Synergistic Advancement of Physical and Information Interaction in Exoskeleton Rehabilitation Robotics: A Review
Abstract
1. Introduction
1.1. Background
1.2. Literature Research
2. Physical Interaction Technologies
3. Information Interaction Technologies
3.1. Multi-Sensory Feedback Information Fusion
3.2. Bioelectrical Signal
3.3. Multimodal Interaction Sensing Technology and Biosignal Fusion
- Real-Time Constraints and Latency Accumulation
- Resampling errors and aliasing caused by non-uniform sampling rates.
- Latency accumulation from filtering, feature extraction, and neural decoding.
- Potential instability in impedance or assist-as-needed control due to delayed intention estimation.
- 2.
- Temporal and Spatial Misalignment Across Heterogeneous Modalities
- Modeling cross-modal time delays and causal dependencies.
- Temporal alignment using Kalman filters, particle filters, or dynamic time warping (DTW).
- Spatial alignment between cortical activation patterns, muscle synergies, and end-effector trajectories.
- 3.
- Noise Heterogeneity and Uncertainty Modeling
- Constructing probabilistic graphical models that encode multimodal uncertainty.
- Employing Bayesian filtering, variational inference, or confidence-aware learning.
- Designing fault-tolerant mechanisms for dealing with missing, corrupted, or asynchronous signals.
- 4.
- Stability Issues in Neuro-Mechanical Closed-Loop Control
- Constraining the magnitude and rate of change in the fused intention signal.
- Embedding stability criteria derived from Lyapunov theory or passivity-based methods.
- Ensuring robust performance under user-specific variability, fatigue, or cognitive fluctuations.
4. Synergistic Integration of Physical and Information Interaction
5. Conclusions
- Advancing multimodal fusion algorithms that are uncertainty-aware, real-time, and computationally efficient.
- Developing adaptive and personalized control strategies capable of responding to user variability, fatigue, and long-term rehabilitation progress.
- Enhancing lightweight and flexible wearable design to reduce physical burden and improve daily usability.
- Establishing large-scale, clinically validated benchmarking datasets and evaluation protocols to support reliable deployment in real-world rehabilitation settings.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stucki, G.; Bickenbach, J.; Gutenbrunner, C.; Melvin, J.L. Rehabilitation: The Health Strategy of the 21st Century. J. Rehabil. Med. 2018, 50, 309–316. [Google Scholar] [CrossRef]
- Mohebbi, A. Human-Robot Interaction in Rehabilitation and Assistance: A Review. Curr. Robot. Rep. 2020, 1, 131–144. [Google Scholar] [CrossRef]
- Li, J.; Zuo, S.; Xu, C.; Zhang, L.; Dong, M.; Tao, C.; Ji, R. Influence of a Compatible Design on Physical Human-Robot Interaction Force: A Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism. J. Intell. Robot. Syst. 2020, 98, 525–538. [Google Scholar] [CrossRef]
- Nazari, F.; Mohajer, N.; Nahavandi, D.; Khosravi, A.; Nahavandi, S. Applied Exoskeleton Technology: A Comprehensive Review of Physical and Cognitive Human–Robot Interaction. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 1102–1122. [Google Scholar] [CrossRef]
- Su, H.; Qi, W.; Chen, J.; Yang, C.; Sandoval, J.; Laribi, M.A. Recent Advancements in Multimodal Human–Robot Interaction. Front. Neurorobot. 2023, 17, 1084000. [Google Scholar] [CrossRef]
- Belcamino, V. Enhancing Human-Robot Collaboration Through Advanced Human Activity Recognition and Motion Tracking. Doctoral Dissertation, Università degli Studi di Genova, Genova, Italy, 2025. [Google Scholar]
- Wang, W.; Li, H.; Xiao, M.; Chu, Y.; Yuan, X.; Ming, X.; Zhang, B. Design and Verification of a Human–Robot Interaction System for Upper Limb Exoskeleton Rehabilitation. Med. Eng. Phys. 2020, 79, 19–25. [Google Scholar]
- Hasan, S.; Alam, N. Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application. Actuators 2025, 14, 342. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H.; Liu, Z.; Li, B.; Cheng, H. Exploring Challenges and Opportunities of Wearable Robots: A Comprehensive Review of Design, Human-Robot Interaction and Control Strategy. APSIPA Trans. Signal Inf. Process. 2023, 12, 1–33. [Google Scholar]
- Nizamis, K.; Athanasiou, A.; Almpani, S.; Dimitrousis, C.; Astaras, A. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Sensors 2021, 21, 2084. [Google Scholar] [CrossRef]
- Xiong, J.; Chen, J.; Lee, P.S. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Adv. Mater. 2021, 33, 2002640. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, P.; Li, S.; Wang, L. Multimodal Human–Robot Interaction for Human-centric Smart Manufacturing: A Survey. Adv. Intell. Syst. 2024, 6, 2300359. [Google Scholar] [CrossRef]
- Hedayati, H.; Suzuki, R.; Rees, W.; Leithinger, D.; Szafir, D. Designing Expandable-Structure Robots for Human-Robot Interaction. Front. Robot. AI 2022, 9, 719639. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, H.; Zhang, Z. Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects. IEEE/CAA J. Autom. Sin. 2024, 11, 301–328. [Google Scholar] [CrossRef]
- Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Shape Memory Alloy (SMA)-Based Exoskeletons for Upper Limb Rehabilitation. In Rehabilitation of the Human Bone-Muscle System; IntechOpen: London, UK, 2022; ISBN 1-80355-166-6. [Google Scholar]
- Zuo, K.; Zhang, Y.; Liu, K.; Li, J.; Wang, Y. Design and Experimental Study of a Flexible Finger Rehabilitation Robot Driven by Shape Memory Alloy. Meas. Sci. Technol. 2023, 34, 084004. [Google Scholar] [CrossRef]
- Ruth, D.J.S.; Sohn, J.-W.; Dhanalakshmi, K.; Choi, S.-B. Control Aspects of Shape Memory Alloys in Robotics Applications: A Review over the Last Decade. Sensors 2022, 22, 4860. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Zhang, D.; Xie, T.; Zhu, X. An Exoskeleton System for Hand Rehabilitation Driven by Shape Memory Alloy. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; IEEE: New York, NY, USA, 2013; pp. 756–761. [Google Scholar]
- Shami, Z.; Arslan, T.; Lomax, P. Wearable Soft Robots: Case Study of Using Shape Memory Alloys in Rehabilitation. Bioengineering 2025, 12, 276. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Meng, Q.; Yu, W.; Xu, R.; Wu, Z.; Wang, X.; Yu, H. Design of a Soft Bionic Elbow Exoskeleton Based on Shape Memory Alloy Spring Actuators. Mech. Sci. 2023, 14, 159–170. [Google Scholar] [CrossRef]
- Copaci, D.; Cano, E.; Moreno, L.; Blanco, D. New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators. Appl. Bionics Biomech. 2017, 2017, 1605101. [Google Scholar] [CrossRef] [PubMed]
- Curcio, E.M.; Lago, F.; Carbone, G. Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation. IEEE Robot. Autom. Lett. 2024, 9, 8905–8912. [Google Scholar] [CrossRef]
- Giancarlo, V.P. Control Strategy of a Pneumatic Artificial Muscle for an Exoskeleton Application. IFAC-PapersOnLine 2019, 52, 281–286. [Google Scholar] [CrossRef]
- Paterna, M.; Magnetti Gisolo, S.; De Benedictis, C.; Muscolo, G.G.; Ferraresi, C. A Passive Upper-Limb Exoskeleton for Industrial Application Based on Pneumatic Artificial Muscles. Mech. Sci. 2022, 13, 387–398. [Google Scholar] [CrossRef]
- Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. A Survey on Applications of Pneumatic Artificial Muscles. In Proceedings of the 2011 19th Mediterranean Conference on Control & Automation (MED), Corfu, Greece, 20–23 June 2011; IEEE: New York, NY, USA, 2011; pp. 1439–1446. [Google Scholar]
- Mirvakili, S.M.; Hunter, I.W. Artificial Muscles: Mechanisms, Applications, and Challenges. Adv. Mater. 2018, 30, 1704407. [Google Scholar] [CrossRef] [PubMed]
- Tjahyono, A.P.; Aw, K.C.; Devaraj, H.; Surendra, W.; Haemmerle, E.; Travas-Sejdic, J. A Five-fingered Hand Exoskeleton Driven by Pneumatic Artificial Muscles with Novel Polypyrrole Sensors. Ind. Robot Int. J. 2013, 40, 251–260. [Google Scholar] [CrossRef]
- Gao, B.; Wei, C.; Ma, H.; Yang, S.; Ma, X.; Zhang, S. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System. Appl. Bionics Biomech. 2018, 2018, 1391032. [Google Scholar] [CrossRef]
- Bouteraa, Y.; Ben Abdallah, I.; Elmogy, A. Design and Control of an Exoskeleton Robot with EMG-Driven Electrical Stimulation for Upper Limb Rehabilitation. Ind. Robot Int. J. Robot. Res. Appl. 2020, 47, 489–501. [Google Scholar] [CrossRef]
- Singh, R.M.; Chatterji, S.; Kumar, A. A Review on Surface EMG Based Control Schemes of Exoskeleton Robot in Stroke Rehabilitation. In Proceedings of the 2013 International Conference on Machine Intelligence and Research Advancement, Katra, India, 21–23 December 2013; IEEE: New York, NY, USA, 2013; pp. 310–315. [Google Scholar]
- Liu, Y.; Li, X.; Zhu, A.; Zheng, Z.; Zhu, H. Design and Evaluation of a Surface Electromyography-Controlled Lightweight Upper Arm Exoskeleton Rehabilitation Robot. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211003461. [Google Scholar] [CrossRef]
- Yin, Y.H.; Fan, Y.J.; Xu, L.D. EMG and EPP-Integrated Human–Machine Interface between the Paralyzed and Rehabilitation Exoskeleton. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 542–549. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J.; Chen, W.; Zhang, J. EEG-Based Brain-Controlled Lower Extremity Exoskeleton Rehabilitation Robot. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November 2017; IEEE: New York, NY, USA, 2017; pp. 763–767. [Google Scholar]
- Hekmatmanesh, A. Investigation of EEG Signal Processing for Rehabilitation Robot Control. Ph.D. Thesis, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland, 2019. [Google Scholar]
- Orban, M.; Elsamanty, M.; Guo, K.; Zhang, S.; Yang, H. A Review of Brain Activity and EEG-Based Brain–Computer Interfaces for Rehabilitation Application. Bioengineering 2022, 9, 768. [Google Scholar] [CrossRef]
- Yin, R.; Wang, D.; Zhao, S.; Lou, Z.; Shen, G. Wearable Sensors-enabled Human–Machine Interaction Systems: From Design to Application. Adv. Funct. Mater. 2021, 31, 2008936. [Google Scholar] [CrossRef]
- Küçüktabak, E.B.; Kim, S.J.; Wen, Y.; Lynch, K.; Pons, J.L. Human-Machine-Human Interaction in Motor Control and Rehabilitation: A Review. J. Neuroeng. Rehabil. 2021, 18, 183. [Google Scholar] [CrossRef]
- Tan, Z.; Dai, N.; Su, Y.; Zhang, R.; Li, Y.; Wu, D.; Li, S. Human–Machine Interaction in Intelligent and Connected Vehicles: A Review of Status Quo, Issues, and Opportunities. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13954–13975. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Zhang, C.; Xiao, Y.; Wang, M.Y. An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand. Front. Neurorobot. 2019, 13, 7. [Google Scholar] [CrossRef]
- Li, L.-L.; Cao, G.-Z.; Liang, H.-J.; Zhang, Y.-P.; Cui, F. Human Lower Limb Motion Intention Recognition for Exoskeletons: A Review. IEEE Sens. J. 2023, 23, 30007–30036. [Google Scholar] [CrossRef]
- Pamungkas, D.S.; Caesarendra, W.; Soebakti, H.; Analia, R.; Susanto, S. Overview: Types of Lower Limb Exoskeletons. Electronics 2019, 8, 1283. [Google Scholar] [CrossRef]
- Huo, W.G.; Mohammed, S.; Moreno, J.C.; Amirat, Y. Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art. IEEE Syst. J. 2016, 10, 1068–1081. [Google Scholar] [CrossRef]
- Benson, I.; Hart, K.; Tussler, D.; van Middendorp, J.J. Lower-Limb Exoskeletons for Individuals with Chronic Spinal Cord Injury: Findings from a Feasibility Study. Clin. Rehabil. 2016, 30, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zi, B.; Qin, L.; Pan, Q.S. State-of-the-Art Research in Robotic Hip Exoskeletons: A General Review. J. Orthop. Transl. 2020, 20, 4–13. [Google Scholar] [CrossRef]
- Aliman, N.; Ramli, R.; Haris, S.M. Design and Development of Lower Limb Exoskeletons: A Survey. Robot. Auton. Syst. 2017, 95, 102–116. [Google Scholar] [CrossRef]
- Sanchez-Villamañan, M.D.; Gonzalez-Vargas, J.; Torricelli, D.; Moreno, J.C.; Pons, J.L. Compliant Lower Limb Exoskeletons: A Comprehensive Review on Mechanical Design Principles. J. Neuroeng. Rehabil. 2019, 16, 55. [Google Scholar] [CrossRef]
- Beckerle, P.; Salvietti, G.; Unal, R.; Prattichizzo, D.; Rossi, S.; Castellini, C.; Hirche, S.; Endo, S.; Amor, H.B.; Ciocarlie, M. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics. Front. Neurorobot. 2017, 11, 24. [Google Scholar] [CrossRef]
- Casas, J.; Cespedes, N.; Múnera, M.; Cifuentes, C.A. Human-Robot Interaction for Rehabilitation Scenarios. In Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–31. [Google Scholar]
- Mayetin, U.; Kucuk, S. Design and Experimental Evaluation of a Low Cost, Portable, 3-Dof Wrist Rehabilitation Robot with High Physical Human–Robot Interaction. J. Intell. Robot. Syst. 2022, 106, 65. [Google Scholar] [CrossRef]
- Wang, W.; Liang, X.; Liu, S.; Lin, T.; Zhang, P.; Lv, Z.; Wang, J.; Hou, Z.-G. Drivable Space of Rehabilitation Robot for Physical Human–Robot Interaction: Definition and an Expanding Method. IEEE Trans. Robot. 2022, 39, 343–356. [Google Scholar] [CrossRef]
- Guo, Y.; Gu, X.; Yang, G.-Z. Human–Robot Interaction for Rehabilitation Robotics. In Digitalization in Healthcare: Implementing Innovation and Artificial Intelligence; Springer: Amsterdam, The Netherlands, 2021; pp. 269–295. [Google Scholar]
- Han, S.; Wang, H.; Yu, H. Human–Robot Interaction Evaluation-Based AAN Control for Upper Limb Rehabilitation Robots Driven by Series Elastic Actuators. IEEE Trans. Robot. 2023, 39, 3437–3451. [Google Scholar] [CrossRef]
- Polygerinos, P.; Correll, N.; Morin, S.A.; Mosadegh, B.; Onal, C.D.; Petersen, K.; Cianchetti, M.; Tolley, M.T.; Shepherd, R.F. Soft Robotics: Review of Fluid-driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-robot Interaction. Adv. Eng. Mater. 2017, 19, 1700016. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, A.; Garcia, L.; Kilby, J.; McNair, P. Soft Wearable Rehabilitation Robots with Artificial Muscles Based on Smart Materials: A Review. Adv. Intell. Syst. 2023, 5, 2200159. [Google Scholar] [CrossRef]
- Gaeta, L.T.; Albayrak, M.D.; Kinnicutt, L.; Aufrichtig, S.; Sultania, P.; Schlegel, H.; Ellis, T.D.; Ranzani, T. A Magnetically Controlled Soft Robotic Glove for Hand Rehabilitation. Device 2024, 2, 100512. [Google Scholar] [CrossRef] [PubMed]
- Sui, M.L.; Ouyang, Y.M.; Jin, H.; Chai, Z.Y.; Wei, C.Y.; Li, J.Y.; Xu, M.; Li, W.H.; Wang, L.; Zhang, S.W. A Soft-Packaged and Portable Rehabilitation Glove Capable of Closed-Loop Fine Motor Skills. Nat. Mach. Intell. 2023, 5, 1149–1160. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.B.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of Soft Fiber-Reinforced Bending Actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef]
- Wang, J.B.; Fei, Y.Q.; Pang, W. Design, Modeling, and Testing of a Soft Pneumatic Glove With Segmented PneuNets Bending Actuators. IEEE/ASME Trans. Mechatron. 2019, 24, 990–1001. [Google Scholar] [CrossRef]
- Connolly, F.; Wagner, D.A.; Walsh, C.J.; Bertoldi, K. Sew-Free Anisotropic Textile Composites for Rapid Design and Manufacturing of Soft Wearable Robots. Extrem. Mech. Lett. 2019, 27, 52–58. [Google Scholar] [CrossRef]
- Heo, J.S.; Eom, J.; Kim, Y.-H.; Park, S.K. Recent Progress of Textile-based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef]
- Yap, H.K.; Khin, P.M.; Koh, T.H.; Sun, Y.; Liang, X.; Lim, J.H.; Yeow, C.H. A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients. IEEE Robot. Autom. Lett. 2017, 2, 1383–1390. [Google Scholar] [CrossRef]
- Feng, M.; Yang, D.Z.; Gu, G.Y. High-Force Fabric-Based Pneumatic Actuators With Asymmetric Chambers and Interference-Reinforced Structure for Soft Wearable Assistive Gloves. IEEE Robot. Autom. Lett. 2021, 6, 3105–3111. [Google Scholar] [CrossRef]
- Önen, Ü.; Botsalı, F.M.; Kalyoncu, M.; Tınkır, M.; Yılmaz, N.; Şahin, Y. Design and Actuator Selection of a Lower Extremity Exoskeleton. IEEE/ASME Trans. Mechatron. 2013, 19, 623–632. [Google Scholar]
- Kiguchi, K.; Imada, Y.; Liyanage, M. EMG-Based Neuro-Fuzzy Control of a 4DOF Upper-Limb Power-Assist Exoskeleton. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; IEEE: New York, NY, USA, 2007; pp. 3040–3043. [Google Scholar]
- Hong, Y.W.; King, Y.; Yeo, W.; Ting, C.; Chuah, Y.; Lee, J.; Chok, E.-T. Lower Extremity Exoskeleton: Review and Challenges Surrounding the Technology and Its Role in Rehabilitation of Lower Limbs. Aust. J. Basic Appl. Sci. 2013, 7, 520–524. [Google Scholar]
- Guo, S.; Gao, J.; Guo, J.; Zhang, W.; Hu, Y. Design of the Structural Optimization for the Upper Limb Rehabilitation Robot. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; IEEE: New York, NY, USA, 2016; pp. 1185–1190. [Google Scholar]
- Wehner, M.; Quinlivan, B.; Aubin, P.M.; Martinez-Villalpando, E.; Baumann, M.; Stirling, L.; Holt, K.; Wood, R.; Walsh, C. A Lightweight Soft Exosuit for Gait Assistance. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3362–3369. [Google Scholar]
- Asbeck, A.T.; De Rossi, S.M.M.; Galiana, I.; Ding, Y.; Walsh, C.J. Stronger, Smarter, Softer: Next-generation wearable robots. IEEE Robot. Autom. Mag. 2014, 21, 22–33. [Google Scholar] [CrossRef]
- Asbeck, A.T.; Schmidt, K.; Walsh, C.J. Soft Exosuit for Hip Assistance. Robot. Auton. Syst. 2015, 73, 102–110. [Google Scholar] [CrossRef]
- Park, D.; In, H.; Lee, H.; Lee, S.; Koo, I.; Kang, B.B.; Park, K.; Chang, W.S.; Cho, K.-J. Preliminary Study for a Soft Wearable Knee Extensor to Assist Physically Weak People. In Proceedings of the 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Kuala Lumpur, Malaysia, 12–15 November 2014; IEEE: New York, NY, USA, 2014; pp. 136–137. [Google Scholar]
- Park, Y.L.; Santos, J.; Galloway, K.G.; Goldfield, E.C.; Wood, R.J. A Soft Wearable Robotic Device for Active Knee Motions Using Flat Pneumatic Artificial Muscles. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 4805–4810. [Google Scholar]
- Sridar, S.; Nguyen, P.H.; Zhu, M.J.; Lam, Q.P.; Polygerinos, P. Development of a Soft-Inflatable Exosuit for Knee Rehabilitation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 3722–3727. [Google Scholar]
- Poddar, S. Design of a Portable Pneumatic Exosuit for Knee Extension Assistance with Gait Sensing Using Fabric-Based Inflatable Insole Sensors. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2020. [Google Scholar]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human Motion Trajectory Prediction: A Survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Haddadin, S.; Croft, E. Physical Human–Robot Interaction. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1835–1874. [Google Scholar]
- Green, S.A.; Billinghurst, M.; Chen, X.; Chase, J.G. Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design. Int. J. Adv. Robot. Syst. 2008, 5, 1. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, Y.; Chen, Y. A Review of Human–Machine Cooperation in the Robotics Domain. IEEE Trans. Hum.-Mach. Syst. 2021, 52, 12–25. [Google Scholar] [CrossRef]
- Zakharov, A.V.; Bulanov, V.A.; Khivintseva, E.V.; Kolsanov, A.V.; Bushkova, Y.V.; Ivanova, G.E. Stroke Affected Lower Limbs Rehabilitation Combining Virtual Reality with Tactile Feedback. Front. Robot. AI 2020, 7, 81. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Hua, X.Y.; Wu, J.J.; Xu, J.J.; Ren, M.; Shan, C.L.; Xu, J.G. Combined Robot Motor Assistance with Neural Circuit-Based Virtual Reality (NeuCir-VR) Lower Extremity Rehabilitation Training in Patients after Stroke: A Study Protocol for a Single-Centre Randomised Controlled Trial. BMJ Open 2022, 12, e064926. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Vazhayil, V.; Rao, M. Design of a Real Time Portable Low-Cost Multi-Channel Surface Electromyography System to Aid Neuromuscular Disorder and Post Stroke Rehabilitation Patients. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 4138–4142. [Google Scholar]
- Sousa, A.S.P.; Moreira, J.; Silva, C.; Mesquita, I.; Macedo, R.; Silva, A.; Santos, R. Usability of Functional Electrical Stimulation in Upper Limb Rehabilitation in Post-Stroke Patients: A Narrative Review. Sensors 2022, 22, 1409. [Google Scholar] [CrossRef]
- Khan, M.A.; Saibene, M.; Das, R.; Brunner, I.; Puthusserypady, S. Emergence of Flexible Technology in Developing Advanced Systems for Post-Stroke Rehabilitation: A Comprehensive Review. J. Neural Eng. 2021, 18, 061003. [Google Scholar] [CrossRef]
- Petersen, I.L.; Nowakowska, W.; Ulrich, C.; Struijk, L.N.S.A. A Novel sEMG Triggered FES-Hybrid Robotic Lower Limb Rehabilitation System for Stroke Patients. IEEE Trans. Med. Robot. Bionics 2020, 2, 631–638. [Google Scholar] [CrossRef]
- Norouzi-Gheidari, N.; Archambault, P.S.; Monte-Silva, K.; Kairy, D.; Sveistrup, H.; Trivino, M.; Levin, M.F.; Milot, M.H. Feasibility and Preliminary Efficacy of a Combined Virtual Reality, Robotics and Electrical Stimulation Intervention in Upper Extremity Stroke Rehabilitation. J. Neuroeng. Rehabil. 2021, 18, 61. [Google Scholar] [CrossRef]
- Niu, C.M.; Bao, Y.; Zhuang, C.; Li, S.; Wang, T.; Cui, L.; Xie, Q.; Lan, N. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Huang, T.; He, J.; Wang, Y.; Zhou, H. A Programmable Multi-Channel Stimulator for Array Electrodes in Transcutaneous Electrical Stimulation. In Proceedings of the 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, China, 22–25 May 2011; IEEE: New York, NY, USA, 2011; pp. 652–656. [Google Scholar]
- Barsotti, M.; Leonardis, D.; Vanello, N.; Bergamasco, M.; Frisoli, A. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 105–114. [Google Scholar] [CrossRef]
- Kevric, J.; Subasi, A. Comparison of Signal Decomposition Methods in Classification of EEG Signals for Motor-Imagery BCI System. Biomed. Signal Process. 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Achanccaray, D.; Acuña, K.; Carranza, E.; Andreu-Perez, J. A Virtual Reality and Brain Computer Interface System for Upper Limb Rehabilitation of Post Stroke Patients. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems, Naples, Italy, 9–12 July 2017. [Google Scholar]
- Qiu, Z.Y.; Allison, B.Z.; Jin, J.; Zhang, Y.; Wang, X.Y.; Li, W.; Cichocki, A. Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1009–1017. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A Comprehensive Review of EEG-Based Brain–Computer Interface Paradigms. J. Neural Eng. 2019, 16, 011001. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Y.; Xu, M.; Liu, Y.; Yin, E.; Zhou, Z. Towards a Hybrid BCI Gaming Paradigm Based on Motor Imagery and SSVEP. Int. J. Hum.-Comput. Interact. 2019, 35, 197–205. [Google Scholar] [CrossRef]
- Li, K.X.; Zhang, J.H.; Wang, L.F.; Zhang, M.L.; Li, J.Y.; Bao, S.C. A Review of the Key Technologies for sEMG-Based Human-Robot Interaction Systems. Biomed. Signal Process. 2020, 62, 102074. [Google Scholar] [CrossRef]
- Khairuddin, I.M.; Sidek, S.N.; Majeed, A.P.P.A.; Razman, M.A.M.; Puzi, A.A.; Yusof, H.M. The Classification of Movement Intention through Machine Learning Models: The Identification of Significant Time-Domain EMG Features. PeerJ Comput. Sci. 2021, 7, e379. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Y.; Yu, Z.L.; Lin, C.G.; Gu, Z.H.; Li, Y.Q. A Bayesian Shared Control Approach for Wheelchair Robot with Brain Machine Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 328–338. [Google Scholar] [CrossRef]
- Tieck, J.C.V.; Weber, S.; Stewart, T.C.; Kaiser, J.; Roennau, A.; Dillmann, R. A Spiking Network Classifies Human sEMG Signals and Triggers Finger Reflexes on a Robotic Hand. Robot. Auton. Syst. 2020, 131, 103566. [Google Scholar] [CrossRef]
- Chaurasiya, R.K.; Shukla, S.; Sahu, T.P. A Sequential Study of Emotions through EEG Using HMM. In Proceedings of the 2019 IEEE International Conference on Computational Science and Engineering, New York, NY, USA, 1–3 August 2019; pp. 104–109. [Google Scholar] [CrossRef]
- Richhariya, B.; Tanveer, M. EEG Signal Classification Using Universum Support Vector Machine. Expert Syst. Appl. 2018, 106, 169–182. [Google Scholar] [CrossRef]
- Phinyomark, A.; Khushaba, R.N.; Scheme, E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors 2018, 18, 1615. [Google Scholar] [CrossRef]
- Malleson, C.; Volino, M.; Gilbert, A.; Trumble, M.; Collomosse, J.; Hilton, A. Real-Time Full-Body Motion Capture from Video and IMUs. In Proceedings of the 2017 International Conference on 3D Vision, Qingdao, China, 10–12 October 2017; pp. 449–457. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yin, Z.Z.; Bin Hossain, M.S.; Choi, H.; Guo, Z.S. Wearable Motion Capture: Reconstructing and Predicting 3D Human Poses From Wearable Sensors. IEEE J. Biomed. Health 2023, 27, 5345–5356. [Google Scholar] [CrossRef]
- Rizzoglio, F.; Pierella, C.; De Santis, D.; Mussa-Ivaldi, F.; Casadio, M. A Hybrid Body-Machine Interface Integrating Signals from Muscles and Motions. J. Neural Eng. 2020, 17, 046004. [Google Scholar] [CrossRef]
- Huang, W.L.; Wang, C.; Zhang, R.H.; Li, Y.Z.; Wu, J.J.; Fei-Fei, L. VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models. In Proceedings of the 7th Conference on Robot Learning, Atlanta, GA, USA, 6–9 November 2023; Volume 229. [Google Scholar]
- Gao, J.; Sarkar, B.; Xia, F.; Xiao, T.; Wu, J.J.; Ichter, B.; Majumdar, A.; Sadigh, D. Physically Grounded Vision-Language Models for Robotic Manipulation. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation, Yokohama, Japan, 13–14 May 2024; pp. 12462–12469. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, H.; Liu, Y.; Wang, Q.; Rong, Y.; Niu, J. Design and Analysis of a Compatible Exoskeleton Rehabilitation Robot System Based on Upper Limb Movement Mechanism. Med. Biol. Eng. Comput. 2024, 62, 883–899. [Google Scholar] [CrossRef]
- Wang, W.; Ren, H.; Su, S.; Zhang, P.; Zhang, J. A Brain-Inspired Decision-Making Method for Upper Limb Exoskeleton Based on Multi-Brain-Region Structure and Multimodal Information Fusion. Measurement 2025, 241, 115728. [Google Scholar] [CrossRef]
- Liu, J.J.; Luo, H.B.; Wu, D.R. Human-Robot Collaboration in Construction: Robot Design, Perception and Interaction, and Task Allocation and Execution. Adv. Eng. Inform. 2025, 65, 103109. [Google Scholar] [CrossRef]
- Almohamade, S.; Clark, J.; Law, J. Continuous User Authentication for Human-Robot Collaboration. In Proceedings of the Ares 2021: 16th International Conference on Availability, Reliability and Security, Vienna, Austria, 17–20 August 2021. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]







| Type | Information Interaction Method | Advantages | Disadvantages |
|---|---|---|---|
| Physiological Interaction | Mechanical Structure |
|
|
| Information Interaction | Multi-sensory feedback |
|
|
| Physiological electrical signals |
|
| |
| Multimodal approach |
|
|
| Database | Search Query |
|---|---|
| EI | TX = (“exoskeleton” OR “rehabilitation”) AND TX = (“physical interaction” OR “human-robot interaction”) AND TX = (“information interaction” OR “intent detection” OR “multi-modal interaction” OR “control synergy”) (“exoskeleton” OR “rehabilitation”) (“physical interaction” OR “human-robot interaction”) |
| IEEE Xplore | KEY (“exoskeleton” OR “rehabilitation robotics”) AND KEY (“physical interaction” OR “human robot interaction”) AND KEY (“information interaction” OR “intent recognition” OR “assistive control”) |
| PubMed | (“exoskeleton” OR “rehabilitation” [All Fields]) AND (“physical interaction” OR “human-robot interaction” [All Fields]) AND (“information interaction” OR “neural intention detection” OR “control strategies” [All Fields]) |
| Web of Science | TS = (“exoskeleton” OR “rehabilitation robot”) AND TS = (“physical interaction” OR “human robot interaction” OR “HRI” OR “impedance control”) AND TS = (“information fusion” OR “sensor fusion” OR “information interaction” OR “multi-modal interaction”) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fei, C.; Meng, Q.; Yu, H.; Lu, X. Synergistic Advancement of Physical and Information Interaction in Exoskeleton Rehabilitation Robotics: A Review. Robotics 2026, 15, 25. https://doi.org/10.3390/robotics15010025
Fei C, Meng Q, Yu H, Lu X. Synergistic Advancement of Physical and Information Interaction in Exoskeleton Rehabilitation Robotics: A Review. Robotics. 2026; 15(1):25. https://doi.org/10.3390/robotics15010025
Chicago/Turabian StyleFei, Cuizhi, Qiaoling Meng, Hongliu Yu, and Xuhua Lu. 2026. "Synergistic Advancement of Physical and Information Interaction in Exoskeleton Rehabilitation Robotics: A Review" Robotics 15, no. 1: 25. https://doi.org/10.3390/robotics15010025
APA StyleFei, C., Meng, Q., Yu, H., & Lu, X. (2026). Synergistic Advancement of Physical and Information Interaction in Exoskeleton Rehabilitation Robotics: A Review. Robotics, 15(1), 25. https://doi.org/10.3390/robotics15010025

