Harnessing Machine Learning to Analyze Renewable Energy Research in Latin America and the Caribbean
Abstract
1. Introduction
- Examine the evolution of renewable energy research in LAC over time.
- Identify the most prominent research topics, highlighting dominant areas of study and emerging trends shaping the scientific landscape.
- Provide evidence-based insights for policymakers, researchers, and industry stakeholders, supporting the development of strategies and policies that promote the expansion and integration of renewable energy in the region.
2. Methodology
2.1. Information Sources, Search Strategy, and Data Collection
2.2. Descriptive Analysis of Collected Data
2.3. Topic Modeling and Latent Dirichlet Allocation
- Converting all text to lowercase.
- Removing punctuation, dashes, numbers, and other non-relevant characters.
- Eliminating “stop-words” (e.g., articles, prepositions, and other common terms that do not contribute to topic discrimination).
- Models were constructed with k ranging from 5 to 40 topics. Each model was generated using 1000 Gibbs sampling iterations [36] and the default Dirichlet parameters (α and β) provided by the topic models R package.
- The CV coherence measure [37], based on the distributional hypothesis, was employed to evaluate the interpretability and coherence of the topics, enabling the selection of the most meaningful model. The model with k = 18 achieved the highest coherence score, indicating strong internal semantic alignment. However, coherence alone was not the sole selection criterion. A key consideration in topic modeling is the trade-off between granularity and interpretability. Models with a small number of topics (k < 10) produced overly broad clusters that merged distinct research domains, for instance, conflating all solar-related research into a single undifferentiated topic. Such broad categories obscure thematic nuances and reduce both the analytical and policy relevance of the results. Conversely, models with a large number of topics (k > 30) generated fragmented and redundant clusters, which were difficult to label consistently and diminished the utility of the analysis for synthesizing broader research trends.
- The most frequent words associated with each topic were reviewed.
- Representative documents classified by the algorithm were analyzed to contextualize the topics.
2.4. Quantitative Indices for Analyzing Topics and Trends
2.5. Visualization of Topics Using Multivariate Techniques
2.5.1. Multidimensional Scaling
2.5.2. HJ-Biplot
2.6. Collaboration Networks
3. Results
3.1. Descriptive Analysis
3.2. Latent Dirichlet Allocation (LDA)
- Technological Innovations in Renewable Energy Systems: Topics such as solar technologies (t_3), wind energy (t_10), bioenergy (t_12), and microgrid optimization (t_17) highlight the region’s focus on developing and improving renewable energy technologies. The strong emphasis on materials science (t_13, t_15) further suggests an interest in enhancing photovoltaic performance and energy conversion efficiency.
- Environmental and Ecological Impact of Renewable Energy: The dominance of hydropower impact studies (t_6) underscores the region’s reliance on hydroelectric energy and the growing concern over its ecological consequences. Similarly, research on climate change mitigation (t_8) and solar radiation modeling (t_16) reflects efforts to assess renewable energy’s role in decarbonization.
- Energy Policy, Economics, and Governance: Despite the dominance of technological research, the presence of policy-related topics (t_18, t_2) highlights an emerging recognition of the socioeconomic dimensions of energy transition. However, their lower document count suggests that policy frameworks, financial mechanisms, and governance strategies remain underexplored compared to engineering solutions.
- Artificial Intelligence and Computational Modeling in Renewable Energy: The integration of AI in energy systems (t_7) and grid optimization strategies (t_5, t_17) signals a transition towards data-driven decision-making and automation in energy management.
3.3. Topics Trends in Renewable Energy Research
3.3.1. Growing Research Topics in Renewable Energy
3.3.2. Declining Research Topics in Renewable Energy
3.3.3. Stable and Fluctuating Research Topics
3.4. Visualization of the Intertopic Distance Map
Thematic Organization of Research Topics
- Technological and materials research for renewable energy (left side of PC1)
- Economic and policy studies in renewable energy (right side of PC1)
- Computational methods and energy system optimization (upper region of PC2)
- Environmental sustainability and ecological impact (lower region of PC2)
- Intermediate topics and cross-disciplinary connections
- Interaction Between Solar Activity and Earth’s Electromagnetic Field (t_9) is positioned between solar radiation studies and broader geophysical processes, indicating its dual relevance to both renewable energy modeling and atmospheric sciences.
- Evaluation and Modeling of Solar Radiation (t_16) connects solar technology research with energy system integration, reflecting the critical role of radiation assessment in optimizing solar energy output.
- Technological advancements in solar and nanomaterials research (left side of PC1)
- Economic and policy-driven energy studies (right side of PC1)
- Computational modeling and AI-driven optimization (upper PC2) vs. environmental impact and sustainability assessments (lower PC2)
3.5. HJ-Biplot Analysis
3.5.1. Early Research Focus (1994–2003): Foundations in Science and Technology
3.5.2. Technological Expansion and Diversification (2007–2014)
3.5.3. Recent Research Trends (2016–2024): Policy, Decentralization, and Energy Transition
3.5.4. Key Insights from the HJ-Biplot
- Early-stage research (1994–2003) was highly specialized, focusing on solar technologies, material science, and radiation modeling, laying the scientific foundation for future advancements.
- The period from 2007–2014 marked a transition toward applied research, emphasizing biomass energy production and photovoltaic maintenance, suggesting a shift from theory to practical implementation.
- Recent research (2016–2024) reflects an interdisciplinary approach, integrating climate policies, energy transition strategies, and decentralized grid optimization, indicating a broad and systemic focus.
3.6. Collaboration Networks in Renewable Energy Research in LAC
3.6.1. Structure of the Collaboration Network
- Cluster 1: Global Research Hubs
- Brazil (Betweenness: 451,466)
- United States (379,247)
- United Kingdom (193,970)
- Germany (123,628)
- Cluster 2: Regional Leaders
- Mexico (212,024)
- Chile (201,932)
- Colombia (41,623)
- Spain (181,373)
- Cluster 3: Emerging Collaborators
- China (90,804)
- India (78,998)
- Peru (26,476)
- Cluster 4: Low-Connectivity Countries
- Guatemala
- Honduras
- El Salvador
3.6.2. Key Network Metrics and Country Influence
- Brazil (0.091), Mexico (0.045), and Chile (0.045) ranking highest.
- Spain (0.053), despite being outside LAC, holds a strong position due to its extensive collaborations with Latin American institutions.
4. Discussion
4.1. Emerging Research Frontiers in a Global Context
4.1.1. Climate Change Policies and Decarbonization Strategies
4.1.2. Artificial Intelligence (AI) in Renewable Energy Management
4.1.3. Microgrids and Energy Decentralization
4.2. Challenges in Regional Research Collaboration
- Unequal research funding and infrastructure: Investment in research and development (R&D) varies greatly across LAC, with some countries allocating substantial resources to scientific research, while others face severe funding constraints. Limited access to cutting-edge laboratories, computing facilities, and field research opportunities restricts the ability of underfunded institutions to engage in high-impact scientific collaborations.
- Limited regional collaboration: While international collaborations (particularly with North American and European institutions) are prevalent, intra-regional scientific partnerships remain weak. Many LAC researchers prefer to collaborate with better-funded global institutions due to higher funding opportunities and greater international visibility, reducing knowledge transfer within the region.
- Language and institutional barriers: Scientific research in LAC is conducted in multiple languages (Spanish, Portuguese, and English), which can create challenges in research dissemination and accessibility. Additionally, differences in institutional policies, research priorities, and regulatory frameworks further hinder the development of cohesive regional collaborations.
- Data accessibility and knowledge gaps: Open-access data is crucial for renewable energy research, yet many LAC countries lack centralized repositories for energy-related datasets. This limits comparative research and data-driven policy development, particularly in emerging fields like smart grids, where real-time data sharing is essential for optimizing energy management.
4.3. Opportunities for Strengthening Regional Collaboration
4.4. Policy Implications and Research Gaps
- Developing targeted financial incentives to support the adoption of renewable technologies.
- Strengthening regulatory frameworks for microgrid integration and distributed energy generation.
- Enhancing regional cooperation for data-sharing and energy infrastructure development.
4.5. Contribution to the Sustainable Development Goals (SDGs)
4.6. Study Limitations and Future Research Directions
5. Final Remarks and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Node | Cluster | Betweenness | Closeness | PageRank |
---|---|---|---|---|
Brazil | 1 | 451,466 | 0.009 | 0.091 |
USA | 1 | 379,247 | 0.009 | 0.064 |
United Kingdom | 1 | 193,970 | 0.009 | 0.042 |
Germany | 1 | 123,628 | 0.009 | 0.036 |
Italy | 1 | 91,212 | 0.009 | 0.025 |
Portugal | 1 | 5036 | 0.008 | 0.012 |
Canada | 1 | 19,093 | 0.008 | 0.021 |
Netherlands | 1 | 41,206 | 0.008 | 0.02 |
Australia | 1 | 33,615 | 0.008 | 0.02 |
Costa Rica | 1 | 2885 | 0.007 | 0.006 |
Sweden | 1 | 18,824 | 0.008 | 0.016 |
Switzerland | 1 | 38,019 | 0.008 | 0.017 |
Japan | 1 | 10,436 | 0.008 | 0.011 |
Denmark | 1 | 9254 | 0.008 | 0.012 |
Austria | 1 | 11,103 | 0.008 | 0.013 |
Poland | 1 | 8597 | 0.008 | 0.009 |
Norway | 1 | 5849 | 0.008 | 0.01 |
Finland | 1 | 7517 | 0.007 | 0.009 |
Czech Republic | 1 | 2234 | 0.007 | 0.005 |
Ireland | 1 | 3108 | 0.007 | 0.006 |
Panama | 1 | 674 | 0.006 | 0.003 |
Paraguay | 1 | 14 | 0.006 | 0.002 |
Turkey | 1 | 1784 | 0.007 | 0.005 |
Greece | 1 | 2877 | 0.007 | 0.005 |
Israel | 1 | 771 | 0.007 | 0.004 |
Romania | 1 | 1787 | 0.007 | 0.005 |
Ukraine | 1 | 16 | 0.006 | 0.003 |
New Zealand | 1 | 1066 | 0.007 | 0.005 |
Barbados | 1 | 63 | 0.006 | 0.002 |
Croatia | 1 | 549 | 0.006 | 0.004 |
Hungary | 1 | 2665 | 0.007 | 0.004 |
Nicaragua | 1 | 4 | 0.005 | 0.002 |
Mozambique | 1 | 0 | 0.005 | 0.002 |
Serbia | 1 | 889 | 0.006 | 0.003 |
Slovenia | 1 | 295 | 0.006 | 0.003 |
Estonia | 1 | 42 | 0.006 | 0.003 |
Slovakia | 1 | 9 | 0.006 | 0.002 |
Bulgaria | 1 | 14 | 0.006 | 0.002 |
Kenya | 1 | 104 | 0.006 | 0.003 |
Nepal | 1 | 83 | 0.006 | 0.002 |
Lithuania | 1 | 251 | 0.006 | 0.003 |
Sri Lanka | 1 | 0 | 0.005 | 0.002 |
Belize | 1 | 0 | 0.005 | 0.002 |
Mexico | 2 | 212,024 | 0.009 | 0.045 |
Chile | 2 | 201,932 | 0.009 | 0.045 |
Colombia | 2 | 41,623 | 0.008 | 0.026 |
Spain | 2 | 181,373 | 0.009 | 0.053 |
Argentina | 2 | 4522 | 0.007 | 0.013 |
Ecuador | 2 | 16,412 | 0.007 | 0.015 |
France | 2 | 102,455 | 0.009 | 0.026 |
Cuba | 2 | 1233 | 0.007 | 0.007 |
Uruguay | 2 | 789 | 0.007 | 0.005 |
Venezuela | 2 | 806 | 0.006 | 0.004 |
Belgium | 2 | 18,182 | 0.007 | 0.009 |
Morocco | 2 | 511 | 0.006 | 0.004 |
Algeria | 2 | 3516 | 0.006 | 0.004 |
Bolivia | 2 | 274 | 0.006 | 0.004 |
Jamaica | 2 | 768 | 0.006 | 0.003 |
Suriname | 2 | 21 | 0.005 | 0.002 |
Luxembourg | 2 | 21 | 0.006 | 0.002 |
Ghana | 2 | 0 | 0.005 | 0.002 |
Togo | 2 | 0 | 0.005 | 0.002 |
China | 3 | 90,804 | 0.009 | 0.028 |
India | 3 | 78,998 | 0.008 | 0.022 |
Peru | 3 | 26,476 | 0.008 | 0.011 |
Saudi Arabia | 3 | 33,985 | 0.008 | 0.017 |
Pakistan | 3 | 5864 | 0.007 | 0.01 |
Egypt | 3 | 7495 | 0.007 | 0.008 |
Iran | 3 | 6934 | 0.008 | 0.008 |
Malaysia | 3 | 5364 | 0.007 | 0.007 |
Korea | 3 | 3604 | 0.007 | 0.009 |
South Africa | 3 | 9371 | 0.007 | 0.007 |
Singapore | 3 | 1533 | 0.007 | 0.006 |
Russia | 3 | 6349 | 0.008 | 0.007 |
Iraq | 3 | 6090 | 0.007 | 0.005 |
U Arab Emirates | 3 | 5214 | 0.007 | 0.006 |
Vietnam | 3 | 1339 | 0.007 | 0.004 |
Thailand | 3 | 1754 | 0.007 | 0.005 |
Tunisia | 3 | 200 | 0.006 | 0.004 |
Indonesia | 3 | 3692 | 0.007 | 0.005 |
Ethiopia | 3 | 4461 | 0.007 | 0.004 |
Nigeria | 3 | 725 | 0.006 | 0.003 |
Jordan | 3 | 719 | 0.006 | 0.003 |
Bangladesh | 3 | 15 | 0.006 | 0.002 |
Cameroon | 3 | 66 | 0.006 | 0.003 |
Qatar | 3 | 578 | 0.006 | 0.003 |
Azerbaijan | 3 | 323 | 0.006 | 0.003 |
Lebanon | 3 | 165 | 0.006 | 0.003 |
Philippines | 3 | 159 | 0.006 | 0.003 |
Uzbekistan | 3 | 184 | 0.006 | 0.002 |
Kuwait | 3 | 145 | 0.006 | 0.003 |
Cyprus | 3 | 30 | 0.006 | 0.003 |
Uganda | 3 | 122 | 0.006 | 0.002 |
Oman | 3 | 2 | 0.005 | 0.002 |
Guatemala | 4 | 124 | 0.006 | 0.002 |
Honduras | 4 | 397 | 0.006 | 0.003 |
El Salvador | 4 | 0 | 0.005 | 0.002 |
References
- Mohsin, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Dahri, A.S. Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J. Environ. Manag. 2021, 284, 111999. [Google Scholar] [CrossRef] [PubMed]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Hampl, N. Equitable energy transition in Latin America and the Caribbean: Reducing inequity by building capacity. Renew. Sustain. Energy Transit. 2022, 2, 100035. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Díez, Á.S. Renewable energy transition and green growth nexus in Latin America. Renew. Sustain. Energy Rev. 2024, 198, 114431. [Google Scholar] [CrossRef]
- Nastasi, B.; Markovska, N.; Puksec, T.; Duić, N.; Foley, A. Renewable and sustainable energy challenges to face for the achievement of Sustainable Development Goals. Renew. Sustain. Energy Rev. 2022, 157, 112071. [Google Scholar] [CrossRef]
- Mitra, M.; Singha, N.R.; Chattopadhyay, P.K. Review on renewable energy potential and capacities of South Asian countries influencing sustainable environment: A comparative assessment. Sustain. Energy Technol. Assess. 2023, 57, 103295. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Renewable energy for sustainable development. Renew. Energy 2022, 199, 1145–1152. [Google Scholar] [CrossRef]
- Diggon, S.; Bones, J.; Short, C.J.; Smith, J.L.; Dickinson, M.; Wozniak, K.; Topelko, K.; Pawluk, K.A. The Marine Plan Partnership for the North Pacific Coast—MaPP: A collaborative and co-led marine planning process in British Columbia. Mar. Policy 2022, 142, 104065. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.C.; Lee, S.J.; Kang, D.H.; Kang, J.Y.; Park, H.S. Machine learning-based approach to predict energy consumption of renewable and nonrenewable power sources. Energies 2020, 13, 4870. [Google Scholar] [CrossRef]
- Ledmaoui, Y.; Maghraoui, A.E.; Aroussi, M.E.; Saadane, R.; Chebak, A.; Chehri, A. Forecasting solar energy production: A comparative study of machine learning algorithms. Energy Rep. 2023, 10, 1004–1012. [Google Scholar] [CrossRef]
- Ajibade, S.S.M.; Bekun, F.V.; Adedoyin, F.F.; Gyamfi, B.A.; Adediran, A.O. Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021). Clean Technol. 2023, 5, 497–517. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Lai, J.P.; Chang, Y.M.; Chen, C.H.; Pai, P.F. A survey of machine learning models in renewable energy predictions. Appl. Sci. 2020, 10, 5975. [Google Scholar] [CrossRef]
- Krechowicz, A.; Krechowicz, M.; Poczeta, K. Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources. Energies 2022, 15, 9146. [Google Scholar] [CrossRef]
- Izanloo, M.; Aslani, A.; Zahedi, R. Development of a Machine learning assessment method for renewable energy investment decision making. Appl. Energy 2022, 327, 120096. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Asmussen, C.B.; Møller, C. Smart literature review: A practical topic modelling approach to exploratory literature review. J. Big Data 2019, 6, 93. [Google Scholar] [CrossRef]
- Duran-Ospina, J.P.; de la Hoz-M, J.; Maddela, N.R.; Lapo-Talledo, G.J.; Siteneski, A.; Montes-Escobar, K. Global research on keratomycosis: New insights from latent Dirichlet allocation and HJ-Biplot-driven knowledge mapping study. Diagn. Microbiol. Infect. Dis. 2024, 110, 116442. [Google Scholar] [CrossRef]
- Montes-Escobar, K.; de la Hoz-M, J.; Castillo-Cordova, P.; Duran-Ospina, J.P.; Bravo-Saltos, R.K.; Lapo-Talledo, G.J.; Siteneski, A. Glioblastoma: A comprehensive approach combining bibliometric analysis, Latent Dirichlet Allocation, and HJ-Biplot. Neurosurg. Rev. 2024, 47, 209. [Google Scholar] [CrossRef]
- Montes-Escobar, K.; De la Hoz-M, J.; Barreiro-Linzán, M.D.; Fonseca-Restrepo, C.; Lapo-Palacios, M.Á.; Verduga-Alcívar, D.A.; Salas-Macias, C.A. Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot. Mathematics 2023, 11, 2250. [Google Scholar] [CrossRef]
- De la Hoz-M, J.; Ariza-Echeverri, E.A.; Vergara, D. Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends. Resources 2024, 13, 171. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, R.; Li, R. Renewable energy and sustainable development goals: Insights from latent dirichlet allocation thematic and bibliometric analysis. Sustain. Dev. 2024, 32, 6339–6359. [Google Scholar] [CrossRef]
- Galindo, M.P. An alternative for simultaneous representation: HJ-Biplot. Questíio 1986, 10, 12–23. [Google Scholar]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 4. [Google Scholar] [CrossRef]
- Ogashawara, I. Bibliometric Analysis of Remote Sensing of Inland Waters Publications from 1985 to 2020. Geographies 2021, 1, 346–361. [Google Scholar] [CrossRef]
- Mesa Fernández, J.M.; González Moreno, J.J.; Vergara-González, E.P.; Alonso Iglesias, G. Bibliometric Analysis of the Application of Artificial Intelligence Techniques to the Management of Innovation Projects. Appl. Sci. 2022, 12, 11743. [Google Scholar] [CrossRef]
- Zabala-Vargas, S.; Jaimes-Quintanilla, M.; Jimenez-Barrera, M.H. Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings 2023, 13, 2944. [Google Scholar] [CrossRef]
- Vergara, D.; de la Hoz-M, J.; Ariza-Echeverri, E.A.; Fernández-Arias, P.; Antón-Sancho, Á. Evaluating Solutions to Marine Plastic Pollution. Environments 2025, 12, 86. [Google Scholar] [CrossRef]
- Bashir, T.; Bergantino, A.S.; Troiani, G.; Henke, I.; Pagliara, F. Vulnerability and resilience analysis of road network: A systematic literature review using Bibliometrix. Sustain. Futures 2025, 10, 101142. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- DiMaggio, P.; Nag, M.; Blei, D. Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of U.S. government arts funding. Poetics 2013, 41, 570–606. [Google Scholar] [CrossRef]
- De la Hoz-M, J.; Fernández-Gómez, M.J.; Mendes, S. LDAShiny: An R Package for Exploratory Review of Scientific Literature Based on a Bayesian Probabilistic Model and Machine Learning Tools. Mathematics 2021, 9, 1671. [Google Scholar] [CrossRef]
- Grün, B.; Hornik, K. Topicmodels: An R Package for Fitting Topic Models. J. Stat. Softw. 2011, 40, 1–30. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef]
- Röder, M.; Both, A.; Hinneburg, A. Exploring the Space of Topic Coherence Measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015; ACM: New York, NY, USA, 2015; pp. 399–408. [Google Scholar] [CrossRef]
- Han Lau, J.; Grieser, K.; Newman, D.; Baldwin, T. Automatic Labelling of Topic Models. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011; Association for Computational Linguistics: Stroudsburg, PA, USA, 2011; pp. 1536–1545. [Google Scholar]
- Xiong, H.; Cheng, Y.; Zhao, W.; Liu, J. Analyzing scientific research topics in manufacturing field using a topic model. Comput. Ind. Eng. 2019, 135, 333–347. [Google Scholar] [CrossRef]
- Griffiths, T.L.; Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. S1), 5228–5235. [Google Scholar] [CrossRef]
- Sievert, C.; Shirley, K. LDAvis: A method for visualizing and interpreting topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 63–70. [Google Scholar]
- Menéndez, M.L.; Pardo, J.A.; Pardo, L.; Pardo, M.C. The Jensen-Shannon divergence. J. Franklin Inst. 1997, 334, 307–318. [Google Scholar] [CrossRef]
- Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Villardón, J.V. MULTBIPLOT: A Package for Multivariate Analysis Using Biplots; Departamente de Estadística: Bogotá, Colombia, 2010. [Google Scholar]
- Mentel, G.; Lewandowska, A.; Berniak-Woźny, J.; Tarczyński, W. Green and Renewable Energy Innovations: A Comprehensive Bibliometric Analysis. Energies 2023, 16, 1428. [Google Scholar] [CrossRef]
- Benfica, V.C.; Marques, A.C. A Comprehensive Quadrilemma Index of Renewable Energy: The Latin American Case. Energies 2025, 18, 3912. [Google Scholar] [CrossRef]
- Hoffman, K.; Centeno, M.A. The Lopsided Continent: Inequality in Latin America. Annu. Rev. Sociol. 2003, 29, 363–390. [Google Scholar] [CrossRef]
- Koengkan, M. Capital stock development in Latin America and the Caribbean region and their effect on investment expansion in renewable energy. J. Sustain. Financ. Invest. 2022, 12, 612–629. [Google Scholar] [CrossRef]
- Roskhata, A.; Minchenko, M.; Khomenko, L. Renewable energy: A bibliometric analysis. E3S Web Conf. 2021, 250, 03002. [Google Scholar] [CrossRef]
- Seminario-Córdova, R. Latin America towards Sustainability through Renewable Energies: A Systematic Review. Energies 2023, 16, 7422. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Bibliometric Analysis of Renewable Energy Research on the Example of the Two European Countries: Insights, Challenges, and Future Prospects. Energies 2024, 17, 176. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Guzmán, V.; Catriñir, P. Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies 2024, 17, 5532. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Navarrete, M.; Atencio, E. Renewable Wind Energy Implementation in South America: A Comprehensive Review and Sustainable Prospects. Sustainability 2024, 16, 6082. [Google Scholar] [CrossRef]
- Escamilla-García, P.E.; Fernández-Rodríguez, E.; Jiménez-Castañeda, M.E.; Jiménez-González, C.O.; Morales-Castro, J.A. A Review of the Progress and Potential of Energy Generation from Renewable Sources in Latin America. Lat. Am. Res. Rev. 2023, 58, 383–402. [Google Scholar] [CrossRef]
- Zhang, L.; Ling, J.; Lin, M. Artificial intelligence in renewable energy: A comprehensive review. Energy Rep. 2022, 8, 14072–14088. [Google Scholar] [CrossRef]
- Silva, N.; Fuinhas, J.A.; Koengkan, M. Assessing the advancement of new renewable sources in Latin American countries. Energy. 2021, 237, 121611. [Google Scholar] [CrossRef]
- Shadman, M.; Roldan-Carvajal, M.; Pierart, F.G.; Haim, P.A.; Alonso, R.; Silva, C.; Osorio, A.F.; Almonacid, N.; Carreras, G.; Maali Amiri, M.; et al. A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives. Sustainability 2023, 15, 1740. [Google Scholar] [CrossRef]
- Ottonelli, J.; Lazaro, L.L.B.; Andrade, J.C.S.; Abram, S. Do solar photovoltaic clean development mechanism projects contribute to sustainable development in Latin America? Prospects for the Paris Agreement. Energy Policy 2023, 174, 113428. [Google Scholar] [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Li, R. Integrating artificial intelligence in energy transition: A comprehensive review. Energy Strateg. Rev. 2025, 57, 101600. [Google Scholar] [CrossRef]
- Iweh, C.D.; Gyamfi, S.; Tanyi, E.; Effah-Donyina, E. Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits. Energies 2021, 14, 5375. [Google Scholar] [CrossRef]
- Shaukat, N.; Islam, M.R.; Rahman, M.M.; Khan, B.; Ullah, B.; Ali, S.M.; Fekih, A. Decentralized, Democratized, and Decarbonized Future Electric Power Distribution Grids: A Survey on the Paradigm Shift From the Conventional Power System to Micro Grid Structures. IEEE Access 2023, 11, 60957–60987. [Google Scholar] [CrossRef]
Bibliographic Database | Search Data | Search String | Results |
---|---|---|---|
Scopus | 2 December 2024 | TITLE-ABS-KEY ((“solar energy” OR “solar power” OR “photovoltaic”) OR (“wind energy” OR “wind power” OR “wind turbine”) OR (“hydroelectric energy” OR “hydropower” OR “hydroelectric power”) OR (“biomass energy” OR “biomass power” OR “bioenergy”)) AND AFFILCOUNTRY (“Argentina” OR “Bolivia” OR “Brazil” OR “Chile” OR “Colombia” OR “Ecuador” OR “Guyana” OR “Paraguay” OR “Peru” OR “Suriname” OR “Uruguay” OR “Venezuela” OR “Belize” OR “Costa Rica” OR “El Salvador” OR “Guatemala” OR “Honduras” OR “Nicaragua” OR “Panama” OR “Antigua and Barbuda” OR “Bahamas” OR “Barbados” OR “Cuba” OR “Dominica” OR “Grenada” OR “Haiti” OR “Jamaica” OR “Dominican Republic” OR “Saint Kitts and Nevis” OR “Saint Lucia” OR “Saint Vincent and the Grenadines” OR “Trinidad and Tobago” OR “Mexico”) AND PUBYEAR > 1993 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO (SRCTYPE, “j”)) | N = 16,634 |
Web of Science | 2 December 2024 | TS = (“solar energy” OR “solar power” OR “photovoltaic” OR “wind energy” OR “wind power” OR “wind turbine” OR “hydroelectric energy” OR “hydropower” OR “hydroelectric power” OR “biomass energy” OR “biomass power” OR “bioenergy”) AND CU=(“Argentina” OR “Bolivia” OR “Brazil” OR “Chile” OR “Colombia” OR “Ecuador” OR “Guyana” OR “Paraguay” OR “Peru” OR “Suriname” OR “Uruguay” OR “Venezuela” OR “Belize” OR “Costa Rica” OR “El Salvador” OR “Guatemala” OR “Honduras” OR “Nicaragua” OR “Panama” OR “Antigua and Barbuda” OR “Bahamas” OR “Barbados” OR “Cuba” OR “Dominica” OR “Grenada” OR “Haiti” OR “Jamaica” OR “Dominican Republic” OR “Saint Kitts and Nevis” OR “Saint Lucia” OR “Saint Vincent and the Grenadines” OR “Trinidad and Tobago” OR “Mexico”) | N = 13,486 |
Description | Results |
---|---|
MAIN INFORMATION ABOUT DATA | |
Timespan | 1994:2024 |
Sources (Journals) | 3193 |
Documents | 18,780 |
Annual Growth Rate % | 15.61 |
Document Average Age | 6.13 |
Average citations per doc | 20.94 |
AUTHORS | |
Authors | 43,548 |
Authors of single-authored docs | 439 |
AUTHORS COLLABORATION | |
Single-authored docs | 558 |
Co-Authors per Doc | 5.12 |
International co-authorships % | 30.49 |
DOCUMENT TYPES | |
article | 17,505 |
review | 1275 |
Source | TC | NP | h-Index | PY_start |
---|---|---|---|---|
hEnergies | 7238 | 745 | 35 | 2010 |
Renewable Energy | 19,492 | 638 | 70 | 1994 |
Solar Energy | 14,416 | 442 | 56 | 1994 |
Renewable & Sustainable Energy Reviews | 17,108 | 312 | 65 | 2000 |
Energy | 8896 | 280 | 50 | 1994 |
IEEE Latin America Transactions | 1629 | 275 | 18 | 2007 |
Sustainability | 2284 | 241 | 23 | 2014 |
Renewable Energy and Power Quality Journal | 408 | 208 | 9 | 2005 |
Journal of Cleaner Production | 5922 | 194 | 44 | 2007 |
International Journal of Hydrogen Energy | 4413 | 185 | 35 | 1998 |
Electric Power Systems Research | 2726 | 181 | 27 | 1997 |
Applied Energy | 6972 | 163 | 46 | 2003 |
Energy Policy | 5325 | 157 | 42 | 1994 |
Energy Conversion and Management | 5171 | 151 | 42 | 2000 |
IEEE Access | 1994 | 144 | 23 | 2016 |
Solar Energy Materials and Solar Cells | 6041 | 137 | 45 | 1994 |
Applied Sciences-Basel | 1122 | 119 | 17 | 2018 |
Science of the Total Environment | 3441 | 110 | 37 | 2013 |
Advances in Space Research | 1056 | 107 | 19 | 1999 |
Biomass & Bioenergy | 2627 | 98 | 30 | 2003 |
International Journal of Electrical Power & Energy Systems | 1542 | 96 | 24 | 2008 |
Journal of Atmospheric and Solar-Terrestrial Physics | 1509 | 92 | 23 | 1997 |
IEEE Transactions on Industrial Electronics | 12,814 | 87 | 59 | 2001 |
Sustainable Energy Technologies and Assessments | 1454 | 87 | 21 | 2016 |
Bioenergy Research | 1341 | 87 | 19 | 2013 |
Applied Thermal Engineering | 1593 | 83 | 23 | 1998 |
Bioresource Technology | 5979 | 76 | 43 | 2007 |
IEEE Transactions on Power Systems | 5353 | 75 | 43 | 1994 |
Industrial Crops and Products | 1990 | 73 | 25 | 2011 |
Brazilian Archives of Biology and Technology | 110 | 71 | 5 | 2000 |
Topic | Top_Terms | N | Label |
---|---|---|---|
t_1 | process, treatment, product, organ, concentr, remov, degrad, soil, rate, produc, reactor, bioga, wast, condit, digest | 653 | Waste Treatment and Conversion Processes |
t_2 | project, analysi, econom, methodologi, decis, plan, risk, assess, program, market, base, select, evalu, paper, consid | 274 | Economic Evaluation and Energy Project Management |
t_3 | temperatur, thermal, heat, effici, degre, perform, concentr, condit, air, water, solar, design, experiment, collector, rate | 1070 | Solar Technologies and Photovoltaic Energy |
t_4 | activ, increas, mitochondri, effect, cell, function, level, induc, decreas, mechan, metabol, respons, protein, stress, complex | 791 | Energy Storage and Bioenergy |
t_5 | control, power, propos, voltag, current, grid, convert, paper, oper, dc, connect, base, gener, strategi, design | 1686 | Control and Optimization of Energy Systems |
t_6 | water, river, speci, reservoir, plant, hydroelectr, dam, hydropow, region, brazil, fish, impact, basin, construct, flow | 1788 | Environmental Impact of Hydropower and Aquatic Ecosystems |
t_7 | model, method, base, data, predict, propos, time, estim, approach, perform, paramet, appli, algorithm, optim, compar | 1208 | Modeling and Prediction Using Artificial Intelligence in Renewable Energy |
t_8 | environment, impact, emiss, sustain, climat, fuel, assess, scenario, chang, countri, potenti, global, sector, reduc, ga | 1137 | Climate Change and Decarbonization Policies |
t_9 | data, observ, region, measur, period, time, averag, variabl, variat, valu, correl, activ, analysi, estim, station | 832 | Interaction Between Solar Activity and Earth’s Electromagnetic Field |
t_10 | wind, turbin, wind_turbin, speed, power, farm, wind_energi, wind_power, wind_speed, wind_farm, blade, design, simul, structur, dynam | 1012 | Wind Turbines and Optimization of Wind Energy Systems |
t_11 | energi, electr, gener, renew, sourc, renew_energi, consumpt, demand, energi_sourc, potenti, technologi, altern, develop, suppli, power | 1435 | Development and Overview of Renewable Energy in Latin America |
t_12 | product, biomass, produc, bioenergi, potenti, sugarcan, content, evalu, yield, crop, plant, residu, process, soil, oil | 1694 | Biomass Production and Utilization for Energy |
t_13 | cell, effici, devic, solar_cell, electron, convers, photovolta, solar, light, base, perform, densiti, charg, organ, layer | 1424 | Materials Research for Solar Cells and Optoelectronics |
t_14 | photovolta, pv, system, modul, perform, condit, panel, photovolta_pv, instal, arrai, monitor, measur, detect, pv_system, photovolta_system | 445 | Diagnostics and Maintenance of Photovoltaic Modules |
t_15 | film, structur, materi, properti, surfac, deposit, optic, tio, character, oxid, layer, applic, sampl, rai, spectroscopi | 1217 | Nanostructures and Thin Films for Solar Energy |
t_16 | solar, solar_energi, radiat, irradi, hydrogen, solar_radiat, solar_irradi, energi, dai, sun, solar_power, surfac, averag, direct, incid | 254 | Evaluation and Modeling of Solar Radiation |
t_17 | power, cost, system, oper, gener, optim, plant, storag, distribut, integr, hybrid, batteri, solut, grid, propos | 976 | Optimization and Management of Microgrids |
t_18 | develop, review, identifi, discuss, studi, commun, provid, challeng, aim, process, main, literatur, technologi, local, practic | 884 | Sustainability and Governance in Renewable Energy Projects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Hoz-M, J.; Ariza-Echeverri, E.A.; Taborda, J.A.; Vergara, D.; Machado, I.F. Harnessing Machine Learning to Analyze Renewable Energy Research in Latin America and the Caribbean. Information 2025, 16, 906. https://doi.org/10.3390/info16100906
De La Hoz-M J, Ariza-Echeverri EA, Taborda JA, Vergara D, Machado IF. Harnessing Machine Learning to Analyze Renewable Energy Research in Latin America and the Caribbean. Information. 2025; 16(10):906. https://doi.org/10.3390/info16100906
Chicago/Turabian StyleDe La Hoz-M, Javier, Edwan A. Ariza-Echeverri, John A. Taborda, Diego Vergara, and Izabel F. Machado. 2025. "Harnessing Machine Learning to Analyze Renewable Energy Research in Latin America and the Caribbean" Information 16, no. 10: 906. https://doi.org/10.3390/info16100906
APA StyleDe La Hoz-M, J., Ariza-Echeverri, E. A., Taborda, J. A., Vergara, D., & Machado, I. F. (2025). Harnessing Machine Learning to Analyze Renewable Energy Research in Latin America and the Caribbean. Information, 16(10), 906. https://doi.org/10.3390/info16100906