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Abstract

With the quick development of network technology, the number of active IoT devices
is growing rapidly. Numerous network scanning organizations have emerged to scan
and detect network assets around the clock. This greatly facilitates illegal cyberattacks
and adversely affects cybersecurity. Therefore, it is important to discover and identify
network scanning organizations on the Internet. Motivated by this, we propose a network
scanning organization discovery method based on a graph convolutional neural network,
which can effectively cluster out network scanning organizations. First, we constructed a
network scanning attribute graph to represent the topological relationship between network
scanning behaviors and targets. Then, we extract the deep feature relationships in the
attribute graph via graph convolutional neural network and perform clustering to get
network scanning organizations. Finally, the effectiveness of the method proposed in this
paper is experimentally verified with an accuracy of 83.41% for the identification of network
scanning organizations.

Keywords: network scanning; organization discovery; attribute graph; graph convolutional
network; machine learning

1. Introduction

Network scanning refers to the act of scanning and detecting resources and their
attributes in cyberspace, aiming to portray the attributes and states of cyberspace assets
in an all-around way. Network assets include physical and virtual resources. Physical
resources include a collection of network switching equipment and access equipment, etc.
Access equipment refers to hardware devices used for remote access to network resources,
encompassing types such as modems, switches, and routers. Virtual resources include
information content, virtual users, and application services carried by physical resources.
With the rapid development of network and communication technology, the application
of network scanning technology is becoming more and more widespread. While this
provides important support for network security protection, it also triggers many security
risks. The potential negative impacts of network scanning and detection behaviors, such
as privacy invasion, identity theft, and data leakage, are becoming more evident, posing
potential risks to businesses and individuals.

Identifying the organization of the scanner holds significant value and importance for
the following reasons: (1) Enhancing security protection for network devices: Identifying
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the scanning organization enables us to design strategies specifically tailored to mitigate
or prevent potential cyberattacks. (2) In-depth analysis of scanning behavior: Identifying
scanning organizations and in-depth analysis of scanning activities enables us to deeply
analyze their behavior. This helps us recognize their data collection priorities and preferred
targets (such as specific IP addresses, ports, services, or software). This further assists us in
devising strategies to evade scans, thereby avoiding the exposure of additional exploitable
vulnerabilities. (3) In-depth analysis of scanning organizations: Identifying scanners and
scanning organizations assists us in analyzing the scale and attack activities of potential
attack groups.

Therefore, discovering network scanners and the organizations behind them is neces-
sary to preserve network security. However, most of the existing work detects scanners and
blocks detection activities on their own systems from a security perspective. In contrast,
there has been little research into the identification of the organization behind the network
detectors, ignoring the associative relationships between the network detectors. Cyber
scanning organizations exhibit a number of behavioral characteristics. These behavioral
characteristics include communication patterns, information transfer paths, and frequency
of activity in the network, reflecting how the organization operates, its detection goals,
and how active it is in the network. Therefore, modeling and extracting deep features of net-
work probers and their interrelationships can effectively help us identify the organizations
behind them.

Motivated by this, we propose a network scanning organization discovery method
based on a graph convolutional neural network (GCN) in this paper, aiming to discover
and identify the organizations behind network scanners. Firstly, we construct a network
scanning attribute graph containing attributes such as IP address, port number, timestamp,
whois information, and geographic information. Secondly, we construct a graph convolu-
tional neural network to embed features into the nodes and edges of the attribute graph,
thus effectively learning the nonlinear properties of the network. Thirdly, we implement a
clustering algorithm on the extracted graph embedding representation to achieve clustering
and identification of network scanning organizations. Finally, we validate the effectiveness
of the method by conducting experiments on the constructed dataset. We construct a
network scanning organization dataset containing 1,201,797 pieces of network scanning
traffic data. Each piece of data contains information such as IP address, port number,
protocol, etc., and describes 19 network scanning organizations. The proposed method in
this paper achieves an identification accuracy of 83.41% on this dataset.

The key contributions of this paper are as follows:

e For the first time, we construct an exhaustive dataset of 19 network scanning organi-
zations, including 1,201,797 pieces of network scanning traffic data.

*  We propose a network scanning organization discovery method based on GCN, which
models the correlations between network scanning behaviors to identify network
scanning organizations.

¢  We construct an attribute graph to represent the network scanning behavior, use
a Laplace filter to smooth the feature matrix and extract deep features by GCN,
and finally use a clustering algorithm to identify organizations.

*  The effectiveness of the proposed method is demonstrated through experiments,
with an identification accuracy of 83.41%.

The remainder of this paper is organized as follows. In Section 2, we introduce related
work on network scanning behavior identification and network scanning organization
discovery. Section 3 describes the proposed network scanning organization discovery
method. In Section 4, we evaluate the proposed method through clustering experiments.
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In Section 5, we discuss the limitations and future work. Finally, Section 6 concludes
the paper.

2. Related Work

With the rapid development of Internet technology, network security issues have
become increasingly prominent. Network probing, i.e., various forms of scanning and
monitoring of the target network, has become a common threat behavior. Such probing
behaviors usually include port scanning, vulnerability scanning, network topology probing,
etc., and their purpose is to discover the weak links in the target network for subsequent
attacks. Therefore, the study of how to effectively detect and identify network probers has
become one of the hot current issues in the network security field.

2.1. Network Scanning Behavior Identification

The goal of network scanning is to obtain comprehensive and complete information
about various elements in cyberspace, which includes not only physical resources such as
servers, routers, and terminal devices but also virtual resources such as users, services, IPs,
and ports. The main methods of network scanning behavior discovery are network traffic
analysis, intrusion detection systems, log analysis and auditing, and port scanning tools.

Network Traffic Analysis. Network traffic analysis is currently one of the primary
means of detecting network probing behavior. By monitoring and analyzing network
traffic, researchers can identify anomalous packet patterns and thus deduce potential
probing activities [1,2]. By analyzing network traffic, it is possible to identify anomalous
behaviors and thus detect potential cyber attackers. In recent years, machine learning and
deep learning methods have been widely used in this field. Camelo et al. [3] propose a
spectrum-based procedure that uses a DL-based classifier to achieve traffic classification
at any layer on the radio network stack. Jenefa et al. [4] provide a novel deep learning-
based technique for network traffic classification. The proposed method leverages both
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to classify
network traffic. In addition to this, there are other rule-based [5-7] and machine learning
traffic analysis methods [8-10] to identify scanning behavior.

Intrusion Detection System. Intrusion detection systems play an important role in
identifying network probes as part of an active defense mechanism. Traditional signature-
based IDSs identify known probes by matching network traffic with a library of pre-defined
attack signatures. However, with the emergence of new attack techniques, behavioral
analysis-based IDSs are gaining traction. In recent years, deep learning techniques have
also been applied to IDSs, significantly improving their detection accuracy and gener-
alization capabilities [11,12]. Kurnala et al. [13] introduce a hybrid detection approach
that uses deep learning techniques to improve intrusion detection accuracy and efficiency.
Ashiku et al. [14] propose the use of deep learning architectures to develop an adaptive and
resilient network intrusion detection system (IDS) to detect and classify network attacks.

Log Analysis and Auditing. System logs and network logs record various types of
events during system operation, including user logins, service starts and stops, and error
messages. Through in-depth analysis of these logs, researchers can trace the time, place,
and initiator of the probing behavior. He et al. [15] first present a characterization study of
the current state-of-the-art log parsers and evaluate their efficacy on five real-world datasets
with over ten million log messages. Other rule-based, anomaly detection, and hybrid
approaches have been successively proposed to detect anomalous behavior [16-18].

Port Scan Detection Technology. Some dedicated port scanning monitoring tools and
techniques [19,20] can not only detect ongoing scanning activities in a timely manner but
also take appropriate defensive measures, such as dynamically adjusting firewall rules to
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prevent the source IP of the scan from continuing access. For example, PortSentry v1.2
is a well-known port scanning detection software that listens for abnormal connection
requests on the local host and automatically blacklists them. In recent years, researchers
have identified port scanning behavior using machine learning algorithms [21-23].

2.2. Network Scanning Organization Discovery

Researchers often use cluster analysis methods to discover hidden patterns and re-
lationships in groups, e.g., to discover groups of users with similar interests in a social
network, or to detect anomalous communication patterns in a communication network.
Heli et al. [24] proposed the Network Embedding for node Clustering (NEC) algorithm,
which learns both graph-structure-based representations and cluster-oriented represen-
tations, and then uses K-mean for community detection. Brigitte et al. [25] propose the
density-based clustering model TCSC for detecting organizations in heterogeneous net-
works that are densely connected in both network and attribute space. Cui et al. [26]
propose an Adaptive Graph Encoder (AGE), a new framework for attribute graph embed-
ding, which utilizes supervised learning of high and low similarity node pairs through an
adaptive encoder, and finally performs Spectral clustering on the similarity matrices that
preserve the embedding.

There are fewer existing studies related to network scanning organization discovery,
focusing on collecting and analyzing network traffic to trace attackers. Richter et al. [27]
track scanning activity through the lens of unsolicited traffic captured at the firewalls.
Li et al. [28] design and implement a system for deploying and managing honeysites to
attract and record bot traffic. Mazel et al. [29] present novel identification methods to
identify ZMap scans with a small number of addresses extracted from the scan.

In summary, most of the existing methods focus on the discovery of network scanning
behavior and the discovery of network probers. Few studies have focused on identifying
the organizations behind these network probers. Identifying scanning organizations in
cyberspace is important for protecting our cyber assets and reducing security threats.

3. Method

In recent years, scanning activities on the internet have exhibited a marked upward
trend. A significant number of scanners have been deployed across the internet to gather
extensive information on network devices, such as active hosts, open ports, service software
versions, and operating systems. The disclosure of such information may pose a significant
threat to network security. For instance, scanning may reveal the specific version of service
software running on a target host. By correlating this information with publicly available
vulnerability databases, potential software security vulnerabilities can be identified. There-
fore, our method is designed for open-world environments, dedicated to identifying and
collecting scanning organizations across the Internet.

The proposed network scanning organization discovery method based on GCN is
shown in Figure 1. The framework contains four modules: Attribute Graph Construction,
Feature Extraction, Graph Embedding, and Organization Discovery. We build multiple honeypot
servers to collect scanning traffic logs from the network. We construct a network scanning
behavioral attribute graph based on traffic log data. In the feature extraction stage, the labels
of nodes and edges are first determined, and the log content is analyzed to determine the
attributes of nodes and edges. Then the textual, categorical, and continuous numerical
attributes are processed using the Term Frequency-Inverse Document Frequency (TF-
IDF), One-Hot encoding, and Normalization approaches, respectively. The feature matrix
processed by Laplace smoothing is input into the GCN model along with the adjacency
matrix. The embedding representations of each node are learned by graph convolution
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operation using the feature vectors of nodes and edges and the adjacency matrix. These
embedding representations can comprehensively reflect the feature information of nodes
and their topology in the network. Finally, each node of the attribute graph is mapped into
a low-dimensional vector space, and the output embedding matrix is clustered as input to
K-means clustering and Spectral clustering to identify network scanning organizations.

Attribute Graph Construction Feature Extraction Graphic Embedding Organisation Discovery
! H i GCN model K-means Clustering
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i Attribute i Attribute CEEBYAR [
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-

| Dotand Edge Laplace Smoothin,
Attributes L{ Hj

_89

Feature Matrix )—(~

e

1
3]
b
]
3]
bl

Topologlcal
Structure
Adjacency Matrix = A

Feature Matrix 7

Figure 1. The framework of the proposed method.

3.1. Attribute Graph Construction

We construct attribute graphs to analyze the characteristics of network scanning be-
haviors, revealing interaction patterns and behavioral trends in cyberspace. We consider
the hosts in the network as nodes (hosts) and the types of communication connections
between hosts as edges (actions), which in turn allows us to extract and analyze features of
the dynamic behavior of cyberspace. Node attributes include IP address (IP), port number
(port), whois information (whois), country code (area code), city name (city), Internet
Service Provider (isp), Autonomous System Number (asn), name of the organization to
which the IP address belongs (org), province or state (p), latitude (lat) and longitude (lon).
Side attributes include connection type (action), transport protocol, UTC, headers, head-
ers_keys, headers_values, method, proto, URI, datagram information, uri, pack_datagram,
and data_length. Examples of nodes in the attribute graph are shown in Table 1.

Table 1. Entities and descriptions in the network scanning attribute graph.

Entity Type Entity Description and Example

Ip: IP Address, e.g., XXx.Xxx.Xxx.34
Port: Port Number, e.g., 42824
Whois: Information About The Domain Name Associated With The Source IP Address
Areacode: The Code Of The Country Where The Source IP Address Is Located, e.g., US
City: The Name Of The City Where The Source IP Address Is Located, e.g., San Francisco.
Host Computer Equipment  Isp: Name Of The Internet Service Provider Of The Source IP Address, e.g., Enes Koken
Asn: Autonomous System Number Assigned To Each ISP, e.g., 14061
Org: Name Of The Service Provider Or organization Managing The Source IP, e.g., DigitalOcean, LLC
P: The Name Of The Province Or State Where The Source IP Address Is Located, e.g., California
Lat: Latitude Where The Source IP Address Is Located, e.g., 37.775090
Lon: The Longitude Of The Source IP Address, e.g., —122.419640

Action: Type Of Request, e.g., Connect
Transport Protocol: Type of transport protocol, e.g., TCP
Utc: Universal Standard Time, e.g., 31 October 2023 11:57:00 p.m.
Headers: Request Headers Stored As Key-Value Pairs
Headers_keys: Keys For Request Headers

Network Connection Headers_values: Values For Request Headers
Method: Request Method, Such As GET
Proto: Protocol Type, e.g., HTTP/1.1
Uri: Uniform Resource Identifier Used To Indicate The Path To The Requested Resource, e.g., /manage/account/login
Pack_datagram: Hexadecimal Representation Of The Packet
Data_length: Length Of The Requested Data
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Given an attribute graph G = (V,E, X), where V = {v1,0y,...,0,} is the set of
vertices with a total of n nodes, E = {e11,e12,. .. ,Cijy - - ,enn } is the set of edges with a
total of m edges, X = [x1,x2,... ,xn]T is the feature matrix of all nodes, x; € R? is the
real-valued eigenvector of the node v;, x(v;) is the k-th attribute of the node v;, dom (xy)
is the set of possible values of the k-th element of the attribute vector, i.e., the domain
of the x;. The topology of an attribute graph can be represented by an adjacency matrix
A= {ui]-} € Ryxn. If a;; =1, it means that there is an edge from node v; to node v;.

3.2. Feature Extraction

The findings of many papers show that the ‘topology” and ‘feature information” of
attribute graphs often provide complementary information, and that fusion of the two
can improve the quality of feature representation. For example, feature information may
help to solve the problem of missing or noisy attributes, while topology information can
compensate for the structural sparsity of the network. Therefore, we need to extract
features separately for attribute features and topology for subsequent feature embedding
and representation. In order to accurately characterize the nodes and edges in a network,
their attributes need to be refined. In this paper, three main feature processing methods
are used: the TF-IDF, the One-Hot encoding, and the Normalization approach for textual,
categorical, and continuous numerical attributes.

TF-IDF for textual attributes. TF-IDF is a feature vectorization method commonly
used in text mining; this technique evaluates the importance of a word in a particular
document, taking into account the frequency of distribution of the word in the entire
document collection. TF-IDF consists of two parts: Term Frequency (TF) and Inverse
Document Frequency (IDF), where TF indicates the proportion of the number of occurrences
of a word in a document to the total number of words in the document, and IDF is used to
measure the frequency of occurrences of a word in all the documents, thus determining
its ‘rarity’.

Assuming that there are k words in the document d, ny; is the number of times the
word t; appears in the document d;, and the sum of ny; is the sum of the number of
occurrences of all the words in the document. The formulae for the word frequency and
the inverse document frequency, respectively, are as follows:

TF, = (1)

U ey

o D
PR =8 e ay ®

where |D| denotes the total number of documents. The text data can be converted into nu-
merical feature representations through TF-IDF, which can be used as input for subsequent
machine learning. In this paper, we use TF-IDF to process the textual attributes of nodes
and edges thereby effectively capturing the importance of keywords and providing rich
semantic information for structural analysis of the network.

One-Hot for categorical attribute. One-Hot encoding is commonly used to deal
with categorical attributes, which represent the mutual exclusivity between categories
by converting each category attribute into a binary vector. Where only one position is
a 1 and the rest of the positions are zeros. This approach is simple and intuitive and
enables the model to understand that there is no numerical magnitude relationship be-
tween different categories, which can prevent the model from misinterpreting the category
attributes. In this paper, the unique heat coding can help the model accurately distinguish
the different category attributes of nodes and edges, and provide a basis for the subsequent
cluster analysis.
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Normalization for numerical attribute. Normalization approaches are commonly
used to deal with continuous numerical attributes by scaling the attribute values to a
specific range (e.g., between 0 and 1) or normalizing to a distribution with zero mean and
unit variance. This approach can eliminate the effects of different magnitude attributes
to a certain extent to ensure the stability and efficiency of model training. In this paper,
the Normalization process ensures that continuous numerical attributes are well distributed
in the feature matrix and improves the sensitivity of the algorithm to subtle differences in
network structure.

The textual attributes processed by TF-IDF, the categorical attributes processed by solo
thermal coding, and the continuous numerical attributes processed by Normalization are
stitched into a feature matrix. This feature matrix provides a comprehensive representation
of the nodes and edges in the network. Since the topology representation of the graph is also
one of the core aspects of cyberspace mapping and its related research, it is directly related
to the effectiveness and accuracy of the subsequent analysis and calculation. The adjacency
matrix, as a classical method to represent the topology of a graph, has been widely adopted
due to its intuition and ease of operation. Therefore, this paper adopts the adjacency matrix
together with the feature matrix as the attribute representation of nodes.

Laplace feature smoothing. The basic assumption of graph learning is that the
neighboring nodes on the graph should be similar and therefore the node features should
be smooth on the graph flow shape. In order to obtain smoother signals and retain the low-
frequency components while filtering out the high-frequency components while ensuring
high computational efficiency, a Laplace smoothing filter is used in this paper. The Laplace
smoothing filter is defined as follows:

1

Amax

H=I-KL=1-

)

where K is the real value, Ay is the maximum eigenvalue and L is the symmetric normal-
ized Laplace matrix. After stacking f Laplace smoothing filters, the filtered feature matrix
is denoted by X = H'X.

3.3. Graph Embedding

Research on graph embedding has emerged with the widespread use of graphs in a
number of domains. These studies typically use graphs as input and incorporate auxiliary
information to optimize the embedding process. In general, there are five different types
of auxiliary information, which are labels, attributes, node features, information dissemi-
nation, and knowledge base. A label refers to the categorical marking of a node or edge,
and nodes with different labels should be kept away from each other in the embedding
space. Attributes can be classification labels or continuous values for nodes or edges. Node
features consist mainly of text or image features, most of which are in the form of text.
These textual features can be used directly as feature vectors for each node or in the form of
documents. Features in the form of documents can be further processed by bag-of-words
modeling, topic modeling, or treating ‘words’ as node types to extract feature vectors.

GCN, as an effective tool for graph embedding, has received much attention due to
its excellent performance. GCN learns the feature representations of nodes by performing
convolutional operations on graph-structured data and is able to efficiently capture the
complex relationships between nodes and the rich information of node features. The core
idea is to aggregate the features of each node with those of its neighboring nodes, so as to
obtain a new feature representation of that node. The adjacency matrix and feature matrix
are the important components of this algorithm, and both of them are used as inputs to
gradually extract the high-level features of the graph data through the multilayer GCN
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structure. In GCN models, preprocessing of the adjacency matrix is one of the key steps to
improve the performance of the model. In order to increase the expressive power of the
model, self-connections are usually added in and the following calculations are performed:

A=D1(A+I)D"z 4)

Normalization is performed to balance the degree of influence of different nodes. GCN
uses the normalized adjacency matrix and node feature matrix for feature aggregation to
update the feature representation of each node. The feature aggregation process can be
formalized as:

H(+1) = o(AHOW) (5)

where H() denotes the node identity matrix of the layer, W) is the weight matrix of the
layer, and ¢ is the activation function. Through layer-by-layer aggregation, GCN is able to
learn node embedding representations that contain both local graph structure and global
graph information. After the multi-layer feature aggregation of the GCN model, the final
generated embedding matrix contains the low-dimensional vector representation of each
node in the graph. These embedding vectors reflect both the feature information of the
node and the position information of the node in the graph. After embedding through the
GCN graph, the feature representation is fed into the clustering algorithm to cluster out
network scanning organizations, as shown in Figure 2. Notably, [1 0], [0 0], [0 1], [1 1] are
the feature vectors of nodes. Node features primarily encompass textual or image features,
represented in vector form, and are presented here merely as an illustrative example.

Figure 2. The process of graph embedding to obtain feature representations.

3.4. Organization Discovery

We use the embedding matrix generated by GCN for clustering analysis of network
scanning organizations and design three organization discovery methods based on K-
means, Spectral, and DBSCAN clustering methods, respectively.

GCN+K-means. K-means is an unsupervised learning clustering algorithm based on
segmentation. The clustering algorithm divides the data points into distinct clusters, where
each point in the graph belongs to the center of the cluster closest to itself. The K-means
algorithm generally uses the Euclidean distance as a measure of the similarity between
data points. It works by constantly updating the center of the cluster so that the similarity
between the data points in the cluster and their corresponding centers is gradually reduced
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by the sum of the squares of the intra-cluster errors. The Sum of Squared Errors (SSE) is

calculated as follows: }

SSE=)_ ). ld(x,C;)P? ©)
i=1xeC;

SSE is used to measure the closeness of the clustering results—the smaller the SSE
value is, the closer the clustering results are, i.e., the closer the data points are to the cluster
centers they belong to. When SSE is stable or the objective function reaches convergence,
the clustering process has reached a stable state, at which time the algorithm stops and
outputs the final clustering results. The specific clustering process of K-means is to first
randomly select k initial clustering centers C;(1 < i < k) and then calculate the Euclidean
distance between each data point and these centers:

d(x,C;) = (xj — Cij)? 7)

where x is the data object, C; is the i-th clustering centre, m is the dimension of the data
object, x; and C;; are the j-th attribute values of x and C;. Next, the center of each cluster
is updated as the mean of all data points in that cluster, and then the distance between
each data point and the updated center is recalculated and assigned again. The above
process is repeated until the center of the cluster no longer changes significantly. In the
final clustering result obtained, the data points are assigned to clusters and each data point
has the minimum distance from the center of the cluster to which it belongs. The network
scanning organization discovery algorithm based on GCN and K-means is shown as
Algorithm 1.

Algorithm 1 The network scanning organization discovery algorithm based on GCN
and K-means

Input:

Network Scanning Attribute Graph: G,

Number of Clusters: k.

Output:

Cluster Centres and Labels.

Process:

1: IF-IDF processing of text attributes in G.
: One-Hot processing of categorical attributes in G.
: Normalization processing of numerical attributes in G.
: Graph embedding: Z = GCN(G).
: Initializing clustering centres: k nodes are randomly selected from Z as initial cluster-
ing centres.
: foreach z; in Z do
Calculate the distances of z; from all cluster centres.
Assign z; to the nearest cluster.
Update the clustering centre: The cluster centre vector is the average of all node
vectors in the cluster.
10: end for

T W N

© 2 N

GCN+Spectral. Spectral clustering is an unsupervised clustering algorithm based on
graph theory and spectral theory. Unlike traditional clustering algorithms (e.g., K-means),
Spectral clustering is not constrained by the convex shape of the data or the cluster size and
is therefore effective in dealing with non-convex shaped and complex structured datasets.
The method achieves the clustering task by building a similarity graph structure between
data objects and utilizing spectral analysis of the graph. The core idea is to consider the
samples in a dataset as nodes in a graph, build the edges of the graph by the similarity
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between the samples, and then use the spectral structure of the graph to group the data.
Spectral clustering uses matrices that have been extensively studied in spectral graph
theory, so-called graph Laplacian functions, of both “unnormalized” and “normalized”
types. The non-normalized Laplace matrix is defined as:

L=D-W (8)

where D is the degree matrix and W is the weight matrix. There are two general types of
normalized Laplace matrices, both of which are closely related and are defined as follows:

Lyym =D 2LD 2 = [~ D 3WD"? )

Liw=D'L=1-D"'w (10)

Lsym is a symmetric matrix, Ly is closely related to a randomized tour, and these two
matrices are closely related to each other. The network scanning organization discovery
algorithm based on GCN and Spectral is shown as Algorithm 2.

Algorithm 2 The network scanning organization discovery algorithm based on GCN
and Spectral

Input:

Network Scanning Attribute Graph: G,
Number of Clusters: k.

Output:

Cluster Centres and Labels.

Process:

—_

IF-IDF processing of text attributes in G.
One-Hot processing of categorical attributes in G.
Normalization processing of numerical attributes in G.
Graph embedding: Z = GCN(G).
for each pair of nodes 7,j in Z do
Calculate the Euclidean distance S;; between nodes i and j.
Taking S;; as the similarity.
end for
Constructing the similarity matrix S.
Calculate the degree matrix: Dj; = }; Sj;.
Calculate the Laplace matrix: L = D — W.

: Calculate the normalized Laplace matrix: Lsy, = D™ SLD"3.

: Feature decomposition of Lsyy,.

: Select the feature vectors corresponding to the smallest k non-zero eigenvalues to
compose a new matrix U.

: Input U into the K-means algorithm to cluster k clusters.

N e
N =)

—_
a1

GCN+DBSCAN. The DBSCAN algorithm is a density-based clustering method whose
core mechanism relies on the estimation of the minimum density level. The model defines
two main parameters: the radius € of the neighborhood to be used for any distance measure
and the minimum number of neighbors minPts located within that radius. If the number of
neighbors of an object within the given radius exceeds the threshold, the object is identified
as a core point. The network scanning organization discovery algorithm based on GCN
and Spectral is shown in Algorithm 3.
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Algorithm 3 The network scanning organization discovery algorithm based on GCN
and DBSCAN

Input:

Network Scanning Attribute Graph: G,

Neighborhood Radius: €,

Minimum Number of Neighbors: minPts.

Output:

Cluster Centres and Labels.

Process:

: IF-IDF processing of text attributes in G.

[y

2: One-Hot processing of categorical attributes in G.
3: Normalization processing of numerical attributes in G.
4: Graph embedding: Z = GCN(G).
5: Initialize the unvisited points set N.
6: while N is not empty do
7: Choose a point p from N.
8. Calculate the neighborhood N¢(p) of p.
9: if [Ne(p)| < minPts then
10: Mark p as the noise point.
11: else
12: Create a new cluster C and add p to C.
13: Add all points in Ne(p) to the set S.
14: while S is not empty do
15: Choose a point g from S.
16: if g is not visited then
17: Remove g from N.
18: Calculate the neighborhood Ne(q).
19: if [Ne(p)| > minPts then
20: Add all points in N¢(gq) to the set S.
21: end if
22: end if
23: if g is not part of any cluster then
24: AddgtoC.
25: end if
26 end while
27: end if

28: end while

4. Evaluation

In this section, we conduct a systematic experiment to evaluate the effectiveness of
the proposed network scanning organization method based on GCN. We evaluate the
identification accuracy of the proposed method on a given dataset, which will be described
in detail later.

4.1. Experiment Setup

Datasets. The dataset used in this paper is derived from traffic logs from honey-
pots deployed on several VPSs, with the contents of the logs stored in an Elasticsearch
database. We deploy 50 honeypots across eight geographic regions to collect compre-
hensive cyber bot traffic for pattern analysis. Each honeypot runs on a virtual machine
configured with two CPU cores and 2 GB RAM, with the deployment sharing 1 GB/s
network bandwidth. Individual honeypots host three to seven services selected from a
pool of 21 available protocols, creating varied service combinations such as HTTP, FTP,
SSH, HTTP, MySQL, RTSP, and HTTP, Telnet, MongoDB. We identified these 19 authentic
organizations (labels) by comparing data from online mapping platforms such as FOFA.
There are “quake, censys, stretchoid, shadowserver, internet-census, binaryedge, shodan,
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intrinsicsec, research-scanner, rapid7, recyber, criminalip, onyphe, internettl, zoomeye, ipip,
fofa, internet-measurement, and cyber”. The six organizations with the highest number
of logs are: quake, censys, stretchoid, shadowserver, internet-census, binaryedge, with re-
spective proportions of 25%, 23.5%, 15.7%, 8.4%, 6.2%, and 5.1%. We select 53,091 labeled
traffic log data of these organizations as the training set and 56,930 log data as the test set
to verify the effectiveness of the method in this paper.

Parameter Settings. The GCN we constructed comprises three neural network layers.
The first layer is a graph convolutional layer with an output channel size of 16 and a ReLU
activation function. The second layer is a Dropout layer with a rate of 0.5 to prevent the
model from overfitting. The third layer is the graph convolutional layer, which serves
as the model’s output layer, with the output dimension corresponding to the number of
classes. During the model training phase, we employed the Adam optimizer alongside the
cross-entropy loss function.

Evaluation Metrics. We selected the following six evaluation metrics to evaluate
the effectiveness of the method: Silhouette Index (SI), Calinski-Harabasz Index (CHI),
Davies—Bouldin Index (DBI), Accuracy (ACC), Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI), where SI, CHI, and DBI are internal metrics that measure
the closeness of a data point after it has been assigned to the cluster group to which it
belongs. ACC, NMI, ARI, and external metrics, a measure of the clustering algorithm in
the supervised case, comparing the clustering results with known results.

4.2. Evaluation Results

The methods compared in this paper are K-means, Spectral, and DBSCAN clustering
algorithms. We processed the data in the following three ways:

* non-Graph: Instead of constructing a node attribute graph, the relevant attributes of
the host devices and the relevant attributes of the network connections are spliced
together, and the whole is used as a feature.

¢ Graph-G: Construct a node attribute graph with host devices as nodes and network
connections as relationships.

¢  Graph-LG: Based on the construction of the node attribute graph, the feature matrix
is smoothed using the Laplace smoothing technique.

We used these three processing methods to conduct experiments with the three clus-
tering algorithms. The results on the six evaluation metrics are shown in Table 2.

Table 2. Results of six evaluation metrics in organizational discovery based on clustering algorithm.
Bold indicates the best result among the three clustering methods, while * denotes the best result for
that metric among all methods.

Method ACC NMI ARI SI CHI DBI
K-means 0.7913 0.3948 0.2639 0.4095 5546.8930 0.9796
non-Graph Spectral 0.7104 0.3133 0.2461 0.5213 3920.2341 0.8721
DBSCAN 0.4233 0.2015 0.1971 0.1358 379.3614 1.3172
K-means 0.8012 0.5542 0.4179 0.7167 23,914.2313 0.4496
Graph-G Spectral 0.7728 0.4854 0.4253 0.7741 9176.2561 0.6182
DBSCAN 0.5144 0.2448 0.2175 0.3142 1052.6348 29178
K-means 0.8341 * 0.6074 * 0.5652 * 0.7828 * 31,034.5827 * 0.4235 *
Graph-LG Spectral 0.7543 0.5188 0.4732 0.7182 10,378.5347 0.6017
DBSCAN 0.5214 0.3437 0.2831 0.2876 987.4192 3.7206

The experimental results show that the K-means algorithm has the best clustering
effect, with results of 0.8341, 0.6074, 0.5652, 0.7828, 31034.5827, and 0.4235 on the six
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metrics ACC, NMI, AR, SI, CHI, and DBI, respectively. Meanwhile, we can see the best
experimental results after constructing the attribute graph and smoothing it with Laplace
features. The worst results are obtained when features are directly spliced together without
constructing an attribute graph. This does not take into account the correlations between
network scanning behaviors. The experimental results after smoothing with the Laplace
filter are better than the unsmoothed ones, indicating the effectiveness of the feature
smoothing technique for graph feature extraction and clustering. The ACC, NMI, and ARI
results of the K-means clustering algorithm for different numbers of clusters are shown in

Figure 3.
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Figure 3. Results for different number of clusters in K-means clustering.

It can be seen from the figure that the ACC, NMI, ARI, and SI values of K-means
clustering are maximized and the DBI value is minimized at cluster number 6, which
further proves that the K-means algorithm performs optimally. The ACC, NMI, and ARI
results of the Spectral clustering algorithm for different numbers of clusters are shown in
Figure 4. We visualized and analyzed the clustering results as shown in Figure 5.

As can be seen from the figure, four clusters can be clearly distinguished in the K-
means clustering effect plot, with a total of four organizations accounting for more than
10% of the total, namely quake (29.8%), censys (28%), stretchoid (18.6%) and shadoserver
(10%). The two algorithms, K-means and DBSCAN, differ in the boundary distinctness
and tightness of the clusters. Although DBSCAN'’s clusters present clearer and tighter
boundaries in the graph, K-means exhibit higher values for evaluation metrics such as
ACC, NM]I, and ARI in comparison. This may be due to the fact that K-means is better
adapted to the convex distribution or homogeneity of the data on the dataset used in this
paper, and therefore the correlation metrics are all better than DBSCAN.
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5. Discussion
5.1. Limitations

We propose a network scanning organization discovery method based on GCN, which
models the correlations between network scanning behaviors to identify organizations.
Although the preliminary results of the paper confirm the effectiveness of the method,
there are still some issues that need to be discussed. Firstly, in this paper, we use TF-IDF to
vectorize the text features which may cause some limitations as it is difficult to adequately
represent the semantics in the text. Second, although the K-means algorithm clusters well,
this algorithm usually assumes that the clusters are roughly the same size and density,
which may not be applicable to complex, dynamically changing scenarios.

5.2. Future Work

For the issue of representing textual attributes of nodes, we will consider adopting
more advanced natural languages processing techniques such as Word2Vec, BERT, or word
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embedding methods such as GloVe, combined with GCN models, so as to capture and
utilize the deep semantic information in textual data more effectively in the subsequent
research. For the dynamically changing scenarios of network scanning organizations, we
will explore dynamic clustering algorithms to better adapt to the evolution of organiza-
tional structure over time and more accurately reflect the real-time state of cyberspace
scanning organizations.

6. Conclusions

In this paper, we propose a network scanning organization discovery method, which
constructs an attribute graph to analyze correlations between scanning behaviors. Unlike
existing methods that mostly focus on identifying illegal scanning behaviors, we focus
more on identifying the organizations behind these scanning behaviors. We construct
an exhaustive dataset of network scanning behaviors, including 1,201,797 pieces of data.
Through experimental analysis of this dataset, we can effectively identify the organization
behind these network scanning behaviors. This is important for reducing the threat of
attacks on network assets and maintaining network security.
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