Next Issue
Volume 11, December
Previous Issue
Volume 11, October

Table of Contents

Pharmaceutics, Volume 11, Issue 11 (November 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Multiple clinical and experimental investigations have demonstrated that the combination or [...] Read more.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Electrostatically Driven Encapsulation of Hydrophilic, Non-Conformational Peptide Epitopes into Liposomes
Pharmaceutics 2019, 11(11), 619; https://doi.org/10.3390/pharmaceutics11110619 - 18 Nov 2019
Abstract
Since the first use of liposomes as carriers for antigens, much work has been done to elucidate the mechanisms involved in the encapsulation of vaccine-relevant biomolecules. However, only a few studies have specifically investigated the encapsulation of hydrophilic, non-conformational peptide epitopes. We performed [...] Read more.
Since the first use of liposomes as carriers for antigens, much work has been done to elucidate the mechanisms involved in the encapsulation of vaccine-relevant biomolecules. However, only a few studies have specifically investigated the encapsulation of hydrophilic, non-conformational peptide epitopes. We performed comprehensive and systematic screening studies, in order to identify conditions that favor the electrostatic interaction of such peptides with lipid membranes. Moreover, we have explored bi-terminal sequence extension as an approach to modify the isoelectric point of peptides, in order to modulate their membrane binding behavior and eventually shift/expand the working range under which they can be efficiently encapsulated in an electrostatically driven manner. The findings of our membrane interaction studies were then applied to preparing peptide-loaded liposomes. Our results show that the magnitude of membrane binding observed in our exploratory in situ setup translates to corresponding levels of encapsulation efficiency in both of the two most commonly employed methods for the preparation of liposomes, i.e., thin-film hydration and microfluidic mixing. We believe that the methods and findings described in the present studies will be of use to a wide audience and can be applied to address the ongoing relevant issue of the efficient encapsulation of hydrophilic biomolecules. Full article
Show Figures

Graphical abstract

Open AccessArticle
Evaluation of the Effect of CYP2D6 Genotypes on Tramadol and O-Desmethyltramadol Pharmacokinetic Profiles in a Korean Population Using Physiologically-Based Pharmacokinetic Modeling
Pharmaceutics 2019, 11(11), 618; https://doi.org/10.3390/pharmaceutics11110618 - 17 Nov 2019
Abstract
Tramadol is a μ-opioid receptor agonist and a monoamine reuptake inhibitor. O-desmethyltramadol (M1), the major active metabolite of tramadol, is produced by CYP2D6. A physiologically-based pharmacokinetic model was developed to predict changes in time-concentration profiles for tramadol and M1 according to dosage [...] Read more.
Tramadol is a μ-opioid receptor agonist and a monoamine reuptake inhibitor. O-desmethyltramadol (M1), the major active metabolite of tramadol, is produced by CYP2D6. A physiologically-based pharmacokinetic model was developed to predict changes in time-concentration profiles for tramadol and M1 according to dosage and CYP2D6 genotypes in the Korean population. Parallel artificial membrane permeation assay was performed to determine tramadol permeability, and the metabolic clearance of M1 was determined using human liver microsomes. Clinical study data were used to develop the model. Other physicochemical and pharmacokinetic parameters were obtained from the literature. Simulations for plasma concentrations of tramadol and M1 (after 100 mg tramadol was administered five times at 12-h intervals) were based on a total of 1000 virtual healthy Koreans using SimCYP® simulator. Geometric mean ratios (90% confidence intervals) (predicted/observed) for maximum plasma concentration at steady-state (Cmax,ss) and area under the curve at steady-state (AUClast,ss) were 0.79 (0.69–0.91) and 1.04 (0.85–1.28) for tramadol, and 0.63 (0.51–0.79) and 0.67 (0.54–0.84) for M1, respectively. The predicted time–concentration profiles of tramadol fitted well to observed profiles and those of M1 showed under-prediction. The developed model could be applied to predict concentration-dependent toxicities according to CYP2D6 genotypes and also, CYP2D6-related drug interactions. Full article
(This article belongs to the Special Issue Drug–Drug Interactions)
Show Figures

Graphical abstract

Open AccessArticle
Co-Encapsulation of Chlorin e6 and Chemotherapeutic Drugs in a PEGylated Liposome Enhance the Efficacy of Tumor Treatment: Pharmacokinetics and Therapeutic Efficacy
Pharmaceutics 2019, 11(11), 617; https://doi.org/10.3390/pharmaceutics11110617 - 17 Nov 2019
Abstract
Long-circulating PEG-modified liposome has been shown to improve pharmacokinetic properties and reduce systemic toxicity in cancer treatment. However, drug bioavailability from liposome remains a major challenge to the improvement of its therapeutic efficacy. Previously, we designed a PEGylated dual-effect liposome (named as PL-Dox-Ce6) [...] Read more.
Long-circulating PEG-modified liposome has been shown to improve pharmacokinetic properties and reduce systemic toxicity in cancer treatment. However, drug bioavailability from liposome remains a major challenge to the improvement of its therapeutic efficacy. Previously, we designed a PEGylated dual-effect liposome (named as PL-Dox-Ce6) with chlorin e6 incorporated in the lipid bilayer and Doxorubicin encapsulated in the interior. In this study, another dual-effect liposome with cisplatin encapsulated in the interior was further developed. The pharmacokinetics of these two dual-effect liposomes were studied in tumor-bearing mice. Based on the kinetic data of tumor and plasma, light irradiation was applied onto the tumors at different time points after drug administration to compare the therapeutic efficacy. We demonstrated that a single dose of the dual-effect liposomes combined with two doses of light irradiation can completely eradicate over 90% of the tumor in mice alone with significant survival rate and no toxicity. Thus, this study established a platform that utilizes the dual-effect liposome which combines photodynamic therapy and chemotherapy to improve the therapeutic outcomes of tumors. Full article
(This article belongs to the Special Issue Liposomes for Gene and Drug Delivery)
Show Figures

Figure 1

Open AccessArticle
Be Aggressive! Amorphous Excipients Enabling Single-Step Freeze-Drying of Monoclonal Antibody Formulations
Pharmaceutics 2019, 11(11), 616; https://doi.org/10.3390/pharmaceutics11110616 - 17 Nov 2019
Abstract
Short freeze-drying cycles for biopharmaceuticals are desirable. Formulations containing an amorphous disaccharide, such as sucrose, are prone to collapse upon aggressive primary drying at higher shelf temperature. We used 2-hydroxypropyl-betacyclodextrin (HPBCD) in combination with sucrose and polyvinylpyrrolidone (PVP) to develop an aggressive lyophilization [...] Read more.
Short freeze-drying cycles for biopharmaceuticals are desirable. Formulations containing an amorphous disaccharide, such as sucrose, are prone to collapse upon aggressive primary drying at higher shelf temperature. We used 2-hydroxypropyl-betacyclodextrin (HPBCD) in combination with sucrose and polyvinylpyrrolidone (PVP) to develop an aggressive lyophilization cycle for low concentration monoclonal antibody (mAb) formulations. Glass transition temperature and collapse temperature of the formulations were determined, and increasingly aggressive cycle parameters were applied. Using a shelf temperature of +30 °C during primary drying, the concept of combining sublimation and desorption of water in a single drying step was investigated. Cake appearance was evaluated visually and by micro-computed tomography. Lyophilisates were further analyzed for reconstitution time, specific surface area, residual moisture, and glass transition temperature. We demonstrated the applicability of single-step freeze-drying, shortening the total cycle time by 50% and providing elegant lyophilisates for pure HPBCD and HPBCD/sucrose formulations. HPBCD/PVP/sucrose showed minor dents, while good mAb stability at 10 mg/mL was obtained for HPBCD/sucrose and HPBCD/PVP/sucrose when stored at 40 °C for 3 months. We conclude that HPBCD-based formulations in combination with sucrose are highly attractive, enabling aggressive, single-step freeze-drying of low concentration mAb formulations, while maintaining elegant lyophilisates and ensuring protein stability at the same time. Full article
(This article belongs to the Special Issue Pharmaceutical Freeze Drying and Spray Drying)
Show Figures

Graphical abstract

Open AccessArticle
Efficient Delivery of Therapeutic siRNA by Fe3O4 Magnetic Nanoparticles into Oral Cancer Cells
Pharmaceutics 2019, 11(11), 615; https://doi.org/10.3390/pharmaceutics11110615 - 17 Nov 2019
Abstract
The incidence of oral cancer is increasing due to smoking, drinking, and human papillomavirus (HPV) infection, while the current treatments are not satisfactory. Small interfering RNA (siRNA)-based therapy has brought hope, but an efficient delivery system is still needed. Here, polyethyleneimine (PEI)-modified magnetic [...] Read more.
The incidence of oral cancer is increasing due to smoking, drinking, and human papillomavirus (HPV) infection, while the current treatments are not satisfactory. Small interfering RNA (siRNA)-based therapy has brought hope, but an efficient delivery system is still needed. Here, polyethyleneimine (PEI)-modified magnetic Fe3O4 nanoparticles were prepared for the delivery of therapeutic siRNAs targeting B-cell lymphoma-2 (BCL2) and Baculoviral IAP repeat-containing 5 (BIRC5) into Ca9-22 oral cancer cells. The cationic nanoparticles were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometer (VSM). By gel retardation assay, the nanoparticles were found to block siRNA in a concentration-dependent manner. The cellular uptake of the nanoparticle/siRNA complexes under a magnetic field was visualized by Perl’s Prussian blue staining and FAM labeling. High gene silencing efficiencies were determined by quantitative real-time PCR and western blotting. Furthermore, the nanoparticle-delivered siRNAs targeting BCL2 and BIRC5 were found to remarkably inhibit the viability and migration of Ca9-22 cells, by cell counting kit-8 assay and transwell assay. In this study, we have developed a novel siRNA-based therapeutic strategy targeting BCL2 and BIRC5 for oral cancer. Full article
(This article belongs to the Special Issue Drug Delivery of siRNA Therapeutics)
Show Figures

Figure 1

Open AccessArticle
Macrophage Targeting pH Responsive Polymersomes for Glucocorticoid Therapy
Pharmaceutics 2019, 11(11), 614; https://doi.org/10.3390/pharmaceutics11110614 - 15 Nov 2019
Abstract
Glucocorticoid (GC) drugs are the cornerstone therapy used in the treatment of inflammatory diseases. Here, we report pH responsive poly(2-methacryloyloxyethyl phosphorylcholine)–poly(2-(diisopropylamino)ethyl methacrylate) (PMPC–PDPA) polymersomes as a suitable nanoscopic carrier to precisely and controllably deliver GCs within inflamed target cells. The in vitro cellular [...] Read more.
Glucocorticoid (GC) drugs are the cornerstone therapy used in the treatment of inflammatory diseases. Here, we report pH responsive poly(2-methacryloyloxyethyl phosphorylcholine)–poly(2-(diisopropylamino)ethyl methacrylate) (PMPC–PDPA) polymersomes as a suitable nanoscopic carrier to precisely and controllably deliver GCs within inflamed target cells. The in vitro cellular studies revealed that polymersomes ensure the stability, selectivity and bioavailability of the loaded drug within macrophages. At molecular level, we tested key inflammation-related markers, such as the nuclear factor-κB, tumour necrosis factor-α, interleukin-1β, and interleukin-6. With this, we demonstrated that pH responsive polymersomes are able to enhance the anti-inflammatory effect of loaded GC drug. Overall, we prove the potential of PMPC–PDPA polymersomes to efficiently promote the inflammation shutdown, while reducing the well-known therapeutic limitations in GC-based therapy. Full article
(This article belongs to the Special Issue Emerging Micro- and Nanofabrication Technologies for Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Development and Characterization of a Semi-Solid Dosage Form of Meglumine Antimoniate for Topical Treatment of Cutaneous Leishmaniasis
Pharmaceutics 2019, 11(11), 613; https://doi.org/10.3390/pharmaceutics11110613 - 15 Nov 2019
Abstract
Cutaneous leishmaniasis (CL) is treated with painful intralesional injections of meglumine antimoniate (MA). With the aim of developing an alternative topical treatment for CL, a gel-based formulation with 30% MA was prepared and its physicochemical properties, stability and rheological behavior were studied. The [...] Read more.
Cutaneous leishmaniasis (CL) is treated with painful intralesional injections of meglumine antimoniate (MA). With the aim of developing an alternative topical treatment for CL, a gel-based formulation with 30% MA was prepared and its physicochemical properties, stability and rheological behavior were studied. The following were assessed: drug release on propylene hydrophilic membranes ex vivo human skin permeation, tolerance in healthy volunteers, cytotoxicity in three cell lines and anti-leishmanial activity against Leishmania infantum promastigotes and amastigotes. The MA gel formulation was found to have suitable pH, and good spreadability and stability. Low quantities of pentavalent antimony (SbV) were observed in release and permeation tests, whereas retention was high in both non-damaged and damaged skin (71,043.69 ± 10,641.57 and 10,728 ± 2254.61 µg/g/cm2 of SbV, respectively). The formulation did not have a toxic effect on the cell lines, and presented lower SbV IC50 values against amastigotes (15.76 ± 4.81 µg/mL) in comparison with the MA solution. The high amount of drug retained in the skin and the SbV IC50 values obtained suggest that this semi-solid dosage form has potential as an alternative treatment of CL. Full article
(This article belongs to the Special Issue Antifungal and Antiparasitic Drug Delivery)
Show Figures

Graphical abstract

Open AccessReview
The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8+ T Cell Responses
Pharmaceutics 2019, 11(11), 612; https://doi.org/10.3390/pharmaceutics11110612 - 15 Nov 2019
Abstract
Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, [...] Read more.
Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines. Full article
(This article belongs to the Special Issue Nanoparticles to Improve the Efficacy of Vaccines)
Show Figures

Figure 1

Open AccessArticle
An In Situ Gelling System for the Local Treatment of Inflammatory Bowel Disease (IBD). The Loading of Maqui (Aristotelia chilensis) Berry Extract as an Antioxidant and Anti-Inflammatory Agent
Pharmaceutics 2019, 11(11), 611; https://doi.org/10.3390/pharmaceutics11110611 - 14 Nov 2019
Abstract
The aim of the present work was the development of an innovative in situ gelling system, to be applied on the mucosa of the distal colon via rectal route. The system consisted of three polymers having different functions: gellan (GG), able to jellify [...] Read more.
The aim of the present work was the development of an innovative in situ gelling system, to be applied on the mucosa of the distal colon via rectal route. The system consisted of three polymers having different functions: gellan (GG), able to jellify in presence of ions; methylcellulose (MC), a thermosensitive polymer with a gelation temperature close to 50 °C; and hydroxypropylcellulose (HPC), a mucoadhesive polymer. The three polymers were able to act synergistically, increasing the permanence of the vehicle on the mucosa and forming a protective gel layer. A DoE approach, “simplex centroid mixture design,” was used to identify the optimal quantitative composition of the vehicle. The response variables considered were: vehicle viscosity at room temperature; increase in vehicle viscosity on increasing temperature (from room to physiological value) and upon dilution with simulated colonic fluid (SCF); and viscoelastic behavior, thixotropic area, and mucoadhesion properties of the gel formed at 37 °C upon dilution in SCF. The optimized vehicle was loaded with maqui berry extract (MBE), known for its antioxidant and anti-inflammatory properties. MBE loading (0.5% w/w) into the vehicle improved rheological and mucoadhesive properties of the formulation. Both MBE and the optimized vehicle were not cytotoxic towards human fibroblasts and Caco-2 cells. Moreover, the optimized vehicle did not affect MBE antioxidant properties. Full article
(This article belongs to the Special Issue Gels and in Situ Gelling Formulations for Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Development of Injectable PEGylated Liposome Encapsulating Disulfiram for Colorectal Cancer Treatment
Pharmaceutics 2019, 11(11), 610; https://doi.org/10.3390/pharmaceutics11110610 - 14 Nov 2019
Abstract
Disulfiram (DS), an anti-alcoholism medicine, shows strong anti-cancer activity in the laboratory, but the application in clinics for anti-cancer therapy has been limited by its prompt metabolism. Conventional liposomes have shown limited ability to protect DS. Therefore, the aim of this study is [...] Read more.
Disulfiram (DS), an anti-alcoholism medicine, shows strong anti-cancer activity in the laboratory, but the application in clinics for anti-cancer therapy has been limited by its prompt metabolism. Conventional liposomes have shown limited ability to protect DS. Therefore, the aim of this study is to develop PEGylated liposomes of DS for enhanced bio-stability and prolonged circulation. PEGylated liposomes were prepared using ethanol-based proliposome methods. Various ratios of phospholipids, namely: hydrogenated soya phosphatidylcholine (HSPC) or dipalmitoyl phosphatidylcholine (DPPC) and N-(Carbonyl-methoxypolyethylenglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG2000) with cholesterol were used. DS was dissolved in the alcoholic solution in different lipid mol% ratios. The size of the resulting multilamellar liposomes was reduced by high-pressure homogenization. Liposomal formulations were characterized by size analysis, zeta potential, drug loading efficiency and stability in horse serum. Small unilamellar vesicles (SUVs; nanoliposomes) were generated with a size of approximately 80 to 120 nm with a polydispersity index (PDI) in the range of 0.1 to 0.3. Zeta potential values of all vesicles were negative, and the negative surface charge intensity tended to increase by PEGylation. PEGylated liposomes had a smaller size (80–90 nm) and a significantly lower PDI. All liposomes showed similar loading efficiencies regardless of lipid type (HSPC or DPPC) or PEGylations. PEGylated liposomes provided the highest drug biostability amongst all formulations in horse serum. PEGylated DPPC liposomes had t1/2 =77.3 ± 9.6 min compared to 9.7 ± 2.3 min for free DS. In vitro cytotoxicity on wild type and resistant colorectal cancer cell lines was evaluated by MTT assay. All liposomal formulations of DS were cytotoxic to both the wild type and resistant colorectal cancer cell lines and were able to reverse chemoresistance at low nanomolar concentrations. In conclusion, PEGylated liposomes have a greater potential to be used as an anticancer carrier for disulfiram. Full article
Show Figures

Graphical abstract

Open AccessArticle
Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy
Pharmaceutics 2019, 11(11), 609; https://doi.org/10.3390/pharmaceutics11110609 - 13 Nov 2019
Abstract
Tissue repair and wound healing are complex processes that involve inflammation, granulation, and remodeling of the tissue. The potential of various statins including atorvastatin (ATR) to improve the wound healing effect was established. The aim of this study was to formulate and evaluate [...] Read more.
Tissue repair and wound healing are complex processes that involve inflammation, granulation, and remodeling of the tissue. The potential of various statins including atorvastatin (ATR) to improve the wound healing effect was established. The aim of this study was to formulate and evaluate the efficacy of topical application of ATR-based nanoemulgel on wound healing. The prepared formulations (ATR gel, ATR emulgel, and ATR nanoemulgel) were evaluated for their physical appearance, rheological behavior, in vitro drug release and ex vivo drug permeation. The in vivo wound healing effect was evaluated in wound-induced rats. The prepared ATR gel formulations showed good physical properties and were comparable. The release profiles of drugs from gel, emulgel, and nanoemulgel were distinct. Skin permeation potential of ATR was significantly (p < 0.05) enhanced when formulated into nanoemulgel. In vivo wound healing studies showed that ATR nanoemulgel exhibited the highest percent wound contraction. Histopathological assessment showed marked improvement in the skin histological architecture after 21 days of ATR nanoemulgel treatment. In conclusion, the data demonstrated here signify the prospective of ATR nanoemulgel as an innovative therapeutic approach in wound healing. Full article
(This article belongs to the Special Issue Transdermal Drug Delivery Systems)
Show Figures

Graphical abstract

Open AccessArticle
An Effective Cationic Human Serum Albumin-Based Gene-Delivery Carrier Containing the Nuclear Localization Signal
Pharmaceutics 2019, 11(11), 608; https://doi.org/10.3390/pharmaceutics11110608 - 13 Nov 2019
Abstract
Considerable effort has been devoted to the development of gene carriers over the years. However, toxicity, immunogenicity, and low transfection efficiency are still major barriers. How to overcome these obstacles has become a burning question in gene delivery. In the present study, a [...] Read more.
Considerable effort has been devoted to the development of gene carriers over the years. However, toxicity, immunogenicity, and low transfection efficiency are still major barriers. How to overcome these obstacles has become a burning question in gene delivery. In the present study, a simple cationic human serum albumin (CHSA)-based gene-delivery system containing nuclear localization signals (NLSs) was constructed to conquer the limitations. CHSA/NLS/plasmid DNA (pDNA) complexes were prepared and characterized by Hoechst 33258 intercalation, gel retardation assay, morphological analysis, circular dichroism (CD) spectroscopy, particle size, and zeta potential measurements. Results showed that CHSA/NLS/pDNA complexes were able to condense and protect pDNA with high encapsulation efficiency. The complexes displayed a nutritional effect on cells at a low concentration and there was no significant cytotoxicity or immunogenicity. In addition, CHSA/NLS/pDNA complexes exhibited excellent cellular uptake rates and the mechanism was mainly the clathrin or macropinocytosis-dependent endocytosis pathway. Furthermore, CHSA/NLS/pDNA significantly enhanced gene expression efficiency in vitro. More importantly, CHSA/NLS/pDNA complexes showed a desired antitumor effect in vivo, exhibiting the highest inhibition rate (57.3%) and significant upregulation in p53 protein. All these results confirm that CHSA/NLS/pDNA complexes have a bright future as a safe and effective delivery system for gene therapy. Full article
(This article belongs to the Special Issue Non-Viral Gene Delivery Systems)
Show Figures

Graphical abstract

Open AccessArticle
Evaluation of Skin Permeation and Retention of Topical Dapsone in Murine Cutaneous Leishmaniasis Lesions
Pharmaceutics 2019, 11(11), 607; https://doi.org/10.3390/pharmaceutics11110607 - 13 Nov 2019
Abstract
The oral administration of dapsone (DAP) for the treatment of cutaneous leishmaniasis (CL) is effective, although serious hematological side effects limit its use. In this study, we evaluated this drug for the topical treatment of CL. As efficacy depends on potency and skin [...] Read more.
The oral administration of dapsone (DAP) for the treatment of cutaneous leishmaniasis (CL) is effective, although serious hematological side effects limit its use. In this study, we evaluated this drug for the topical treatment of CL. As efficacy depends on potency and skin penetration, we first determined its antileishmanial activity (IC50 = 100 μM) and selectivity index in vitro against Leishmania major-infected macrophages. In order to evaluate the skin penetration ex vivo, we compared an O/W cream containing DAP that had been micronized with a pluronic lecithin emulgel, in which the drug was solubilized with diethylene glycol monoethyl ether. For both formulations we obtained similar low flux values that increased when the stratum corneum and the epidermis were removed. In vivo efficacy studies performed on L. major-infected BALB/c mice revealed that treatment not only failed to cure the lesions but made their evolution and appearance worse. High plasma drug levels were detected and were concomitant with anemia and iron accumulation in the spleen. This side effect was correlated with a reduction of parasite burden in this organ. Our results evidenced that DAP in these formulations does not have an adequate safety index for use in the topical therapy of CL. Full article
Show Figures

Graphical abstract

Open AccessArticle
Enhancement in Site-Specific Delivery of Carvacrol against Methicillin Resistant Staphylococcus aureus Induced Skin Infections Using Enzyme Responsive Nanoparticles: A Proof of Concept Study
Pharmaceutics 2019, 11(11), 606; https://doi.org/10.3390/pharmaceutics11110606 - 13 Nov 2019
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) induced skin infections have become a challenging problem due to the escalating antibiotic resistance. Carvacrol (CAR) has been reported to be effective against MRSA. However, due to its characteristics, CAR exhibits low skin retention. In this study, CAR [...] Read more.
Methicillin resistant Staphylococcus aureus (MRSA) induced skin infections have become a challenging problem due to the escalating antibiotic resistance. Carvacrol (CAR) has been reported to be effective against MRSA. However, due to its characteristics, CAR exhibits low skin retention. In this study, CAR was formulated into site-specific nanoparticle (NPs) delivery system using poly(ε-caprolactone) (PCL), following incorporation into a hydrogel matrix to facilitate dermal delivery. The release study exhibited significantly higher release of CAR from PCL NPs in the presence of bacterial lipase, highlighting its potential for differential delivery. Moreover, encapsulation of CAR in PCL NPs resulted in a two-fold increase in its anti-MRSA activity. Dermatokinetic studies revealed that the NPs loaded hydrogel was able to enhance skin retention of CAR after 24 h (83.29 ± 3.15%), compared to free CAR-loaded hydrogel (0.85 ± 0.14%). Importantly, this novel approach exhibited effective antimicrobial activity in an ex-vivo skin infection model. Hence, these findings have proven the concept that the loading of CAR into a responsive NPs system can lead to sustained antimicrobial effect at the desired site, and may provide a novel effective approach for treatment of MRSA induced skin infections. However, further studies must be conducted to investigate in-vivo efficacy of the developed system in an appropriate infection model. Full article
Show Figures

Graphical abstract

Open AccessArticle
Design and Development of Liquid Drug Reservoirs for Microneedle Delivery of Poorly Soluble Drug Molecules
Pharmaceutics 2019, 11(11), 605; https://doi.org/10.3390/pharmaceutics11110605 - 13 Nov 2019
Abstract
The poor aqueous solubility of existing and emerging drugs is a major issue faced by the pharmaceutical industry. Water-miscible organic solvents, termed co-solvents, can be used to enhance the solubility of poorly soluble substances. Typically, drugs with poor aqueous solubility and Log P [...] Read more.
The poor aqueous solubility of existing and emerging drugs is a major issue faced by the pharmaceutical industry. Water-miscible organic solvents, termed co-solvents, can be used to enhance the solubility of poorly soluble substances. Typically, drugs with poor aqueous solubility and Log P > 3 are not amenable to delivery across the skin. This study investigated the use of co-solvents as reservoirs to be used in combination with hydrogel-forming microneedles to enhance the transdermal delivery of hydrophobic compounds, namely Nile red, olanzapine and atorvastatin. A custom-made Franz cell apparatus was fabricated to test the suitability of a liquid drug reservoir in combination with polymeric microneedles. A co-solvency approach to reservoir formulation proved effective, with 83.30% ± 9.38% of Nile red dye, dissolved in 1 mL poly(ethylene glycol) (PEG 400), permeating neonatal porcine skin over 24 h. PEG 400 and propylene glycol were found to be suitable reservoir media for olanzapine and atorvastatin, with approximately 50% of each drug delivered after 24 h. This work provides crucial proof-of-concept evidence that the manipulation of microneedle reservoir properties is an effective method to facilitate microneedle-mediated delivery of hydrophobic compounds. Full article
(This article belongs to the Special Issue Emerging Micro- and Nanofabrication Technologies for Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
Design and Evaluation of pH-Dependent Nanosystems Based on Cellulose Acetate Phthalate, Nanoparticles Loaded with Chlorhexidine for Periodontal Treatment
Pharmaceutics 2019, 11(11), 604; https://doi.org/10.3390/pharmaceutics11110604 - 13 Nov 2019
Abstract
This work aimed to develop and evaluate pH-dependent systems based on nanospheres (NSphs) and nanocapsules (NCs) loaded with chlorhexidine (CHX) base as a novel formulation for the treatment of periodontal disease. Cellulose acetate phthalate (CAP) was employed as a pH-dependent polymeric material. The [...] Read more.
This work aimed to develop and evaluate pH-dependent systems based on nanospheres (NSphs) and nanocapsules (NCs) loaded with chlorhexidine (CHX) base as a novel formulation for the treatment of periodontal disease. Cellulose acetate phthalate (CAP) was employed as a pH-dependent polymeric material. The NSphs and NCs were prepared using the emulsion-diffusion technique and then characterized according to encapsulation efficiency (EE), size, zeta-potential, morphology, thermal properties, release profiles and a preliminary clinical panel test. The formulations showed 77% and 61% EE and 57% and 84% process efficiency (PE), respectively. Both systems were spherical with an average size of 250–300 nm. Differential scanning calorimetry (DSC) studies showed that the drug has the potential to be dispersed molecularly in the NSph matrix or dissolved in the oily center of the NCs. The CHX release test revealed that the release of NSphs-CHX follows Fickian diffusion involving diffusion-erosion processes. The NCs showed a slower release than the NSphs, following non-Fickian diffusion, which is indicative of anomalous transport. These nanosystems may, therefore, be employed as novel formulations for treating periodontal disease, due to (1) their coverage of a large surface area, (2) the controlled release of active substances at different pH, and (3) potential gingival tissue infiltration. Full article
(This article belongs to the Special Issue Advances in Oral and Buccal Drug Delivery)
Show Figures

Graphical abstract

Open AccessArticle
A Direct Compression Matrix Made from Xanthan Gum and Low Molecular Weight Chitosan Designed to Improve Compressibility in Controlled Release Tablets
Pharmaceutics 2019, 11(11), 603; https://doi.org/10.3390/pharmaceutics11110603 - 12 Nov 2019
Abstract
The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of [...] Read more.
The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of important attributes for direct compression of the mixtures of the two polymers. Powder flow, deformation behaviour, and work of compression parameters were used to characterize powder and tableting properties. Compression pressure and LCS content within the matrix were investigated for their influence on the crushing strength of the tablets produced. Response surface methodology (RSM) was applied to determine the optimum parameters required for DC of the matrices investigated. Results confirm the positive contribution of LCS in enhancing powder compressibility and crushing strength of the resultant compacts. Compactibility of the XG/LCS mixtures was found to be more sensitive to applied compression pressure than LCS content. LCS can be added at concentrations as low as 15% w/w to achieve hard compacts, as indicated by the RSM results. The introduction of the plasticity factor, using LCS, to the fragmenting material XG was the main reason for the high volume reduction and reduced porosity of the polymer mixture. Combinations of XG with other commonly utilized polymers in controlled release studies such as glucosamine, hydroxypropyl methylcellulose (HPMC), Na alginate (ALG), guar gum, lactose and high molecular weight (HMW) chitosan were also used; all the foregoing polymers failed to reduce the matrix porosity beyond a certain compression pressure. Application of the LCS/XG mixture, at its optimum composition, for the controlled release of two model drugs (metoprolol succinate and dyphylline) was examined. The XG/LCS matrix at 15% w/w LCS content was found to control the release of metoprolol succinate and dyphylline. The former preparation confirmed the strong influence of compression pressure on changing the drug release profile. The latter preparation showed the ability of XG/LCS to extend the drug release at a fixed rate for 12 h of dissolution time after which the release became slightly slower. Full article
(This article belongs to the Special Issue Matrix Tablets for Oral Controlled Release)
Show Figures

Graphical abstract

Open AccessArticle
Bone Morphogenic Protein 2-Loaded Porous Silicon Carriers for Osteoinductive Implants
Pharmaceutics 2019, 11(11), 602; https://doi.org/10.3390/pharmaceutics11110602 - 12 Nov 2019
Abstract
Bone morphogenetic proteins (BMPs) are probably the most important growth factors in bone formation and healing. However, the utilization of BMPs in clinical applications is mainly limited due to the protein poor solubility at physiological pH, rapid clearance and relatively short biological half-life. [...] Read more.
Bone morphogenetic proteins (BMPs) are probably the most important growth factors in bone formation and healing. However, the utilization of BMPs in clinical applications is mainly limited due to the protein poor solubility at physiological pH, rapid clearance and relatively short biological half-life. Herein, we develop degradable porous silicon (PSi)-based carriers for sustained delivery of BMP-2. Two different loading approaches are examined, physical adsorption and covalent conjugation, and their effect on the protein loading and release rate is thoroughly studied. The entrapment of the protein within the PSi nanostructures preserved its bioactivity for inducing osteogenic differentiation of rabbit bone marrow mesenchymal stems cells (BM-MSCs). BM-MSCs cultured with the BMP-2 loaded PSi carriers exhibit a relatively high alkaline phosphatase (ALP) activity. We also demonstrate that exposure of MSCs to empty PSi (no protein) carriers generates some extent of differentiation due to the ability of the carrier’s degradation products to induce osteoblast differentiation. Finally, we demonstrate the integration of these promising BMP-2 carriers within a 3D-printed patient-specific implant, constructed of poly(caprolactone) (PCL), as a potential bone graft for critical size bone defects. Full article
(This article belongs to the Special Issue Porous Silicon for Drug Delivery)
Show Figures

Graphical abstract

Open AccessReview
Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications—A Review
Pharmaceutics 2019, 11(11), 601; https://doi.org/10.3390/pharmaceutics11110601 - 12 Nov 2019
Abstract
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and [...] Read more.
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite. Full article
(This article belongs to the Special Issue Metallic Nanoparticles in Pharmaceutical Applications)
Show Figures

Figure 1

Open AccessArticle
Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery
Pharmaceutics 2019, 11(11), 600; https://doi.org/10.3390/pharmaceutics11110600 - 12 Nov 2019
Abstract
A major hurdle for exploring RNA interference (RNAi) in a therapeutic setting is still the issue of in vivo delivery of small RNA molecules (siRNAs). The chemical modification of polyethylenimines (PEIs) offers a particularly attractive avenue towards the development of more efficient non-viral [...] Read more.
A major hurdle for exploring RNA interference (RNAi) in a therapeutic setting is still the issue of in vivo delivery of small RNA molecules (siRNAs). The chemical modification of polyethylenimines (PEIs) offers a particularly attractive avenue towards the development of more efficient non-viral delivery systems. Here, we explore tyrosine-modified polyethylenimines with low or very low molecular weight (P2Y, P5Y, P10Y) for siRNA delivery. In comparison to their respective parent PEI, they reveal considerably increased knockdown efficacies and very low cytotoxicity upon tyrosine modification, as determined in different reporter and wildtype cell lines. The delivery of siRNAs targeting the anti-apoptotic oncogene survivin or the serine/threonine-protein kinase PLK1 (polo-like kinase 1; PLK-1) oncogene reveals strong inhibitory effects in vitro. In a therapeutic in vivo setting, profound anti-tumor effects in a prostate carcinoma xenograft mouse model are observed upon systemic application of complexes for survivin or PLK1 knockdown, in the absence of in vivo toxicity. We thus demonstrate the tyrosine-modification of (very) low molecular weight PEIs for generating efficient nanocarriers for siRNA delivery in vitro and in vivo, present data on their physicochemical and biological properties, and show their efficacy as siRNA therapeutic in vivo, in the absence of adverse effects. Full article
(This article belongs to the Special Issue Drug Delivery of siRNA Therapeutics)
Show Figures

Graphical abstract

Open AccessArticle
Encapsulation in Polymeric Nanoparticles Enhances the Enzymatic Stability and the Permeability of the GLP-1 Analog, Liraglutide, Across a Culture Model of Intestinal Permeability
Pharmaceutics 2019, 11(11), 599; https://doi.org/10.3390/pharmaceutics11110599 - 12 Nov 2019
Abstract
The potential of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to overcome the intestinal barrier that limits oral liraglutide delivery was evaluated. Liraglutide-loaded PLGA NPs were prepared by the double emulsion solvent evaporation method. In vitro release kinetics and enzymatic degradation studies [...] Read more.
The potential of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) to overcome the intestinal barrier that limits oral liraglutide delivery was evaluated. Liraglutide-loaded PLGA NPs were prepared by the double emulsion solvent evaporation method. In vitro release kinetics and enzymatic degradation studies were conducted, mimicking the gastrointestinal environment. The permeability of liraglutide solution, liraglutide-loaded PLGA NPs, and liraglutide in the presence of the absorption enhancer PN159 peptide was tested on the Caco-2 cell model. Liraglutide release from PLGA NPs showed a biphasic release pattern with a burst effect of less than 15%. The PLGA nanosystem protected the encapsulated liraglutide from the conditions simulating the gastric environment. The permeability of liraglutide encapsulated in PLGA NPs was 1.5-fold higher (24 × 10−6 cm/s) across Caco-2 cells as compared to liraglutide solution. PLGA NPs were as effective at elevating liraglutide penetration as the tight junction-opening PN159 peptide. No morphological changes were seen in the intercellular junctions of Caco-2 cells after treatment with liraglutide-PLGA NPs, confirming the lack of a paracellular component in the transport mechanism. PLGA NPs, by protecting liraglutide from enzyme degradation and enhancing its permeability across intestinal epithelium, hold great potential as carriers for oral GLP-1 analog delivery. Full article
(This article belongs to the Special Issue Drug Delivery across Biological Barriers)
Show Figures

Graphical abstract

Open AccessReview
Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration
Pharmaceutics 2019, 11(11), 598; https://doi.org/10.3390/pharmaceutics11110598 - 12 Nov 2019
Abstract
One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood–brain barrier (BBB) under physiological [...] Read more.
One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood–brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states. Full article
(This article belongs to the Special Issue Drug Delivery to the Brain)
Show Figures

Graphical abstract

Open AccessReview
Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus
Pharmaceutics 2019, 11(11), 597; https://doi.org/10.3390/pharmaceutics11110597 - 12 Nov 2019
Abstract
: Type 1 Diabetes Mellitus (T1DM) is characterized by the autoimmune destruction of β-cells in the pancreatic islets. In this regard, islet transplantation aims for the replacement of the damaged β-cells through minimally invasive surgical procedures, thereby being the most suitable strategy to [...] Read more.
: Type 1 Diabetes Mellitus (T1DM) is characterized by the autoimmune destruction of β-cells in the pancreatic islets. In this regard, islet transplantation aims for the replacement of the damaged β-cells through minimally invasive surgical procedures, thereby being the most suitable strategy to cure T1DM. Unfortunately, this procedure still has limitations for its widespread clinical application, including the need for long-term immunosuppression, the lack of pancreas donors and the loss of a large percentage of islets after transplantation. To overcome the aforementioned issues, islets can be encapsulated within hydrogel-like biomaterials to diminish the loss of islets, to protect the islets resulting in a reduction or elimination of immunosuppression and to enable the use of other insulin-producing cell sources. This review aims to provide an update on the different hydrogel-based encapsulation strategies of insulin-producing cells, highlighting the advantages and drawbacks for a successful clinical application. Full article
Show Figures

Graphical abstract

Open AccessArticle
Preparation and In Vitro Evaluation of Neutron-Activated, Theranostic Samarium-153-Labeled Microspheres for Transarterial Radioembolization of Hepatocellular Carcinoma and Liver Metastasis
Pharmaceutics 2019, 11(11), 596; https://doi.org/10.3390/pharmaceutics11110596 - 12 Nov 2019
Abstract
Introduction: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it [...] Read more.
Introduction: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it emits both therapeutic beta and diagnostic gamma radiations simultaneously, in comparison to the pure beta emitter, 90Y. Methods: Negatively charged acrylic microspheres were labeled with 152Sm ions through electrostatic interactions. In another formulation, the Sm-labeled microsphere was treated with sodium carbonate solution to form the insoluble 152Sm carbonate (152SmC) salt within the porous structures of the microspheres. Both formulations were neutron-activated in a research reactor. Physicochemical characterization, gamma spectrometry, and radiolabel stability tests were carried out to study the performance and stability of the microspheres. Results: The Sm- and SmC-labeled microspheres remained spherical and smooth, with a mean size of 35 µm before and after neutron activation. Fourier transform infrared (FTIR) spectroscopy indicated that the functional groups of the microspheres remained unaffected after neutron activation. The 153Sm- and 153SmC-labeled microspheres achieved activity of 2.53 ± 0.08 and 2.40 ± 0.13 GBq·g−1, respectively, immediate after 6 h neutron activation in the neutron flux of 2.0 × 1012 n·cm−2·s−1. Energy-dispersive X-ray (EDX) and gamma spectrometry showed that no elemental and radioactive impurities were present in the microspheres after neutron activation. The retention efficiency of 153Sm in the 153SmC-labeled microspheres was excellent (~99% in distilled water and saline; ~97% in human blood plasma), which was higher than the 153Sm-labeled microspheres (~95% and ~85%, respectively). Conclusion: 153SmC-labeled microspheres have demonstrated excellent properties for potential application as theranostic agents for hepatic radioembolization. Full article
(This article belongs to the Special Issue Radiopharmaceutical Drugs Discovery and Evaluation)
Show Figures

Graphical abstract

Open AccessArticle
Muscle to Brain Partitioning as Measure of Transporter-Mediated Efflux at the Rat Blood–Brain Barrier and Its Implementation into Compound Optimization in Drug Discovery
Pharmaceutics 2019, 11(11), 595; https://doi.org/10.3390/pharmaceutics11110595 - 11 Nov 2019
Abstract
Movement of xenobiotic substances across the blood–brain barrier (BBB) is tightly regulated by various transporter proteins, especially the efflux transporters P-glycoprotein (P-gp/MDR1) and breast cancer resistance protein (BCRP). Avoiding drug efflux at the BBB is a unique challenge for the development of new [...] Read more.
Movement of xenobiotic substances across the blood–brain barrier (BBB) is tightly regulated by various transporter proteins, especially the efflux transporters P-glycoprotein (P-gp/MDR1) and breast cancer resistance protein (BCRP). Avoiding drug efflux at the BBB is a unique challenge for the development of new central nervous system (CNS) drugs. Drug efflux at the BBB is described by the partition coefficient of unbound drug between brain and plasma (Kp,uu,brain) which is typically obtained from in vivo and often additionally in vitro measurements. Here, we describe a new method for the rapid estimation of the in vivo drug efflux at the BBB of rats: the measurement of the partition coefficient of a drug between brain and skeletal muscle (Kp,brain/muscle). Assuming a closely similar distribution of drugs into the brain and muscle and that the efflux transporters are only expressed in the brain, Kp,brain/muscle, similar to Kp,uu,brain, reflects the efflux at the BBB. The new method requires a single in vivo experiment. For 64 compounds from different research programs, we show the comparability to other approaches used to obtain Kp,uu,brain. P-gp- and BCRP-overexpressing cell systems are valuable in vitro tools for prescreening. Drug efflux at the BBB can be most accurately predicted based on a simple algorithm incorporating data from both in vitro assays. In conclusion, the combined use of our new in vivo method and the in vitro tools allows an efficient screening method in drug discovery with respect to efflux at the BBB. Full article
(This article belongs to the Special Issue Drug Delivery to the Brain)
Show Figures

Graphical abstract

Open AccessArticle
Development of a UV-Stabilized Topical Formulation of Nifedipine for the Treatment of Raynaud Phenomenon and Chilblains
Pharmaceutics 2019, 11(11), 594; https://doi.org/10.3390/pharmaceutics11110594 - 09 Nov 2019
Abstract
Raynaud’s Phenomenon is a vascular affliction resulting in pain and blanching of the skin caused by excessive and prolonged constriction of arterioles, usually due to cold exposure. Nifedipine is a vasodilatory calcium channel antagonist, which is used orally as the first-line pharmacological treatment [...] Read more.
Raynaud’s Phenomenon is a vascular affliction resulting in pain and blanching of the skin caused by excessive and prolonged constriction of arterioles, usually due to cold exposure. Nifedipine is a vasodilatory calcium channel antagonist, which is used orally as the first-line pharmacological treatment to reduce the incidence and severity of attacks when other interventions fail to alleviate the condition and there is danger of tissue injury. Oral administration of nifedipine, however, is associated with systemic adverse effects, and thus topical administration with nifedipine locally to the extremities would be advantageous. However, nifedipine is subject to rapid photodegradation, which is problematic for exposed skin such as the hands. The goal of this project was to analyze the photostability of a novel topical nifedipine cream to UVA light. The effect of incorporating the photoprotectants rutin, quercetin, and/or avobenzone (BMDBM) into the nifedipine cream on the stability of nifedipine to UVA light exposure and the appearance of degradation products of nifedipine was determined. Rutin and quercetin are flavonoids with antioxidant activity. Both have the potential to improve the photostability of nifedipine by a number of mechanisms that either quench the intermolecular electron transfer of the singlet excited dihydropyridine to the nitrobenzene group or by preventing photoexcitation of nifedipine. Rutin at either 0.1% or 0.5% (w/w) did not improve the stability of nifedipine 2% (w/w) in the cream after UVA exposure up to 3 h. Incorporation of quercetin at 0.5% (w/w) did improve nifedipine stability from 40% (no quercetin) to 77% (with quercetin) of original drug concentration after 3 h UVA exposure. A combination of BMDBM and quercetin was the most effective photoprotectant for maintaining nifedipine concentration following up to 8 h UVA exposure. Full article
(This article belongs to the Special Issue Drug Delivery Technology Development in Canada)
Show Figures

Figure 1

Open AccessCommunication
Pharmacokinetic Alteration of Paclitaxel by Ferulic Acid Derivative
Pharmaceutics 2019, 11(11), 593; https://doi.org/10.3390/pharmaceutics11110593 - 09 Nov 2019
Abstract
P-glycoprotein (P-gp) is known to be involved in multidrug resistance (MDR) and modulation of pharmacokinetic (PK) profiles of substrate drugs. Here, we studied the effects of synthesized ferulic acid (FA) derivatives on P-gp function in vitro and examined PK alteration of paclitaxel (PTX), [...] Read more.
P-glycoprotein (P-gp) is known to be involved in multidrug resistance (MDR) and modulation of pharmacokinetic (PK) profiles of substrate drugs. Here, we studied the effects of synthesized ferulic acid (FA) derivatives on P-gp function in vitro and examined PK alteration of paclitaxel (PTX), a well-known P-gp substrate drug by the derivative. Compound 5c, the FA derivative chosen as a significant P-gp inhibitor among eight FA candidates by in vitro results, increased PTX AUCinf as much as twofold versus the control by reducing PTX elimination in rats. These results suggest that FA derivative can increase PTX bioavailability by inhibiting P-gp existing in eliminating organs. Full article
Show Figures

Graphical abstract

Open AccessArticle
Extended Release Combination Antibiotic Therapy from a Bone Void Filling Putty for Treatment of Osteomyelitis
Pharmaceutics 2019, 11(11), 592; https://doi.org/10.3390/pharmaceutics11110592 - 08 Nov 2019
Abstract
In spite of advances in Total Joint Replacements (TJR), infection remains a major concern and a primary causative factor for revision surgery. Current clinical standards treat these osteomyelitis infections with antibiotic-laden poly(methyl methacrylate) (PMMA)-based cement, which has several disadvantages, including inadequate local drug [...] Read more.
In spite of advances in Total Joint Replacements (TJR), infection remains a major concern and a primary causative factor for revision surgery. Current clinical standards treat these osteomyelitis infections with antibiotic-laden poly(methyl methacrylate) (PMMA)-based cement, which has several disadvantages, including inadequate local drug release kinetics, antibiotic leaching for a prolonged period and additional surgical interventions to remove it, etc. Moreover, not all antibiotics (e.g., rifampicin, a potent antibiofilm antibiotic) are compatible with PMMA. For this reason, treatment of TJR-associated infections and related complications remains a significant concern. The objective of this study was to develop a polymer-controlled dual antibiotic-releasing bone void filler (ABVF) with an underlying osseointegrating substrate to treat TJR implant-associated biofilm infections. An ABVF putty was designed to provide sustained vancomycin and rifampicin antibiotic release for 6 weeks while concurrently providing an osseointegrating support for regrowth of lost bone. The reported ABVF showed efficient antibacterial and antibiofilm activity both in vitro and in a rat infection model where the ABVF both showed complete bacterial elimination and supported bone growth. Furthermore, in an in vivo k-wire-based biofilm infection model, the ABVF putty was also able to eliminate the biofilm infection while supporting osseointegration. The retrieved k-wire implants were also free from biofilm and bacterial burden. The ABVF putty delivering combination antibiotics demonstrated that it can be a viable treatment option for implant-related osteomyelitis and may lead to retention of the hardware while enabling single-stage surgery. Full article
(This article belongs to the Special Issue Drug Delivery in Regenerative Medicine)
Show Figures

Graphical abstract

Open AccessReview
Recent Progress and Advances of Multi-Stimuli-Responsive Dendrimers in Drug Delivery for Cancer Treatment
Pharmaceutics 2019, 11(11), 591; https://doi.org/10.3390/pharmaceutics11110591 - 08 Nov 2019
Cited by 1
Abstract
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. [...] Read more.
Despite the fact that nanocarriers as drug delivery systems overcome the limitation of chemotherapy, the leakage of encapsulated drugs during the delivery process to the target site can still cause toxic effects to healthy cells in other tissues and organs in the body. Controlling drug release at the target site, responding to stimuli that originated from internal changes within the body, as well as stimuli manipulated by external sources has recently received significant attention. Owning to the spherical shape and porous structure, dendrimer is utilized as a material for drug delivery. Moreover, the surface region of dendrimer has various moieties facilitating the surface functionalization to develop the desired material. Therefore, multi-stimuli-responsive dendrimers or ‘smart’ dendrimers that respond to more than two stimuli will be an inspired attempt to achieve the site-specific release and reduce as much as possible the side effects of the drug. The aim of this review was to delve much deeper into the recent progress of multi-stimuli-responsive dendrimers in the delivery of anticancer drugs in addition to the major potential challenges. Full article
(This article belongs to the Special Issue Triggered Drug Delivery Systems)
Show Figures

Graphical abstract

Open AccessArticle
Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles
Pharmaceutics 2019, 11(11), 590; https://doi.org/10.3390/pharmaceutics11110590 - 08 Nov 2019
Abstract
Polymeric particles made up of biodegradable and biocompatible polymers such as poly(lactic-co-glycolic acid) (PLGA) are promising tools for several biomedical applications including drug delivery. Particular emphasis is placed on the size and surface functionality of these systems as they are regarded as the [...] Read more.
Polymeric particles made up of biodegradable and biocompatible polymers such as poly(lactic-co-glycolic acid) (PLGA) are promising tools for several biomedical applications including drug delivery. Particular emphasis is placed on the size and surface functionality of these systems as they are regarded as the main protagonists in dictating the particle behavior in vitro and in vivo. Current methods of manufacturing polymeric drug carriers offer a wide range of achievable particle sizes, however, they are unlikely to accurately control the size while maintaining the same production method and particle uniformity, as well as final production yield. Microfluidics technology has emerged as an efficient tool to manufacture particles in a highly controllable manner. Here, we report on tuning the size of PLGA particles at diameters ranging from sub-micron to microns using a single microfluidics device, and demonstrate how particle size influences the release characteristics, cellular uptake and in vivo clearance of these particles. Highly controlled production of PLGA particles with ~100 nm, ~200 nm, and >1000 nm diameter is achieved through modification of flow and formulation parameters. Efficiency of particle uptake by dendritic cells and myeloid-derived suppressor cells isolated from mice is strongly correlated with particle size and is most efficient for ~100 nm particles. Particles systemically administered to mice mainly accumulate in liver and ~100 nm particles are cleared slower. Our study shows the direct relation between particle size varied through microfluidics and the pharmacokinetics behavior of particles, which provides a further step towards the establishment of a customizable production process to generate tailor-made nanomedicines. Full article
(This article belongs to the Special Issue PLGA Based Drug Carrier and Pharmaceutical Applications)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop