A Body Power Hydraulic Prosthetic Hand
Abstract
1. Introduction
2. Related Work
3. Concepts
3.1. Bending Actuator
3.1.1. Finger Actuators Design
3.1.2. Finger Actuator Manufacturing Process
3.2. Body-Powered Prosthetic Hand
3.2.1. Prosthetic System Design Mechanism
3.2.2. Finger Holder and Prosthetic System Design
4. Modelling and Analysis
4.1. Model Setup
4.2. Material Properties
4.3. Simulation Convergence
4.4. Parametric Study Results
5. Experimental Evaluation
5.1. Finger Actuator Test Setup
5.2. Prosthetic System Testing
6. Discussion
6.1. Comparison of FEA and Physical Test Results
6.2. Finger Actuator Performance
6.3. Performance of the Prosthetic Hand System
6.4. Manufacturing
6.5. FEA Results and Limitations
6.6. Limitations of the Prosthetic Hand Design
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EF | Ecoflex 00-30 |
| FEA | Finite element analysis |
| ASTM | American Society for Testing and Materials |
References
- McDonald, C.L.; Westcott-Mccoy, S.; Weaver, M.R.; Haagsma, J.; Kartin, D. Global prevalence of traumatic non-fatal limb amputation. Prosthet. Orthot. Int. 2021, 45, 105–114. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, J.; Cheng, Y.; Wu, H. Global, regional and national burden of traumatic amputations from 1990 to 2021: A systematic analysis of the Global Burden of Disease study 2021. Front. Public Health 2025, 13, 1583523. [Google Scholar] [CrossRef]
- Xu, W.; Toyoda, Y.; Lin, I.C. Upper Extremity Prosthetics: Current Options and Future Innovations. J. Hand Surg. 2023, 48, 1034–1044. [Google Scholar] [CrossRef]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- Salminger, S.; Stino, H.; Pichler, L.H.; Gstoettner, C.; Sturma, A.; Mayer, J.A.; Szivak, M.; Aszmann, O.C. Current rates of prosthetic usage in upper-limb amputees–have innovations had an impact on device acceptance? Disabil. Rehabil. 2022, 44, 3708–3713. [Google Scholar] [CrossRef]
- Stephens-Fripp, B.; Jean Walker, M.; Goddard, E.; Alici, G. A survey on what Australians with upper limb difference want in a prosthesis: Justification for using soft robotics and additive manufacturing for customized prosthetic hands. Disabil. Rehabil. Assist. Technol. 2020, 15, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Rekant, J.; Fisher, L.E.; Boninger, M.L.; Gaunt, R.A.; Collinger, J.L. Amputee, clinician, and regulator perspectives on current and prospective upper extremity prosthetic technologies. Assist. Technol. 2023, 35, 258–270. [Google Scholar] [CrossRef]
- Engdahl, S.M.; Gonzalez, M.A.; Lee, C.; Gates, D.H. Perspectives on the comparative benefits of body-powered and myoelectric upper limb prostheses. J. Neuroeng. Rehabil. 2024, 21, 138. [Google Scholar] [CrossRef] [PubMed]
- Ogura, R.; Itami, T.; Yoneyama, J. A Prototype Body-powered Prosthetic Hand Using Self-weight for Upper Limb Amputees in Return to Work. In Proceedings of the 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 18–20 July 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Seamone, W.; Hoshall, C.H.; Schmeisser, G. Modular Externally-Powered System for Limb Prostheses. Available online: https://secwww.jhuapl.edu/techdigest/content/techdigest/pdf/APL-V10-N03/APL-10-03-Seamone.pdf (accessed on 9 December 2025).
- Huaroto, J.J.; Suárez, E.; Vela, E.A. Wearable mechatronic devices for upper-limb amputees. In Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 205–234. [Google Scholar] [CrossRef]
- Lu, Y.; Aoustin, Y.; Nocito, P.; Mick, S.; Jarrasse, N. Design and Experimental Validation of a Controller for Bowden-Cable Actuators Subject to Friction Variation. IEEE Robot. Autom. Lett. 2025, 10, 9264–9271. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Li, W.; Huang, Y.; Zhan, G. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton. Appl. Bionics Biomech. 2022, 2022, 5552166. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Teo, M.; Ravichandran, N.; McDaid, A.; Jayaraman, K.; Aw, K. Body-Powered and Portable Soft Hydraulic Actuators as Prosthetic Hands. Robotics 2022, 11, 71. [Google Scholar] [CrossRef]
- Perera, O.; Liyanapathirana, R.; Gargiulo, G.; Gunawardana, U. A Review of Soft Robotic Actuators and Their Applications in Bioengineering, with an Emphasis on HASEL Actuators’ Future Potential. Actuators 2024, 13, 524. [Google Scholar] [CrossRef]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, Actuators, and Sensors for Soft Bioinspired Robots; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Motaghedolhagh, K.; Shariati, A.; Homer-Vanniasinkam, S.; Wurdemann, H. Soft Wearable Body-Powered Hydraulic Actuation System for a Prosthetic Finger Design. IEEE Trans. Biomed. Eng. 2024, 71, 3543–3555. [Google Scholar] [CrossRef]
- Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.S.; Fleming, A.J.; Yong, Y.K. Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments. Adv. Intell. Syst. 2021, 3, 2000187. [Google Scholar] [CrossRef]
- Nagaraja, V.H.; da Ponte Lopes, J.; Bergmann, J.H.M. Reimagining Prosthetic Control: A Novel Body-Powered Prosthetic System for Simultaneous Control and Actuation. Prosthesis 2022, 4, 394–413. [Google Scholar] [CrossRef]
- Smail, L.C.; Neal, C.; Wilkins, C.; Packham, T.L. Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disabil. Rehabil. Assist. Technol. 2021, 16, 821–830. [Google Scholar] [CrossRef]
- Geethanjali, P. Myoelectric control of prosthetic hands: State-of-the-art review. Med. Devices 2016, 9, 247–255. [Google Scholar] [CrossRef]
- Resnik, L.; Acluche, F.; Lieberman Klinger, S.; Borgia, M. Does the DEKA Arm substitute for or supplement conventional prostheses. Prosthet. Orthot. Int. 2018, 42, 534–543. [Google Scholar] [CrossRef]
- Gu, G.; Zhang, N.; Chen, C.; Xu, H.; Zhu, X. Soft Robotics Enables Neuroprosthetic Hand Design. ACS Nano 2023, 17, 9661–9672. [Google Scholar] [CrossRef] [PubMed]
- Paquette, R.; Hill, O.; Carey, S.L.; Wernke, M.; Lura, D.; Knight, A.; Kahle, J.T.; Miro, R.M.; Highsmith, M.J. Utility of Body-Powered Voluntary Opening and Closing Terminal Devices on Transradial Prostheses. Technol. Innov. 2025, 24, 46–57. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.B.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of Soft Fiber-Reinforced Bending Actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef]
- Wang, Z.; Polygerinos, P.; Overvelde, J.T.B.; Galloway, K.C.; Bertoldi, K.; Walsh, C.J. Interaction Forces of Soft Fiber Reinforced Bending Actuators. IEEE/ASME Trans. Mechatron. 2017, 22, 717–727. [Google Scholar] [CrossRef]
- Rad, C.; Hancu, O.; Lapusan, C. Data-Driven Kinematic Model of PneuNets Bending Actuators for Soft Grasping Tasks. Actuators 2022, 11, 58. [Google Scholar] [CrossRef]
- Vishwakarma, A.R. A Method for Characterization of Soft Polymer; [Order No. 30989041]; State University of New York at Buffalo: Buffalo, NY, USA, 2024. [Google Scholar]
- Berthold, R.; Burgner-Kahrs, J.; Wangenheim, M.; Kahms, S. Investigating frictional contact behavior for soft material robot simulations. Meccanica 2023, 58, 2165–2176. [Google Scholar] [CrossRef]
- Fras, J.; Althoefer, K. Soft Fiber-Reinforced Pneumatic Actuator Design and Fabrication: Towards Robust, Soft Robotic Systems. In Towards Autonomous Robotic Systems; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; pp. 103–114. [Google Scholar] [CrossRef]
- Smooth-On. Available online: https://www.smooth-on.com/products/ecoflex-00-30/ (accessed on 8 December 2025).
- Wang, B.; McDaid, A.; Giffney, T.; Biglari-Abhari, M.; Aw, K.C. Design, modelling and simulation of soft grippers using new bimorph pneumatic bending actuators. Cogent Eng. 2017, 4, 1285482. [Google Scholar] [CrossRef]
- Biddiss, E.; Chau, T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Hichert, M.; Plettenburg, D.H. Ipsilateral Scapular Cutaneous Anchor System: An alternative for the harness in body-powered upper-limb prostheses. Prosthet. Orthot. Int. 2018, 42, 101–106. [Google Scholar] [CrossRef]
- Dynamics, A. Introduction to Body-Powered Prostheses. Available online: https://www.armdynamics.com/upper-limb-library/introduction-to-body-powered-prostheses (accessed on 8 December 2025).
- Zhang, N.; Ren, J.; Dong, Y.; Yang, X.; Bian, R.; Li, J.; Gu, G.; Zhu, X. Soft robotic hand with tactile palm-finger coordination. Nat. Commun. 2025, 16, 2395. [Google Scholar] [CrossRef]
- Nilsen, T.; Hermann, M.; Eriksen, C.S.; Dagfinrud, H.; Mowinckel, P.; Kjeken, I. Grip force and pinch grip in an adult population: Reference values and factors associated with grip force. Scand. J. Occup. Ther. 2012, 19, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Smit, G.; Bongers, R.M.; Van der Sluis, C.K.; Plettenburg, D.H. Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development? J. Rehabil. Res. Dev. 2012, 49, 523–534. [Google Scholar] [CrossRef]
- Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2016, 35, 161–185. [Google Scholar] [CrossRef]
- Ye, Y.; Scharff, R.B.N.; Long, S.; Han, C.; Du, D. Modelling of soft fiber-reinforced bending actuators through transfer learning from a machine learning algorithm trained from FEM data. Sens. Actuators A Phys. 2024, 368, 115095. [Google Scholar] [CrossRef]
- Rakhtala, S.M.; Ghayebi, R. Real time control and fabrication of a soft robotic glove by two parallel sensors with MBD approach. Med. Eng. Phys. 2022, 100, 103743. [Google Scholar] [CrossRef]
- Decroly, G.; Mertens, B.; Lambert, P.; Delchambre, A. Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 333–340. [Google Scholar] [CrossRef]
- Wang, B.; Aw, K.C.; Biglari-Abhari, M.; McDaid, A. Design and fabrication of a fiber-reinforced pneumatic bending actuator. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 83–88. [Google Scholar] [CrossRef]
- Susanto, N.; Prastawa, H.; Mahachandra, M.; Rakhmawati, D.A. Evaluation of Usability on Bionic Anthropomorphic (BIMO) Hand for Disability Hand Patient. J. Ilm. Tek. Ind. 2019, 18, 124–133. [Google Scholar] [CrossRef]
- Haverkate, L.; Smit, G.; Plettenburg, D.H. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test. Prosthet. Orthot. Int. 2016, 40, 109–116. [Google Scholar] [CrossRef]
- Kalita, A.J.; Chanu, M.P.; Kakoty, N.M.; Vinjamuri, R.K.; Borah, S. Functional evaluation of a real-time EMG controlled prosthetic hand. Wearable Technol. 2025, 6, e18. [Google Scholar] [CrossRef]


















| Sample | Young’s Modulus (GPa) |
|---|---|
| A | 5.9228 |
| B | 7.801 |
| C | 6.8403 |
| D | 7.4371 |
| Average | 7.000 |
| Global Seed Size (mm) | 6 | 4 | 2 | 1.5 |
|---|---|---|---|---|
| Nodes | 10,332 | 18,529 | 50,198 | 87,472 |
| Bending angle (deg) | 150.98 | 173.01 | 190.73 | 203.28 |
| Deviation from fine mesh | 25.73% | 14.89% | 6.17% | 0% |
| Maximum pressure step (kPa) | 70.6 | 80.9 | 88.1 | 65.2 |
| Global Seed Size (mm) | 4 | 2.5 | 2 | 1.5 |
|---|---|---|---|---|
| Nodes | 20,150 | 34,186 | 55,835 | 103,462 |
| Blocking force (N) | 1.27 | 1.24 | 1.21 | 1.25 |
| Deviation from fine mesh | 1.45% | 1.24% | 3.17% | 0% |
| Maximum pressure step (kPa) | 48 | 70.9 | 100 | 64.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Neville-Dowler, C.T.; Williams, C.; Zhu, Y.; Aw, K.C. A Body Power Hydraulic Prosthetic Hand. Robotics 2026, 15, 14. https://doi.org/10.3390/robotics15010014
Neville-Dowler CT, Williams C, Zhu Y, Aw KC. A Body Power Hydraulic Prosthetic Hand. Robotics. 2026; 15(1):14. https://doi.org/10.3390/robotics15010014
Chicago/Turabian StyleNeville-Dowler, Christopher Trent, Charlie Williams, Yuting Zhu, and Kean C. Aw. 2026. "A Body Power Hydraulic Prosthetic Hand" Robotics 15, no. 1: 14. https://doi.org/10.3390/robotics15010014
APA StyleNeville-Dowler, C. T., Williams, C., Zhu, Y., & Aw, K. C. (2026). A Body Power Hydraulic Prosthetic Hand. Robotics, 15(1), 14. https://doi.org/10.3390/robotics15010014

