Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Reagent Information
2.2. Fabrication of Thin Films and Devices
2.2.1. Synthesis of W18O49 Nanowires
2.2.2. Preparation of LB Solutions
2.2.3. LB Film Deposition
2.2.4. Device Assembly
2.3. Characterization and Analytical Methods
2.3.1. LB Precursor Solution Analysis
2.3.2. Thin Film and Device Characterization
3. Results and Discussion
3.1. Interfacial Properties
3.2. TG-DSC Analysis
3.3. SEM Morphology
- (1)
- Lattice strain effects: Cu ions occupying interstitial sites or substituting W atoms within the W18O49 lattice induce local lattice distortions. Such strain perturbations disrupt the anisotropic growth dynamics of one-dimensional nanowires, destabilizing their ordered assembly.
- (2)
- Interfacial charge redistribution: Doping alters the surface charge characteristics of nanowires [26], perturbing the critical electrostatic equilibrium required for LB orientation at the air-liquid interface and introducing defects in monolayer stacking.
3.4. XPS Analysis
3.5. Electrochemical Performance
3.6. Optical Modulation and Device Metrics
- Optical modulation amplitude:
- Switching time:
- Coloration efficiency:
- (1)
- Copper doping increases coloring sites: When the copper doping concentration is ≤8%, increasing the copper doping concentration will introduce additional redox active centers, thereby increasing the number of available color development sites and improving the charge storage capacity, enhancing the electrochromic performance. When the copper doping exceeds 8%, the performance degradation originates from a critical point where structural degradation (SEM), defect site competition (XPS), and thermodynamic instability (TG-DSC) outweigh the benefits of increased redox active sites.
- (2)
- LB-order degradation: According to the quantitative analysis of the orderliness of SEM images, higher doping levels disrupt the LB-driven structural alignment of nanowires, leading to reduced ordering and a corresponding decline in coloration site density per unit area, which detrimentally impacts ion diffusion kinetics and optical modulation efficiency.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, Z.; Wang, Z.; Zuo, Y.; Zhou, H.; Sun, D.; Li, Y.; Yan, Y.; Feng, T.; Xie, A. Self-seeded growth of hexagonal-phase WO3 film by a one-step hydrothermal method for high-performance electrochromic energy storage devices. J. Power Sources 2025, 633, 236350. [Google Scholar] [CrossRef]
- Huang, S.; Guo, H.; Xia, P.; Sun, H.; Lu, C.; Feng, Y.; Zhu, J.; Liang, C.; Xu, S.; Wang, C. Integrated device of luminescent solar concentrators and electrochromic supercapacitors for self-powered smart window and display. Nat. Commun. 2025, 16, 2085. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Zhang, Z.; Liu, Y.; Li, J.; Xue, C.; Zhang, J.; Chen, Y.; Chen, Z.; Hou, X.; Zhang, L.; et al. Carbon nanotube-based solid-state mid-infrared electrochromic devices for smart outdoor thermal management. Chem. Eng. J. 2025, 507, 160802. [Google Scholar] [CrossRef]
- Ding, Y.; Qiu, Q.; Jiang, M.; Li, Y.; Shi, J.; Du, L.; Li, C.; Wang, J.; Li, Z. Ti3C2Tx MXene-mediated synthesis of a prussian blue nanocomposite film for a flexible large-area electrochromic device. ACS Appl. Mater. Interfaces 2025, 17, 15657–15665. [Google Scholar] [CrossRef] [PubMed]
- Gillissen, F.; Lobet, M.; Dewalque, J.; Colson, P.; Spronck, G.; Gouttebaron, R.; Duttine, M.; Faceira, B.; Rougier, A.; Henrard, L.; et al. Mixed molybdenum-tungsten oxide as dual-band, VIS-NIR selective electrochromic material. Adv. Opt. Mater. 2025, 13, 2401995. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, Y.; Zhao, J.; Zhang, S.; Qi, P.; Qu, X.; Yan, F.; Ding, B.; Xuan, Y.; Zhang, X. An efficient and flexible bifunctional dual-band electrochromic device integrating with energy storage. Nano Micro Lett. 2025, 17, 98. [Google Scholar] [CrossRef]
- Xu, H.; Haider, I.; Zheng, Y.; Li, W.; Zhuiykov, S.; Cui, Y. Towards the solid-state electrochromic devices: Platform based on transparent and flexible solid polymer electrolyte. Chem. Eng. J. 2025, 508, 161116. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G.; Li, C.; Qiao, M.; Tian, M.; Lin, X.; Cui, W.; Wang, X.; Liu, J.; Xu, S. W/WO3/TiO2 multilayer film with elevated electrochromic and capacitive properties. Materials 2025, 18, 161. [Google Scholar] [CrossRef]
- Yaseen, M.; Khattak, M.A.; Khan, A.; Bibi, S.; Bououdina, M.; Usman, M.; Khan, N.A.; Pirzado, A.A.; Abumousa, R.A.; Humayun, M. State-of-the-art electrochromic thin films devices, fabrication techniques and applications: A review. Nanocomposites 2024, 10, 1–40. [Google Scholar] [CrossRef]
- Chen, D.; Chua, M.; He, Q.; Zhu, Q.; Wang, X.; Meng, H.; Xu, J.; Huang, W. Multifunctional electrochromic materials and devices recent advances and future potential. Chem. Eng. J. 2025, 503, 157820. [Google Scholar] [CrossRef]
- Li, M.; Hou, M.; Wu, Y.; Li, X.; Guo, C.; Ning, H.; Li, Z.; Lu, K.; Yao, R.; Peng, J. Preparation and performance optimization of Ag-ITO composite electrode in electrochromic devices. SID Symp. Dig. Tech. Pap. 2024, 55, 1119. [Google Scholar] [CrossRef]
- Wu, H.; Ning, H.; Li, M.; Guo, C.; Li, X.; Qiu, T.; Xu, Z.; Luo, C.; Yao, R.; Peng, J. Cu-doped W18O49 nanowire reticular films for electrochromic supercapacitors. APL Mater. 2023, 11, 111120. [Google Scholar] [CrossRef]
- Yong, W.; Chen, N.; Xiong, T.; Fu, G. Development of high-performance Mo-doped WO3 photo-electrochromic devices. Mater. Today Chem. 2024, 38, 102095. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Huynh, K.A.; Le Quyet, V.; Kim, H.; Ahn, S.H.; Kim, S.Y. Highly stable electrochromic cells based on amorphous tungsten oxides prepared using a solution-annealing process. Int. J. Energy Res. 2021, 45, 8061–8072. [Google Scholar] [CrossRef]
- Kondalkar, V.V.; Yang, S.S.; Patil, P.S.; Choudhury, S.; Bhosale, P.N.; Lee, K. Langmuir-Blodgett assembly of nanometric WO3 thin film for electrochromic performance: A new way. Mater. Lett. 2017, 194, 102–106. [Google Scholar] [CrossRef]
- Orman, E.B.; Koca, A.; Özkaya, A.R.; Gürol, I.; Durmus, M.; Ahsen, V. Electrochemical, spectroelectrochemical, and electrochromic properties of lanthanide bis-phthalocyanines. J. Electrochem. Soc. 2014, 161, H422–H429. [Google Scholar] [CrossRef]
- Gu, W.; Li, Q.; Wang, R.; Zhang, L.; Liu, Z.; Jiao, T. Recent progress in the applications of Langmuir–Blodgett film technology. Nanomaterials 2024, 14, 1039. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, J.; Shen, S.; Zhu, Z.; Mao, S.; Xiao, X.; Zhu, C.; Tang, J.; Lu, X.; Chen, J. Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 2022, 32, 2109848. [Google Scholar] [CrossRef]
- Bai, T.; Li, W.; Fu, G.; Zhang, Q.; Zhou, K.; Wang, H. Dual-band electrochromic smart windows towards building energy conservation. Sol. Energy Mater. Sol. Cells 2023, 256, 112320. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, S.; Zhang, T.; Yao, Q.; Lee, J. A visible light-near-infrared dual-band smart window with internal energy storage. Joule 2019, 3, 1152–1162. [Google Scholar] [CrossRef]
- Li, R.; Lan, F.; Tang, L.; Huang, Y.; Zhao, S.; Wang, B.; Han, Y.; Gao, D.; Jiang, Q.; Zhao, Y.; et al. A local-dissociation solid-state polymer electrolyte with enhanced Li+ transport for high-performance dual-band electrochromic smart windows. Adv. Funct. Mater. 2025, 35, 2419357. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Cui, L.; Zhang, M.; Huo, X.; Guo, M. Visible-near infrared independent modulation of hexagonal WO3 induced by ionic insertion sequence and cavity characteristics. Adv. Mater. 2024, 36, 2406939. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Wang, H.; Zhang, S.; Jiu, J.; Liu, J.; Zhang, Y.; Yan, H. Electrochromic modulation of near-infrared light by WO3 films deposited on silver nanowire substrates. J. Mater. Sci. 2017, 52, 12783–12794. [Google Scholar] [CrossRef]
- Huang, Q.; Liang, Y.; Cao, S.; Yang, Z. Morphology-dependent near-infrared electrochromic properties of tungsten oxide. Coatings 2023, 13, 344. [Google Scholar] [CrossRef]
- Thummavichai, K.; Wang, N.; Xu, F.; Rance, G.; Xia, Y.; Zhu, Y. In situ investigations of the phase change behaviour of tungsten oxide nanostructures. R. Soc. Open Sci. 2018, 5, 171932. [Google Scholar] [CrossRef]
- Ahmed, I.; Dastider, S.G.; Roy, A.; Mondal, K.; Haldar, K.K. Nitrogen doping in NiS/Ni3S4 nanowire-based electrocatalysts for promoting the second-order hydrogen evolution reaction. ACS Appl. Nano Mater. 2024, 7, 661–671. [Google Scholar] [CrossRef]
- Hai, G.; Huang, J.; Cao, L.; Jie, Y.; Li, J.; Wang, X.; Zhang, G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J. Alloys Compd. 2017, 690, 239–248. [Google Scholar] [CrossRef]
- Lu, D.; Chen, J.; Deng, S.; Xu, N.; Zhang, W. The most powerful tool for the structural analysis of tungsten suboxide nanowires: Raman spectroscopy. J. Mater. Res. 2008, 23, 402–408. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Chen, X.; Li, W.; Wang, L.; Ren, F.; Zhao, J.; Endres, F.; Li, Y. Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances. ACS Sustain. Chem. Eng. 2020, 8, 11658–11666. [Google Scholar] [CrossRef]
- Zhang, X.; Dou, S.; Li, W.; Wang, L.; Qu, H.; Chen, X.; Zhang, L.; Zhao, Y.; Zhao, J.; Li, Y. Preparation of monolayer hollow spherical tungsten oxide films with enhanced near infrared electrochromic performances. Electrochim. Acta 2019, 297, 223–229. [Google Scholar] [CrossRef]
Copper Doping Ratio (%) | Modulation Amplitude ΔT (%) | Response Time tc/tb (s) | Coloration Efficiency η (cm2/C) |
---|---|---|---|
0 | 48.68 | 3.5/3.0 | 77.17 |
4 | 35.48 | 11.0/2.5 | 101.06 |
8 | 76.24 | 5.0/3.0 | 133.00 |
12 | 73.75 | 8.0/5.0 | 102.63 |
Work | Film Forming Process | Material | Coloration Efficiency η (cm2/C) | Modulation Amplitude ΔT (%) |
---|---|---|---|---|
[23] | Electrochemical deposition | WO3/Ag NW | 86.9 | 68.3 (1100 nm) |
[24] | Hydrothermal method | h-WO3 | 70.0 | 72.0 (1200 nm) |
[29] | Magnetron sputtering | WO3 | 80.5 | 72.5 (1000 nm) |
[30] | Magnetron sputtering | WO3 | 102.9 | 78.8 (1000 nm) |
Ours | Langmuir–Blodgett method | Cu-doped W18O49 | 133.0 | 76.2 (1066 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Ning, H.; Luo, R.; Li, M.; Zhang, Z.; Huang, R.; Wang, J.; Peng, M.; Zhuo, R.; Yao, R.; et al. Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly. Inorganics 2025, 13, 200. https://doi.org/10.3390/inorganics13060200
Wu Y, Ning H, Luo R, Li M, Zhang Z, Huang R, Wang J, Peng M, Zhuo R, Yao R, et al. Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly. Inorganics. 2025; 13(6):200. https://doi.org/10.3390/inorganics13060200
Chicago/Turabian StyleWu, Yueyang, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao, and et al. 2025. "Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly" Inorganics 13, no. 6: 200. https://doi.org/10.3390/inorganics13060200
APA StyleWu, Y., Ning, H., Luo, R., Li, M., Zhang, Z., Huang, R., Wang, J., Peng, M., Zhuo, R., Yao, R., & Peng, J. (2025). Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly. Inorganics, 13(6), 200. https://doi.org/10.3390/inorganics13060200