- Article
GenIIoT: Generative Models Aided Proactive Fault Management in Industrial Internet of Things
- Isra Zafat,
- Arshad Iqbal and
- Maqbool Khan
- + 2 authors
Detecting active failures is important for the Industrial Internet of Things (IIoT). The IIoT aims to connect devices and machinery across industries. The devices connect via the Internet and provide large amounts of data which, when processed, can generate information and even make automated decisions on the administration of industries. However, traditional active fault management techniques face significant challenges, including highly imbalanced datasets, a limited availability of failure data, and poor generalization to real-world conditions. These issues hinder the effectiveness of prompt and accurate fault detection in real IIoT environments. To overcome these challenges, this work proposes a data augmentation mechanism which integrates generative adversarial networks (GANs) and the synthetic minority oversampling technique (SMOTE). The integrated GAN-SMOTE method increases minority class data by generating failure patterns that closely resemble industrial conditions, increasing model robustness and mitigating data imbalances. Consequently, the dataset is well balanced and suitable for the robust training and validation of learning models. Then, the data are used to train and evaluate a variety of models, including deep learning architectures, such as convolutional neural networks (CNNs) and long short-term memory networks (LSTMs), and conventional machine learning models, such as support vector machines (SVMs), K-nearest neighbors (KNN), and decision trees. The proposed mechanism provides an end-to-end framework that is validated on both generated and real-world industrial datasets. In particular, the evaluation is performed using the AI4I, Secom and APS datasets, which enable comprehensive testing in different fault scenarios. The proposed scheme improves the usability of the model and supports its deployment in a real IIoT environment. The improved detection performance of the integrated GAN-SMOTE framework effectively addresses fault classification challenges. This newly proposed mechanism enhances the classification accuracy up to 0.99. The proposed GAN-SMOTE framework effectively overcomes the major limitations of traditional fault detection approaches and proposes a robust, scalable and practical solution for intelligent maintenance systems in the IIoT environment.
18 December 2025






![Overview of the empirical research within the EAsyAnon project. The empirical work comprised three sub-studies: (1) a scoping review [1], (2) qualitative expert interviews [6], and (3) a quantitative online survey. The sequential mixed-methods design ensured that earlier findings informed subsequent data collection and analysis.](https://mdpi-res.com/information/information-16-01111/article_deploy/html/images/information-16-01111-ag-550.jpg)

