Designing Co-Creative Systems: Five Paradoxes in Human–AI Collaboration
Abstract
1. Introduction
Shift from AI as a Tool to as a Collaborator
2. Related Work
2.1. The Executor Model and Its Limitations for Exploration
2.2. Lack of Support for Refinement
2.3. Single Output/Multiple Exploration
2.4. AI’s Limited Role as an Executor
3. Core Paradoxes in Human–AI Co-Creative Design
3.1. Ambiguity vs. Precision
3.2. Control vs. Serendipity
3.3. Speed vs. Reflection
3.4. Individual vs. Collective
3.5. Originality vs. Remix
4. Discussion
4.1. Interdisciplinary Connections
4.2. Theoretical Implications
4.3. Ethical Considerations in Co-Creative Systems
4.4. Future Work and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serbanescu, A.; Nack, F. Human-AI system co-creativity for building narrative worlds. In Proceedings of the IASDR 2023: Life-Changing Design, Milan, Italy, 9–13 October 2023; Design Research Society: London, UK, 2023. [Google Scholar]
- De Vries, K. You never fake alone. Creative AI in action. Inf. Commun. Soc. 2020, 23, 2110–2127. [Google Scholar] [CrossRef]
- Melville, N.P.; Robert, L.; Xiao, X. Putting humans back in the loop: An affordance conceptualization of the 4th industrial revolution. Inf. Syst. J. 2023, 33, 733–757. [Google Scholar] [CrossRef]
- Haj-Bolouri, A.; Conboy, K.; Gregor, S. Research Perspectives: An Encompassing Framework for Conceptualizing Space in Information Systems: Philosophical Perspectives, Themes, and Concepts. J. Assoc. Inf. Syst. 2024, 25, 407–441. [Google Scholar] [CrossRef]
- Haase, J.; Pokutta, S. Human-AI Co-Creativity: Exploring Synergies Across Levels of Creative Collaboration. arXiv 2024, arXiv:2411.12527. [Google Scholar] [CrossRef]
- Jennings, K.E. Developing Creativity: Artificial Barriers in Artificial Intelligence. Minds Mach. 2010, 20, 489–501. [Google Scholar] [CrossRef]
- Mateja, D.; Heinzl, A. Towards Machine Learning as an Enabler of Computational Creativity. IEEE Trans. Artif. Intell. 2021, 2, 460–475. [Google Scholar] [CrossRef]
- Chiou, E.K.; Lee, J.D. Trusting Automation: Designing for Responsivity and Resilience. Hum Factors 2023, 65, 137–165. [Google Scholar] [CrossRef] [PubMed]
- Buschek, D.; Mecke, L.; Lehmann, F.; Dang, H. Nine Potential Pitfalls when Designing Human-AI Co-Creative Systems. arXiv 2021, arXiv:2104.00358. [Google Scholar] [CrossRef]
- Haase, J.; Hanel, P.H.P. Artificial muses: Generative artificial intelligence chatbots have risen to human-level creativity. J. Creat. 2023, 33, 100066. [Google Scholar] [CrossRef]
- Boden, M.A. Computer Models of Creativity. AI Mag. 2009, 30, 23–34. [Google Scholar] [CrossRef]
- Cropley, D.; Cropley, A. Creativity and the Cyber Shock: The Ultimate Paradox. J. Creat. Behav. 2023, 57, 485–487. [Google Scholar] [CrossRef]
- Rezwana, J.; Maher, M.L. Designing Creative AI Partners with COFI: A Framework for Modeling Interaction in Human-AI Co-Creative Systems. ACM Trans. Comput.-Hum. Interact. 2023, 30, 1–28. [Google Scholar] [CrossRef]
- Demirel, H.O.; Goldstein, M.H.; Li, X.; Sha, Z. Human-Centered Generative Design Framework: An Early Design Framework to Support Concept Creation and Evaluation. Int. J. Hum. -Comput. Interact. 2024, 40, 933–944. [Google Scholar] [CrossRef]
- Chen, V.; Liao, Q.V.; Wortman Vaughan, J.; Bansal, G. Understanding the Role of Human Intuition on Reliance in Human-AI Decision-Making with Explanations. Proc. ACM Hum.-Comput. Interact. 2023, 7, 1–32. [Google Scholar] [CrossRef]
- Gmeiner, F.; Yang, H.; Yao, L.; Holstein, K.; Martelaro, N. Exploring Challenges and Opportunities to Support Designers in Learning to Co-create with AI-based Manufacturing Design Tools. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–20. [Google Scholar] [CrossRef]
- Moruzzi, C.; Margarido, S. A User-centered Framework for Human-AI Co-creativity. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 11–16 May 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Zhou, J.; Li, R.; Tang, J.; Tang, T.; Li, H.; Cui, W.; Wu, Y. Understanding Nonlinear Collaboration between Human and AI Agents: A Co-design Framework for Creative Design. arXiv 2024, arXiv:2401.07312. [Google Scholar] [CrossRef]
- Davis, N.; Hsiao, C.-P.; Popova, Y.; Magerko, B. Zagalo, N., Branco, P., Eds.; An Enactive Model of Creativity for Computational Collaboration and Co-creation. In Creativity in the Digital Age; Springer: London, UK, 2015; pp. 109–133. ISBN 978-1-4471-6681-8. [Google Scholar]
- Mamykina, L.; Candy, L.; Edmonds, E. Collaborative creativity. Commun. ACM 2002, 45, 96–99. [Google Scholar] [CrossRef]
- Stallbaumer, C. Introducing Copilot for Microsoft 365. Microsoft 365 Blog. Available online: https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/ (accessed on 26 August 2025).
- Lopes, D.; Correia, J.; Machado, P. EvoDesigner: Towards Aiding Creativity in Graphic Design. In Artificial Intelligence in Music, Sound, Art and Design; Martins, T., Rodríguez-Fernández, N., Rebelo, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 162–178. [Google Scholar]
- Frich, J.; MacDonald Vermeulen, L.; Remy, C.; Biskjaer, M.M.; Dalsgaard, P. Mapping the Landscape of Creativity Support Tools in HCI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Kantosalo, A.; Jordanous, A. Role-Based Perceptions of Computer Participants in Human-Computer Co-Creativity; AISB: London, UK, 2021; pp. 20–26. Available online: https://aisb.org.uk/wp-content/uploads/2021/04/cc_aisb_proc.pdf (accessed on 26 August 2025).
- Liapis, A.; Yannakakis, G.N.; Togelius, J. Computational Game Creativity. 2014. Available online: https://www.um.edu.mt/library/oar/handle/123456789/29473 (accessed on 26 August 2025).
- Tan, L.; Luhrs, M. Using Generative AI Midjourney to enhance divergent and convergent thinking in an architect’s creative design process. Des. J. 2024, 27, 677–699. [Google Scholar] [CrossRef]
- Gero, J.S. Design Prototypes: A Knowledge Representation Schema for Design. AI Mag. 1990, 11, 26. [Google Scholar] [CrossRef]
- Gero, J.S.; Kannengiesser, U. The situated function–behaviour–structure framework. Des. Stud. 2004, 25, 373–391. [Google Scholar] [CrossRef]
- Hatchuel, A.; Weil, B. A New Approach of Innovative Design: An Introduction to C-K Theory. In DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design, Stockholm; 2003; pp. 109–110. Available online: https://www.designsociety.org/publication/24204/a_new_approach_of_innovative_design_an_introduction_to_c-k_theory (accessed on 13 October 2025).
- Howard, T.J.; Culley, S.J.; Dekoninck, E. Describing the creative design process by the integration of engineering design and cognitive psychology literature. Des. Stud. 2008, 29, 160–180. [Google Scholar] [CrossRef]
- Girotto, V. Collective Creativity through a Micro-Tasks Crowdsourcing Approach. In Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, San Francisco, CA, USA, 27 February–2 March 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 143–146. [Google Scholar] [CrossRef]
- Koivisto, M.; Grassini, S. Best humans still outperform artificial intelligence in a creative divergent thinking task. Sci. Rep. 2023, 13, 13601. [Google Scholar] [CrossRef]
- Grassini, S.; Koivisto, M. Artificial Creativity? Evaluating AI Against Human Performance in Creative Interpretation of Visual Stimuli. Int. J. Hum. -Comput. Interact. 2024, 41, 4037–4048. [Google Scholar] [CrossRef]
- Guzik, E.E.; Byrge, C.; Gilde, C. The originality of machines: AI takes the Torrance Test. J. Creat. 2023, 33, 100065. [Google Scholar] [CrossRef]
- Erwin, A.K.; Tran, K.; Koutstaal, W. Evaluating the predictive validity of four divergent thinking tasks for the originality of design product ideation. PLoS ONE 2022, 17, e0265116. [Google Scholar] [CrossRef]
- Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings. Educ. Sci. 2023, 13, 692. [Google Scholar] [CrossRef]
- Hwang, A.H.-C. Too Late to be Creative? AI-Empowered Tools in Creative Processes. In Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, New Orleans, LA, USA, 29 April –5 May 2022; ACM: New Orleans, LA, USA, 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Guo, X.; Xiao, Y.; Wang, J.; Ji, T. Rethinking Designer Agency: A Case Study of Co-Creation Between Designers and AI. IASDR Conference Series. 2023. Available online: https://dl.designresearchsociety.org/iasdr/iasdr2023/fullpapers/170 (accessed on 13 October 2025).
- Lee, S.; Law, M.; Hoffman, G. When and How to Use AI in the Design Process? Implications for Human-AI Design Collaboration. Int. J. Hum. -Comput. Interact. 2025, 41, 1569–1584. [Google Scholar] [CrossRef]
- Baltà-Salvador, R.; El-Madafri, I.; Brasó-Vives, E.; Peña, M. Empowering Engineering Students Through Artificial Intelligence (AI): Blended Human–AI Creative Ideation Processes with ChatGPT. Comput. Appl. Eng. Educ. 2025, 33, e22817. [Google Scholar] [CrossRef]
- Ege, D.N.; Øvrebø, H.H.; Stubberud, V.; Berg, M.F.; Steinert, M.; Vestad, H. Benchmarking AI design skills: Insights from ChatGPT’s participation in a prototyping hackathon. Proc. Des. Soc. 2024, 4, 1999–2008. [Google Scholar] [CrossRef]
- Karadağ, D.; Ozar, B. A new frontier in design studio: AI and human collaboration in conceptual design. Front. Archit. Res. 2025, in press. [Google Scholar] [CrossRef]
- Weisz, J.D.; Muller, M.; He, J.; Houde, S. Toward General Design Principles for Generative AI Applications. arXiv 2023, arXiv:2301.05578. [Google Scholar] [CrossRef]
- Dehghani Champiri, Z. UX Design & Evaluation of HealthQB: A Mobile Application to Manage Chronic Pain. Available online: https://summit.sfu.ca/item/35168 (accessed on 22 December 2023).
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Ross, W. The possibilities of disruption: Serendipity, accidents and impasse driven search. Possibility Stud. Soc. 2023, 1, 489–501. [Google Scholar] [CrossRef]
- Foster, M.I.; Keane, M.T. The Role of Surprise in Learning: Different Surprising Outcomes Affect Memorability Differentially. Top. Cogn. Sci. 2019, 11, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Ross, W.; Vallée-Tourangeau, F. Microserendipity in the Creative Process. J. Creat. Behav. 2021, 55, 661–672. [Google Scholar] [CrossRef]
- Weisberg, R.W. On the Usefulness of “Value” in the Definition of Creativity. Creat. Res. J. 2015, 27, 111–124. [Google Scholar] [CrossRef]
- Finn, E. What Algorithms Want: Imagination in the Age of Computing; MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0-262-03592-7. [Google Scholar]
- Lisete, B. Serendipity: Obstacles and facilitators. J. Arts Humanit. Soc. Sci. 2025, 2, 50–56. [Google Scholar] [CrossRef]
- Fortes, G. Abduction. In The Palgrave Encyclopedia of the Possible; Glăveanu, V.P., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–9. ISBN 978-3-030-90913-0. [Google Scholar]
- Ayoub, K.; Payne, K. Strategy in the Age of Artificial Intelligence. J. Strateg. Stud. 2016, 39, 793–819. [Google Scholar] [CrossRef]
- Bykova, E.A. Reflection as a Factor in the Success of Learners’ Innovative Activity. Lurian J. 2022, 3, 36–45. [Google Scholar] [CrossRef]
- Wilkens, U.; Field, A.E. Creative Intent and Reflective Practices for Reliable and Performative Human-AI Systems. Schriftenreihe Der Wiss. Ges. Für Arb.-Und Betriebsorganisation (WGAB) 2023, 2023, 77–94. [Google Scholar] [CrossRef]
- Attewell, P. The Deskilling Controversy. Work Occup. 1987, 14, 323–346. [Google Scholar] [CrossRef]
- Abdel-Karim, B.M.; Pfeuffer, N.; Carl, K.V.; Hinz, O. How AI-Based Systems Can Induce Reflections: The Case of AI-Augmented Diagnostic Work1. MIS Q. 2023, 47, 1395–1424. [Google Scholar] [CrossRef]
- Shiiku, S.; Marjieh, R.; Anglada-Tort, M.; Jacoby, N. The Dynamics of Collective Creativity in Human-AI Hybrid Societies. arXiv 2025, arXiv:2502.17962. [Google Scholar] [CrossRef]
- Linares-Pellicer, J.; Izquierdo-Domenech, J.; Ferri-Molla, I.; Aliaga-Torro, C. We Are All Creators: Generative AI, Collective Knowledge, and the Path Towards Human-AI Synergy. arXiv 2025, arXiv:2504.07936. [Google Scholar] [CrossRef]
- Fan, S.; Taylor, M. Will AI Replace Us? Thames and Hudson Ltd.: London, UK, 2019; Available online: https://library.fra.ac.uk/bib/37629 (accessed on 10 September 2025).
- Gunkel, D.J. Generative AI and Remix: Difference and Repetition. In The Routledge Companion to Remix Studies, 2nd ed.; Routledge: Oxfordshire, UK, 2025. [Google Scholar]
- Günay, M. Artificial Intelligence and Originality in Design. ART/Icle 2025, 4, 449–469. [Google Scholar] [CrossRef]
- Orozco, L. Holly Herndon. New Suns. 2023. Available online: https://newsuns.net/holly-herndon-spawning-identities/ (accessed on 10 September 2025).
Paradox | Core Tension | Design Goal |
---|---|---|
Ambiguity vs. Precision | Vague human intent vs. AI’s need for clear input. | Translate vision into prompts without limiting exploration. |
Control vs. Serendipity | Human direction vs. value of unexpected AI discoveries. | Enable beneficial accidents while ensuring human authorship. |
Speed vs. Reflection | AI’s rapid generation vs. need for human critical thought. | Use AI for efficiency without causing cognitive deskilling. |
Individual vs. Collective | Creator’s unique voice vs. AI’s data-driven “wisdom of the crowd.” | Leverage collective patterns without suppressing individual style. |
Originality vs. Remix | Desire for novelty vs. AI’s recombinative nature. | Frame originality as emerging from human curation of AI’s “remix.” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salma, Z.; Hijón-Neira, R.; Pizarro, C. Designing Co-Creative Systems: Five Paradoxes in Human–AI Collaboration. Information 2025, 16, 909. https://doi.org/10.3390/info16100909
Salma Z, Hijón-Neira R, Pizarro C. Designing Co-Creative Systems: Five Paradoxes in Human–AI Collaboration. Information. 2025; 16(10):909. https://doi.org/10.3390/info16100909
Chicago/Turabian StyleSalma, Zainab, Raquel Hijón-Neira, and Celeste Pizarro. 2025. "Designing Co-Creative Systems: Five Paradoxes in Human–AI Collaboration" Information 16, no. 10: 909. https://doi.org/10.3390/info16100909
APA StyleSalma, Z., Hijón-Neira, R., & Pizarro, C. (2025). Designing Co-Creative Systems: Five Paradoxes in Human–AI Collaboration. Information, 16(10), 909. https://doi.org/10.3390/info16100909