Morphological, Physiological and Carbon Balance Response of Trees Under Water Stress

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4378

Special Issue Editor


E-Mail Website
Guest Editor
Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030555, Chile
Interests: soil and forest nutrition; ecophysiology; forest productivity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

I would like to invite you to contribute to this Special Issue “Morphological, Physiological and Carbon Balance Response of Trees Under Water Stress” for the journal Plants. This Special Issue aims to provide a space for manuscripts that increase our understanding of tree physiological and morphological adaptations and/or responses under potential effects of global warming and water stress affecting carbon fluxes and carbon balance from the leaf to the ecosystem level. Significant areas of the world are recurrently facing extreme climatic events that threaten natural forests and the restoration plans of native species, but also the establishment and sustained productivity of intensively managed plantations in many parts of the world. There is increasing uncertainty about how forest species will be able to respond to more frequent and/or prolonged events of extreme temperatures and droughts that may reduce plant survival, regeneration, and the growth of natural and planted forests. Individual plant and whole ecosystem responses will affect carbon fixation, partitioning, allocation, and sequestration, which may lead to a loss of diversity, changes in species distribution, and the eventual loss of natural species. Similarly, changes in planted species and genotypes may be required to maintain forest productivity, but management strategies for the manipulation of resource availability at an establishment or in younger phases may also provide opportunities to reduce the impacts of climate change on planted forests. Our current understanding of climate change effects on natural and planted forests species is crucial for global ecosystem and social health, but also for providing direction on strategies of adaptation, response, and action to these challenges. Potential topics include, but are not limited to, the following:

  • Physiological responses and adaptations to thermal and/or water stress.
  • Morphological responses and adaptations to thermal and/or water stress.
  • Carbon balance responses under thermal and/or water stress.
  • Climate change effects on natural and planted forests.
  • Ecophysiological responses under thermal or water stress.
  • Tree water use, water use efficiency and growth.
  • Genetic (species) x environmental interactions.
  • Restoration and establishment strategies for adaptation.

Dr. Rafael A. Rubilar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate change
  • drought effects
  • physiological adaptation
  • morphological response
  • carbon and water fluxes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2846 KiB  
Article
Full-Tree Biomass, Root Carbon Stock, and Nutrient Use Efficiency Across Ages in Eucalyptus Stands Under Seedling and Coppice Systems
by Gardenia Gonçalves de Oliveira, Túlio Barroso Queiroz, Bronson P. Bullock, José Carlos Coelho, Rodrigo Eiji Hakamada and Iraê Amaral Guerrini
Plants 2025, 14(9), 1382; https://doi.org/10.3390/plants14091382 - 3 May 2025
Viewed by 110
Abstract
The establishment of forest stands after harvest requires an understanding of biomass and nutrient dynamics to support management decisions and ensure system productivity and sustainability. This study evaluated biomass and nutrient accumulation in Eucalyptus urophylla aged 2 to 5 years under planting and [...] Read more.
The establishment of forest stands after harvest requires an understanding of biomass and nutrient dynamics to support management decisions and ensure system productivity and sustainability. This study evaluated biomass and nutrient accumulation in Eucalyptus urophylla aged 2 to 5 years under planting and coppicing systems. A total of 1152 trees were assessed across eight treatments, combining four ages and two management systems. Aboveground biomass was estimated using 10 trees per treatment, while root biomass was assessed in 8 trees at ages 3 and 5. Nutrient concentrations were determined using three intermediate-diameter class trees per treatment. Biomass data were analyzed using Tukey’s test (5%), and biomass expansion factors (BEF) and the root-to-shoot ratio (R) were used to estimate root carbon. Total biomass was higher in the coppicing system (153 Mg ha−1) compared to the planting system (119 Mg ha−1), with greater root accumulation and carbon sequestration (≈17.2 t C ha−1). The biological use coefficient (BUC) increased with age, except for Mn. Planted stands showed higher BUC for N and P, while coppiced stands were more efficient in Mg use. These results reinforce the need for distinct fertilization strategies for each system, aiming at productivity, nutrient efficiency, and carbon stock enhancement. Full article
Show Figures

Graphical abstract

19 pages, 3731 KiB  
Article
Soil and Site Productivity Effects on Above- and Belowground Radiata Pine Carbon Pools at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Otávio Camargo Campoe, Rosa M. Alzamora, Juan Pedro Elissetche, Juan Carlos Valverde, Roberto Pizarro, Matías Pincheira, Juan Carlos Valencia and Claudia Sanhueza
Plants 2024, 13(24), 3482; https://doi.org/10.3390/plants13243482 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 820
Abstract
Pinus radiata D. Don is the most widely planted forest species in Chile, making it crucial to understand carbon pools in adult plantations. This study aimed to evaluate the effect of soil type and site productivity on the total carbon stock in adult [...] Read more.
Pinus radiata D. Don is the most widely planted forest species in Chile, making it crucial to understand carbon pools in adult plantations. This study aimed to evaluate the effect of soil type and site productivity on the total carbon stock in adult radiata pine plantations, considering sites with contrasting water and nutrient availability. We selected 10 sites with sandy and recent volcanic ash soils, representing a productivity gradient. At each site, three 1000 m2 plots were established to quantify the carbon stock of total biomass using allometric equations and in situ carbon assessments of the forest floor and mineral soil (up to 1 m deep). The results indicated significantly higher carbon stocks in the mineral soil of recent ash sites (281.4 Mg ha⁻1) compared to sandy soils (139.9 Mg ha⁻1). The total site carbon was also higher in recent ash (473.2 Mg ha⁻1) than in sandy sites (330.9 Mg ha⁻1). A significant relationship was found between stand productivity and soil organic carbon (r2 = 0.88), as well as total carbon stock (r2 = 0.91) when considering soil type. These findings highlight the importance of including assessments up to 1 m depth and developing soil type and productivity models to improve site carbon stock estimates. Full article
Show Figures

Figure 1

18 pages, 5996 KiB  
Article
Contrasting Weather and Stocking Effects on Eucalyptus Initial Coppice Response in Brazil
by Pietro Gragnolati Fernandes, Clayton Alcarde Alvares, Túlio Barroso Queiroz, Pedro Vitor Pimenta, Jarbas Silva Borges, James Stahl, Flávio Teixeira Mendes, Amanda Souza, Gustavo Matheus Silva, Gualter Guenther Costa da Silva, Sara Bezerra Bandeira Milhomem, Rosilvam Ramos de Sousa and Rodrigo Eiji Hakamada
Plants 2024, 13(22), 3254; https://doi.org/10.3390/plants13223254 - 20 Nov 2024
Cited by 2 | Viewed by 988
Abstract
In Eucalyptus plantations, coppice rotations often yield less than initial rotations. The TECHS project (Tolerance of Eucalyptus Clones to Hydric, Thermal and Biotic Stresses) studied short rotation coppicing across a 3000 km gradient. The main objective of this work was to compare the [...] Read more.
In Eucalyptus plantations, coppice rotations often yield less than initial rotations. The TECHS project (Tolerance of Eucalyptus Clones to Hydric, Thermal and Biotic Stresses) studied short rotation coppicing across a 3000 km gradient. The main objective of this work was to compare the survival, sprouting, and initial growth of Eucalyptus clones managed and to examine factors that might influence the productivity of the coppice rotation: climate, genotypes, and stocking. Eight of the TECHS sites spread from latitudes 6° S to 30° S were included in the coppice study, with 17 genotypes at each site. The initial rotation had been planted at a 3 m × 3 m spacing and also in a spacing trial at densities from 500 to 3500 trees ha−1. Six months after harvesting the initial Eucalyptus rotation, average survival was 88%, with tropical clones showing over twice the sprouting biomass (6.7 vs. 2.9 Mg ha−1) and four times the woody biomass compared to subtropical clones (4.7 vs. 1.1 Mg ha−1). Greater initial water deficits had stronger sprouting and growth. Clones with higher belowground carbon allocation in the initial rotation performed better in coppicing, and precipitation became more influential after 12 months. Drought and spacing trials significantly affected growth. Full article
Show Figures

Figure 1

15 pages, 7764 KiB  
Article
Fine Root Density Dynamics and Carbon Stock of Eucalyptus spp.: Interplay of Age, Genotype, and Edaphoclimatic Conditions
by Josiana Jussara Nazaré Basílio, Otávio Camargo Campoe, Túlio Barroso Queiroz, Cléber Rodrigo de Souza, Rafaela Lorenzato Carneiro, Clayton Alcarde Alvares and Marco Aurélio Figura
Plants 2024, 13(11), 1503; https://doi.org/10.3390/plants13111503 - 30 May 2024
Cited by 1 | Viewed by 1463
Abstract
Roots play a fundamental role in forest ecosystems, but obtaining samples from deep layers remains a challenging process due to the methodological and financial efforts required. In our quest to understand the dynamics of Eucalyptus roots, we raise three fundamental questions. First, we [...] Read more.
Roots play a fundamental role in forest ecosystems, but obtaining samples from deep layers remains a challenging process due to the methodological and financial efforts required. In our quest to understand the dynamics of Eucalyptus roots, we raise three fundamental questions. First, we inquire about the average extent of the roots of two contrasting Eucalyptus genotypes. Next, we explore the factors that directly influence the growth and depth of these roots, addressing elements such as soil type, climate, and water availability. Lastly, we investigate how the variation in Eucalyptus species may impact root growth patterns, biomass, and carbon stock. In this study, we observed that the maximum root depth increased by an average of 20% when genotypes were grown on sites with higher water availability (wet site). E. urophylla stands had a higher biomass and carbon stock (5.7 Mg C ha−1) of fine roots when cultivated on dry sites (annual rainfall~727 mm) than the wet sites (annual rainfall~1590 mm). In E. grandis × E. camaldulensis stands, no significant differences were observed in the stock of fine root biomass (3.2 Mg C ha−1) between the studied environments. Our results demonstrated that genotypes with greater drought tolerance (E. grandis × E. camaldulensis) tend to maintain higher stocks of fine root biomass (3.2–6.3 Mg ha−1) compared to those classified as plastic (E. urophylla), regardless of the edaphoclimatic conditions of the cultivation site. Finally, our research helps understand how Eucalyptus trees adapt to their environment, aiding sustainable forest management and climate change mitigation. We also provide a practical tool to estimate underground biomass, assisting forest managers and policymakers in ensuring long-term forest sustainability. Full article
Show Figures

Figure 1

Back to TopTop