, Alexey N. Pestryakov, Ajay K. Kushwaha, Ritunesh Kumar, Akshay K. Sonwane, Sonali Samal, and et al. 2025. "Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties" Inorganics 13, no. 6: 205. https://doi.org/10.3390/inorganics13060205
APA StyleShcherbakova-Sandu, M. P., Gulevich, S. A., Meshcheryakov, E. P., Kazantseva, K. I., Chernyavskii, A. V., Pestryakov, A. N., Kushwaha, A. K., Kumar, R., Sonwane, A. K., Samal, S., & Kurzina, I. A. (2025). Exploring the Impact of Bi Content in Nanostructured Pd-Bi Catalysts Used for Selective Oxidation of Glucose: Synthesis, Characterization and Catalytic Properties. Inorganics, 13(6), 205. https://doi.org/10.3390/inorganics13060205