Autonomous mobile robots (AMRs) require robust, efficient path planning to operate safely in complex, often dynamic environments (e.g., logistics, transportation, and healthcare). This systematic review focuses on advanced metaheuristic and learning- and reasoning-based (cognitive) techniques for AMR path planning. Drawing on approximately 230
[...] Read more.
Autonomous mobile robots (AMRs) require robust, efficient path planning to operate safely in complex, often dynamic environments (e.g., logistics, transportation, and healthcare). This systematic review focuses on advanced metaheuristic and learning- and reasoning-based (cognitive) techniques for AMR path planning. Drawing on approximately 230 articles published between 2018 and 2025, we organize the literature into two prominent families, metaheuristic optimization and AI-based navigation, and introduce and apply a unified taxonomy (planning scope, output type, and constraint awareness) to guide the comparative analysis and practitioner-oriented synthesis. We synthesize representative approaches, including swarm- and evolutionary-based planners (e.g., PSO, GA, ACO, GWO), fuzzy and neuro-fuzzy systems, neural methods, and RL/DRL-based navigation, highlighting their operating principles, recent enhancements, strengths, and limitations, and typical deployment roles within hierarchical navigation stacks. Comparative tables and a compact trade-off synthesis summarize capabilities across static/dynamic settings, real-world validation, and hybridization trends. Persistent gaps remain in parameter tuning, safety, and interpretability of learning-enabled navigation; sim-to-real transfer; scalability under real-time compute limits; and limited physical experimentation. Finally, we outline research opportunities and open research questions, covering benchmarking and reproducibility, resource-aware planning, multi-robot coordination, 3D navigation, and emerging foundation models (LLMs/VLMs) for high-level semantic navigation. Collectively, this review provides a consolidated reference and practical guidance for future AMR path-planning research.
Full article