Previous Issue
Volume 16, September
 
 

Information, Volume 16, Issue 10 (October 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 1250 KB  
Article
Entity Span Suffix Classification for Nested Chinese Named Entity Recognition
by Jianfeng Deng, Ruitong Zhao, Wei Ye and Suhong Zheng
Information 2025, 16(10), 822; https://doi.org/10.3390/info16100822 - 23 Sep 2025
Abstract
Named entity recognition (NER) is one of the fundamental tasks in building knowledge graphs. For some domain-specific corpora, the text descriptions exhibit limited standardization, and some entity structures have entity nesting. The existing entity recognition methods have problems such as word matching noise [...] Read more.
Named entity recognition (NER) is one of the fundamental tasks in building knowledge graphs. For some domain-specific corpora, the text descriptions exhibit limited standardization, and some entity structures have entity nesting. The existing entity recognition methods have problems such as word matching noise interference and difficulty in distinguishing different entity labels for the same character in sequence label prediction. This paper proposes a span-based feature reuse stacked bidirectional long short term memory network (BiLSTM) nested named entity recognition (SFRSN) model, which transforms the entity recognition of sequence prediction into the problem of entity span suffix category classification. Firstly, character feature embedding is generated through bidirectional encoder representation of transformers (BERT). Secondly, a feature reuse stacked BiLSTM is proposed to obtain deep context features while alleviating the problem of deep network degradation. Thirdly, the span feature is obtained through the dilated convolution neural network (DCNN), and at the same time, a single-tail selection function is introduced to obtain the classification feature of the entity span suffix, with the aim of reducing the training parameters. Fourthly, a global feature gated attention mechanism is proposed, integrating span features and span suffix classification features to achieve span suffix classification. The experimental results on four Chinese-specific domain datasets demonstrate the effectiveness of our approach: SFRSN achieves micro-F1 scores of 83.34% on ontonotes, 73.27% on weibo, 96.90% on resume, and 86.77% on the supply chain management dataset. This represents a maximum improvement of 1.55%, 4.94%, 2.48%, and 3.47% over state-of-the-art baselines, respectively. The experimental results demonstrate the effectiveness of the model in addressing nested entities and entity label ambiguity issues. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Previous Issue
Back to TopTop