Towards Accurate Thickness Recognition from Pulse Eddy Current Data Using the MRDC-BiLSE Network
Abstract
1. Introduction
- We introduce MRDC-BiLSE, a novel PECT-specific deep model that jointly exploits multi-scale residual dilated convolutions and a bidirectional-LSTM squeeze-and-excitation (BiLSTM-SE) module. This design unifies local high-frequency pattern mining with global temporal context modeling while adaptively re-weighting informative frequency channels, directly addressing the non-stationary and nonlinear nature of eddy current signals.
- The proposed framework integrates multi-scale residual dilated convolution (MRDC) for capturing features across multiple temporal resolutions and a BiLSTM-SE module for joint temporal modeling and adaptive feature re-weighting, leading to more robust and discriminative representations.
- Extensive experiments on two public PECT datasets (PEC-Aluminum and PEC-S355) demonstrate that MRDC-BiLSE surpasses nine competitive baselines—including CNN, ResNet, GRU, transformer, and TCN—achieving up to a 35.4% lower MSE and 19.1% lower MAE. Cross-validation analyses further confirm superior accuracy and stability across folds and materials.
2. Related Work
2.1. Traditional PECT Methods
2.2. Deep Learning Approaches
3. Method
3.1. Overview
3.2. Multi-Scale Residual Dilated Convolution Block
3.3. BiLSTM-SE
3.4. Regression
4. Experiment
4.1. Datasets
4.2. Indicators
4.3. Performance Comparison
4.4. Cross-Validation Distribution Analysis
4.5. Residual Distribution Analysis
4.6. Comparative Analysis of Predictions and Ground Truth
4.7. Ablation Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, F.; Cao, B.; Fan, M.; Liu, L. Physics-based deep learning framework for Terahertz thickness measurement of thermal barrier coatings with variable refractive index. Mech. Syst. Signal Process. 2025, 228, 112430. [Google Scholar] [CrossRef]
- Tian, G.; Yang, C.; Lu, X.; Wang, Z.; Liang, Z.; Li, X. Inductance-to-digital converters (LDC) based integrative multi-parameter eddy current testing sensors for NDT&E. NDT E Int. 2023, 138, 102888. [Google Scholar]
- Gupta, M.; Khan, M.A.; Butola, R.; Singari, R.M. Advances in applications of Non-Destructive Testing (NDT): A review. Adv. Mater. Process. Technol. 2022, 8, 2286–2307. [Google Scholar] [CrossRef]
- Su, B.; Li, Y.; Liu, Z.; Wang, J.; Chen, Z. Near-and remote-field pulsed eddy current integrated testing for enhancement in imaging of buried flaws in layered conductive structures. Nondestruct. Test. Eval. 2025, 40, 3517–3530. [Google Scholar] [CrossRef]
- Fang, J.; Shen, J.; Xiong, L.; Yang, K.; Din, Z.; Meng, Z.; Yin, W.; Xiao, S. Modelling and experimental study on pipeline defect characterisations using a pulsed eddy current measurement. Nondestruct. Test. Eval. 2024, 40, 4024–4045. [Google Scholar] [CrossRef]
- Huang, P.; Pu, H.; Ding, Y.; Li, Z.; Yin, W.; Xu, L.; Xie, Y. A sensitivity enhancement PEC method for bottom flaws and corrosions detection. Measurement 2022, 202, 111910. [Google Scholar] [CrossRef]
- Saleh, S. The Development and Performance Testing of a V/f Control for Induction Motors Fed by Wavelet Modulated Power Electronic Converters. IEEE Trans. Ind. Appl. 2024, 60, 5012–5024. [Google Scholar] [CrossRef]
- Romero-Arismendi, N.O.; Olivares-Galvan, J.C.; Hernandez-Avila, J.L.; Escarela-Perez, R.; Jimenez-Mondragon, V.M.; Gonzalez-Montañez, F. Past, present, and future of new applications in utilization of eddy currents. Technologies 2024, 12, 50. [Google Scholar] [CrossRef]
- Syasko, M.; Solomenchuk, P.; Soloviev, I.; Ampilova, N. A technique for multi-parameter signal processing of an eddy-current probe for measuring the thickness of non-conductive coatings on non-magnetic electrically conductive base metals. Appl. Sci. 2023, 13, 5144. [Google Scholar] [CrossRef]
- Ge, J.; Xu, F.; Yusa, N. Experimental investigation of low-frequency and pulsed eddy current testing in thickness measurement. Nondestruct. Test. Eval. 2024, 39, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, M.; Cao, B.; Ye, B.; Wen, D. Measurement of coating thickness using lift-off point of intersection features from pulsed eddy current signals. NDT E Int. 2020, 116, 102333. [Google Scholar] [CrossRef]
- Citrin, D.S. Effects of Timing Noise on Square-Wave Optoelectronic Oscillators. Appl. Sci. 2021, 11, 12038. [Google Scholar] [CrossRef]
- Huang, X.; Wehlin, P.; Srinivasan, V.; Aromando, J.; Deng, Y. A novel data-driven auto compensation algorithm for pulsed eddy current inspection of high voltage feeder cable pipe. Nondestruct. Test. Eval. 2025, 40, 1–20. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, D.; Watson, R.; Jackson, W.; MacLeod, C.; Mohseni, E.; Dobie, G. Evaluation of pulse eddy current for autonomous airborne inspections. IEEE Sens. Lett. 2024, 8, 6009304. [Google Scholar] [CrossRef]
- Li, X.; Ban, X.; Qiao, H.; Yuan, Z.; Dai, H.N.; Yao, C.; Guo, Y.; Obaidat, M.S.; Huang, G.Q. Multi-Scale Time Series Segmentation Network Based on Eddy Current Testing for Detecting Surface Metal Defects. IEEE/CAA J. Autom. Sin. 2025, 12, 528–538. [Google Scholar] [CrossRef]
- Zheng, X.; She, S.; Xia, Z.; Xiong, L.; Zou, X.; Yu, K.; Guo, R.; Zhu, R.; Zhang, Z.; Yin, W. Analyzing the permeability distribution of multilayered specimens using pulsed eddy-current testing with multi-scale 1D-ResNet. NDT E Int. 2025, 149, 103247. [Google Scholar] [CrossRef]
- Meng, B.; Zhuang, Z.; Ma, J.; Zhao, S. Research on the detection method for feeding metallic foreign objects in coal mine crushers based on reflective pulsed eddy current testing. Appl. Sci. 2024, 14, 11704. [Google Scholar] [CrossRef]
- Zhao, G.; Huang, Y.; Zhang, W.; Wang, C.; Chen, J. Advances in high-precision displacement and thickness measurement based on eddy current sensors: A review. Measurement 2025, 243, 116410. [Google Scholar] [CrossRef]
- Liu, B.; Hou, D.; Huang, P.; Liu, B.; Tang, H.; Zhang, W.; Chen, P.; Zhang, G. An improved PSO-SVM model for online recognition defects in eddy current testing. Nondestruct. Test. Eval. 2013, 28, 367–385. [Google Scholar] [CrossRef]
- Aldbaisi, A.; Abu-Nabah, B.A.; Alkhader, M.; Jaradat, M.A. Eddy current conductive coating layer assessment on conductive substrate: A machine learning approach. Nondestruct. Test. Eval. 2024, 39, 1–30. [Google Scholar] [CrossRef]
- Sophian, A.; Tian, G.Y.; Taylor, D.; Rudlin, J. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT. NDT E Int. 2003, 36, 37–41. [Google Scholar] [CrossRef]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-destructive techniques based on eddy current testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed]
- Rifai, D.; Abdalla, A.N.; Ali, K.; Razali, R. Giant magnetoresistance sensors: A review on structures and non-destructive eddy current testing applications. Sensors 2016, 16, 298. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Fan, M.; Cao, B.; Ye, B.; Tian, G. Lift-off point of intersection in spectral pulsed eddy current signals for thickness measurement. IEEE Sens. Lett. 2018, 2, 7000404. [Google Scholar] [CrossRef]
- Chen, W.; Wu, D. Thickness measurement of titanium-alloy sheets based on the resistance-frequency eddy current method. IEEE Trans. Ind. Electron. 2024, 71, 16814–16822. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, Z.; Liao, Y.; Cao, Z. The roles of conductivity in eddy current distributions in nondestructive testing of isotropic and anisotropic materials. Nondestruct. Test. Eval. 2025, 40, 1–16. [Google Scholar] [CrossRef]
- Liu, B.; He, J.; Yuan, X.; Hu, H.; Zeng, X.; Zhu, Z.; Peng, J. Intelligent Defect Identification Based on PECT Signals and an Optimized Two-Dimensional Deep Convolutional Network. Complexity 2020, 2020, 9518945. [Google Scholar] [CrossRef]
- Chen, J.; Yu, N.; Fan, M.; Cao, B.; Sun, F.; Li, C. Multi-frequency eddy current non-destructive evaluation of battery tab welding quality. Nondestruct. Test. Eval. 2025, 40, 1–23. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Chang, L.; Zhao, J.; Cheng, J. Evaluating the thickness of thin-walled structures from ultrasound signals based on CNN-BILSTM model. Nondestruct. Test. Eval. 2025, 40, 1–19. [Google Scholar] [CrossRef]
- Na, Y.; He, Y.; Deng, B.; Lu, X.; Wang, H.; Wang, L.; Cao, Y. Advances of Machine Learning in Phased Array Ultrasonic Non-Destructive Testing: A Review. AI 2025, 6, 124. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, R.; Le, J.; Li, B.; Fu, W.; Jia, S.; Yin, W. An Intelligent Algorithm Based on the Improved CNN-LSTM for the Detection of Concrete Reinforcement Information. Prog. Electromagn. Res. M 2024, 130, 49–61. [Google Scholar] [CrossRef]
- Meng, T.; Xiong, L.; Zheng, X.; Tao, Y.; Yin, W. Real-time tunnel-magnetoresistive-based pulsed eddy current testing with deep learning. IEEE Sens. J. 2024, 24, 15540–15550. [Google Scholar] [CrossRef]
- She, S.; Zheng, X.; Xiong, L.; Meng, T.; Zhang, Z.; Shao, Y.; Yin, W.; Shen, J.; He, Y. Thickness measurement and surface-defect detection for metal plate using pulsed eddy current testing and optimized Res2Net network. IEEE Trans. Instrum. Meas. 2024, 73, 2530313. [Google Scholar] [CrossRef]
- Chauhan, R.; Ghanshala, K.K.; Joshi, R.C. Convolutional neural network (CNN) for image detection and recognition. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; pp. 278–282. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Purwins, H.; Barak, B.; Nagi, A.; Engel, R.; Höckele, U.; Kyek, A.; Cherla, S.; Lenz, B.; Pfeifer, G.; Weinzierl, K. Regression methods for virtual metrology of layer thickness in chemical vapor deposition. IEEE/ASME Trans. Mechatron. 2013, 19, 1–8. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 20 September 2025).
- Abdollahi-Mamoudan, F.; Ibarra-Castanedo, C.; Maldague, X.P. Non-Destructive Testing and Evaluation of Hybrid and Advanced Structures: A Comprehensive Review of Methods, Applications, and Emerging Trends. Sensors 2025, 25, 3635. [Google Scholar] [CrossRef]
- Nicholls-Lee, R.; Thies, P.; Dulieu-Barton, J.M.; Olafsson, G.; Hughes, R.; Arroyo, A.H.; Xu, G.; Cartlidge, N. Non-destructive examination (NDE) methods for dynamic subsea cables for offshore renewable energy. Prog. Energy 2022, 4, 042011. [Google Scholar] [CrossRef]
Model | MAE_mean | MAE_var | MSE_mean | MSE_var | RMSE_mean | RMSE_var |
---|---|---|---|---|---|---|
CNN [34] | 7.024993 | 0.052771 | 78.050490 | 21.904690 | 8.830654 | 0.070037 |
DepthwiseCNN [35] | 7.548645 | 0.053864 | 84.791890 | 27.613928 | 9.203845 | 0.081135 |
FCN [36] | 6.125727 | 2.359395 | 67.671486 | 1053.132300 | 8.032610 | 3.148668 |
GRU [37] | 6.031803 | 0.906200 | 63.608253 | 480.852300 | 7.869364 | 1.681358 |
MLP [38] | 7.112236 | 1.113585 | 84.926071 | 654.526862 | 9.117661 | 1.794391 |
ResNet [39] | 6.647916 | 4.703732 | 75.719580 | 2054.377200 | 8.392538 | 5.284896 |
ShuffleNet [40] | 7.265041 | 0.049408 | 78.834520 | 17.868109 | 8.875704 | 0.056411 |
TCN [41] | 6.075858 | 1.831081 | 59.193390 | 425.195900 | 7.567530 | 1.925882 |
Transformer [42] | 6.005296 | 0.288067 | 64.015860 | 45.899470 | 7.989866 | 0.177904 |
MRDC-BiLSE (this work) | 4.856351 | 0.113135 | 41.332302 | 53.577140 | 6.404376 | 0.316264 |
Model | MAE_mean | MAE_var | MSE_mean | MSE_var | RMSE_mean | RMSE_var |
---|---|---|---|---|---|---|
CNN [34] | 2.723950 | 0.091850 | 12.582656 | 3.778001 | 3.535925 | 0.079891 |
DepthwiseCNN [35] | 2.492580 | 0.024569 | 11.256685 | 0.633997 | 3.353032 | 0.013863 |
FCN [36] | 1.714077 | 0.005279 | 5.115798 | 0.115833 | 2.260558 | 0.005676 |
GRU [37] | 1.744034 | 0.016202 | 5.559009 | 0.605941 | 2.352463 | 0.024928 |
MLP [38] | 1.348987 | 0.028855 | 3.713593 | 1.186632 | 1.907911 | 0.073472 |
ResNet [39] | 2.015600 | 0.009054 | 6.266086 | 0.496716 | 2.499162 | 0.020274 |
ShuffleNet [40] | 2.032302 | 0.053560 | 7.584812 | 4.263941 | 2.730817 | 0.127449 |
TCN [41] | 1.400472 | 0.087685 | 3.524442 | 3.003472 | 1.829230 | 0.178361 |
Transformer [42] | 2.194795 | 0.486421 | 8.559588 | 24.423513 | 2.820059 | 0.606855 |
MRDC-BiLSE (this work) | 1.293416 | 0.026253 | 3.342939 | 1.090522 | 1.806680 | 0.078846 |
Model | MAE_mean | MAE_var | MSE_mean | MSE_var | RMSE_mean | RMSE_var |
---|---|---|---|---|---|---|
MRDC-BiLSE | 4.856351 | 0.113135 | 41.3323 | 53.5771 | 6.404376 | 0.316264 |
MRDC-BiLSE_w/o_BiLSE | 7.956332 | 0.836094 | 104.4285 | 370.0930 | 10.17202 | 0.958556 |
MRDC-BiLSE_w/o_MSRD | 5.38583 | 1.18564 | 52.87153 | 206.12581 | 7.20666 | 0.93559 |
Model | MAE_mean | MAE_var | MSE_mean | MSE_var | RMSE_mean | RMSE_var |
---|---|---|---|---|---|---|
MRDC-BiLSE | 1.293416 | 0.026253 | 3.342939 | 1.090522 | 1.806680 | 0.078846 |
MRDC-BiLSE_w/o_BiLSE | 1.833702 | 0.009192 | 5.709539 | 0.039216 | 2.389112 | 0.001685 |
MRDC-BiLSE_w/o_MSRD | 2.660287 | 0.101876 | 11.722905 | 2.523224 | 3.416168 | 0.052706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhang, H.; Peng, Y.; Liu, B.; Xu, S.; Yan, H.; Zhang, J.; Chen, Z. Towards Accurate Thickness Recognition from Pulse Eddy Current Data Using the MRDC-BiLSE Network. Information 2025, 16, 919. https://doi.org/10.3390/info16100919
Chen W, Zhang H, Peng Y, Liu B, Xu S, Yan H, Zhang J, Chen Z. Towards Accurate Thickness Recognition from Pulse Eddy Current Data Using the MRDC-BiLSE Network. Information. 2025; 16(10):919. https://doi.org/10.3390/info16100919
Chicago/Turabian StyleChen, Wenhui, Hong Zhang, Yiran Peng, Benhuang Liu, Shunwu Xu, Hao Yan, Jian Zhang, and Zhaowen Chen. 2025. "Towards Accurate Thickness Recognition from Pulse Eddy Current Data Using the MRDC-BiLSE Network" Information 16, no. 10: 919. https://doi.org/10.3390/info16100919
APA StyleChen, W., Zhang, H., Peng, Y., Liu, B., Xu, S., Yan, H., Zhang, J., & Chen, Z. (2025). Towards Accurate Thickness Recognition from Pulse Eddy Current Data Using the MRDC-BiLSE Network. Information, 16(10), 919. https://doi.org/10.3390/info16100919